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Abbreviations     

µESI:   micro electrospray ionization 
ADC:  analog digital converter 
BIRD:  blackbody infrared radiation-induced dissociation 
CCS:  collisional cross section 
CD:  circular dichroism spectroscopy 
CE:  collision energy 

CID:  collision induced fragmentation 
CLOGP:  logP predicted by  group contribution calculation method 

CLP:  cyclic lipopeptides  
CoMFA: comparative molecular field analysis 

CoMSIA: comparative molecular similarity analysis   
CP/MAS 29Si-

NMR:  
cross polarization/magic angle spinning nuclear magnetic resonance 
spectrometry 

CS: chiral selective stationary phase  

CSP-NMR:  chemical shift perturbance NMR 
Da, kDa:  Dalton 

DFT:  density functional theory  calculations 
DP:  declustering potential 
DP:  Declustering potential 

ECD:  electron capture dissociation 
EDD:  electron detachment dissociation 

ELISA:  enzyme-linked immunosorbent assays  
EMH-Horn: electro multiplier horn 

ESI:  electrospray ionization 
ESI-MS: electrospray ionization mass spectrometry 

ESI-TOF-HRMS: electrospray ionization time of flight high resolution mass spectrometry 
FMM: faradioldimyristate 

FMP/FPM: mixed esters of faradiol and myristic/pamitic acid 
FPP: faradioldipalmitate 

FTICR:  fourier transform ion cyclotron resonance 
FTIR: fourier-transform infrared spectroscopy 

FWHM:  full width at half maximum of peak 
GC-MS:  gas chromatography coupled to mass spectrometry 

GLM: generalized linear model 

HDX:  hydrogen-deuterium exchange 

HILIC:  hydrophilic interaction chromatography 
IDA: information dependent acquisition    

IEM:  ion evaporation model 
IEX:  ion exchange chromatography 

IMS-MS:  ion mobility mass spectrometry 
ITC:   isothermal titration calorimetry 

kDa: kilodalton 
kV:  kilovolts 

LOD:  limit of detection 
logP: octanol-water-partition coefficient 
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LOQ:  limit of quantification 
LSER: linear solvation energy relationships  

MALDI-TOF:  matrix assisted laser desorption ionization time of flight mass spectrometry  
MC: monte Carlo simmulation 

MCA:  multi channel alignment 
MCP:  multi channel plate 
MD:  molecular dynamics simulation 

NMR:  nuclear magnetic resonance spectroscopy 
NMR:  nuclear magnetic resonance spectrometry 

NOE-NMR:  nuclear overhauser effect NMR 
pKa: negative decadic logarithm of acid constant 

PS/DVB:   polystyrene-divinylbenzene copolymer 
QSAR: quantitative structure activity relationship  

QSERR: quantitative structure enantioseparation relationships  
QSRR: quantitative structural retention relationships   

SA: selectand 
SFG: sum frequency generation 

SJT:  superconducting tunnel junction 
TDC:  time digital converter 

UV/VIS:  ultraviolet–visible spectrophotometry 
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Summary of this PhD-thesis     

This cumulative PhD thesis put forward several aspects of the analysis of biomolecules 

employing high resolution quadrupole time of flight mass spectrometry (HR-QTOF-MS).  

Particular analytical challenges in the context of the analysis of various classes of analytes, 

i.e. amino acids and peptides, oligonucleotide complexes, triterpenoid esters, intact proteins 

have been addressed and new analytical solutions by either liquid chromatographic 

separation or HR-QTOF-MS, respectively, their hyphenation have been suggested.   

This PhD-Thesis is comprised of four thematically distinct parts: 

The first part dealt with the stereoselective analysis of amino acids and peptides. In one 

study, the complete stereoconfiguration of an antimicrobial active lipopeptide, poaeamide, 

was determined. Lipopeptides are typically synthesized by a non-ribosomal enzymatic 

peptide synthesis machinery. As result, they frequently contain several D-amino acids 

providing hydrolysis resistance towards target organism peptidases. As lipopeptides are of 

general interest for research on and development of antimicrobial compounds, complete 

structural elucidation is essential, which encompasses also determination of the absolute 

configurations of the amino acids constituting the respective peptide, which is presented in 

Publication II. The analysis strategy enveloped the incomplete hydrolysis of the peptide 

yielding overlapping sequence fragments, micro-scale preparative liquid chromatography 

and stereoconfiguration analysis of hydrolysis fragments by chiral GC-MS, ultimately 

providing determination of the stereoconfigurations of its comprising amino acids 

enantiomers. As the latter cannot be distinguished by mass spectrometry alone, HR-QTOF-

MS has been hyphenated with appropriate enantioselective chromatography using 

cinchonan carbamate based chiral stationary phases. This work involved the optimization of 

the chromatographic and MS conditions and the demonstration of the feasibility of 

aforementioned phases in providing complementary chromatographic selectivity when 

compared to RP and HILIC type phases, in detail emphasized in Publication VIII. A major 

challenge was the determination of configurations of amino acids with more than one 

stereogenic centers (Thr/allo-Thr, Ile/allo-Ile) and those also present as constitutional 

isomers (Leu/Ile). 
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A particular intricacy solved by the analysis strategy of a combined LC and GC approach 

employing reversed phase (RP), hydrophilic interaction (HILIC) and enantioselective 

stationary phases was the localization of D-Leu discovered in the peptide, as its position was 

disguised by presence of several Leu residues in the lipopeptide. 

To advance insight into the enantioselective interaction between the employed LC stationary 

phases and amino acids and derivatives thereof, Publication I reported the application of 

quantitative structure-retention and structure-enantioselectivity relationships to 

quantitatively study enantioselective molecular recognition mechanisms. By employing a 

Free-Wilson type generalized linear modelling approach, Publication I validated hypotheses 

that describe binding energy contribution of individual molecular moieties as being linear 

independent of each other. Major contribution to retention of the analytes could be 

attributed to pi-interacting derivatization groups, a finding that stands in congruence to 

experimental findings reported amongst others by Publication II. 

With mass spectrometry today representing the chromatographic detection method of 

choice and consequently entailing the desideratum of stationary phases compatible with this 

technology, the first part of this thesis was concluded by Publication VII enhancing mass 

spectrometric compatibility of the employed chiral stationary phases.  With a hydrolysis 

stable crosslinked methylpolysiloxane type surface chemistry, also providing a scaffold for 

various surface ligand modifications by the employed thiol-ene click chemistry, significant 

enhancement of mass spectrometric compatibility could be demonstrated. Using the 

enantioselective cinchonan carbamate based chiral stationary phases as an example ligand, 

ameliorated phase stability and resultant enhancement in mass spectrometric sensitivity 

was assessed and confirmed by high resolution quadrupole time of flight mass spectrometry.   

 

In the second part, challenging analysis, both from chromatographic and mass spectrometric 

perspective, of regioisomers of pentacyclic triterpenoid fatty acid esters instable even under 

soft ionizing conditions was addressed by Publication V.  Novel esters of triterpenoids with 

anti-inflammatory potential, amongst them mixed esters of faradiol, myristic and palmitic 

acid could be confirmed to be present in extracts of   by employment of orthogonal 

analysis methods, namely NMR, GC-MS and LC-HR-QTOF-MS. In order to address the 
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challenging liquid chromatographic separation of mixed regioisomeric diesters, molecular 

shape selective chromatography was employed using C30-type RP-stationary phases tailored 

for the task.  Chromatographic and mass spectrometric requirements, the latter stemming 

from the  astonishing instability of the analytes during ionization in the presence of water,  

even under the soft ionization conditions encountered in electrospray (ESI) or atmospheric 

pressure chemical ionization (APCI), could be harmonized  by application of a non-aqueous 

binary eluent system, cold LC column temperatures facilitating entropic optimization of 

regioisomer separation and adequate application and tuning of parameters of  APCI-QTOF-

MS for sensitivity, mass accuracy and resolution.  

 

The third part was dedicated to intact protein mass spectrometric analysis (Publications IV 

IX X and XI).   Employing the Sciex 5600+ TripleTOFs capability in mass accuracy, mass 

resolution and sensitivity even for large molecular species by adequate mass spectrometric 

and chromatographic  method development, analytical questions revolving around analysis 

of intact proteins could be addressed, including antibody characterization and, in a 

straightforward approach demonstrating mass accuracy and resolution of QTOF, direct 

confirmation of attachment and correct target location of covalent kinase inhibitors with sub 

kDa molecular weight to >40kDa protein targets. 

 

Finally, the fourth part of this thesis includes two studies (Publications III and XII) that 

examine interaction between G4-DNA-selective ligands and  G4-DNA-quadruplexes, the 

latter representing an in vivo form of a DNA that is of oncological research interest as it is 

frequently encountered in promoter regions of oncogenes. Ligands specifically binding to 

this DNA form is subject of research aimed at cancer imaging or potential anticancer drugs. 

Study of such non-covalent complexes in solution is preferably performed by NMR. 

However, NMR spectra interpretation is both regularly and in case of Publication III and XII 

severely hampered by extensive peak broadening and overlapping as consequence of fast to 

intermediate exchange rates  relative to the NMR chemical shift timescale   of ligands 

occupying different binding sites  Fluorescence titration, employed as orthogonal method in 
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both studies, also could not unequivocally unveil the stoichiometry of the complexes studied 

in the two publications. The author’s contribution was the development of a native 

electrospray ionization high resolution quadrupole time of flight mass spectrometry (ESI-HR-

QTOF) method to elucidate stoichiometry and binding mode of aforementioned complexes. 

The intricacy to address for both studies was the provision of mass spectrometric method 

capable of mapping non-covalent complex stoichiometries and properties from solution to 

the vacuum of the mass spectrometric ion path without distortion for example of secondary 

structure or ligand binding by the ionization process, by the atmosphere to vacuum 

transition or flight through the ion path. The native-ESI-QTOF-MS method developed was 

capable of providing these requirements for noncovalent DNA-ligand complexes of several 

kDa molecular mass, yet still allowing to quantitively monitor specific binding of very low 

molecular (e.g. ammonium NH4
+) species to the complex. 

Overall, the studies summarized in this Thesis, demonstrated the great utility and wide area 

of application of high-resolution quadrupole time of flight mass spectrometry, either in its  

hyphenated form with liquid chromatography or as direct infusion-MS,  to solve challenging 

analytical questions in the context of (bio)pharmaceutical analysis.  
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Zusammenfassung der Dissertationsschrift 

 

Diese kumulative Dissertationsschrift beschreibt Beiträge zu verschiedenen Aspekten der 

Analytik von Biomolekülen unter Anwendung hochauflösender quadrupol Flugzeit-

massenspektrometrie. Spezielle Herausforderungen im Kontext der Analytik verschiedener 

Analytenklassen, z.B. Aminosäuren und Peptide, Oligonukleotidkomplexe, Triterpenoidester 

und Intaktproteine wurden adressiert und neue analytische Lösungswege mittels 

Flüssigchromatographie oder HR-QTOF-MS oder der Kopplung beider wurden vorgeschlagen. 

 

Diese Dissertationsschrift gliedert sich in vier thematisch abgegrenzte Teile: 

 

Der erste Teil beschäftigt sich mit der stereoselektiven Analyse von Aminosäuren und 

Peptiden. In einer Studie wurde die Stereokonfiguration des antimikrobiell wirksamen 

Lipopeptides Poaeamid zur Gänze aufgeklärt. Lipopeptide werden regulär auf nicht-

ribosomalem Wege synthetisiert. Daher enthalten sie häufig mehrere D-Aminosäuren, 

welche ihnen Hydrolysebeständigkeit gegenüber Peptidasen der Zielorganismen verleihen. 

Da Lipopeptide von generellem Interesse der Forschung an und Entwicklung von 

antimikrobiellen Substanzen sind, ist ihre vollständige Strukturaufklärung, welche die 

Bestimmung der absoluten Konfiguration der Aminosäuren beinhaltet, essentiell und wird in 

Publikation II vorgestellt. Die Analysenstrategie umfasste die partielle Hydrolyse, die 

überlappende Sequenzfragmente bereitstellte, preparative Flüssigchromatographie im 

Mikromaßstab und Analyse der Stereokonfiguration der Fragmente via chiraler GC-MS, was 

letztlich die Bestimmung der Stereokonfigurationen der Aminosäurenenantiomere 

gestattete. Da letztere nicht massenspektrometrisch unterschieden werden können, erfolgte 

Kopplung eines HR-QTOF-MS an eine geeignete enantioselektive Flüssigchromatographie 

unter Verwendung von Cinchonancarbamat basierten chiralen stationären Phasen.  Die 

Arbeiten umfassten die Optimierung der chromatographischen und MS-Parameter und es 

wurde die Brauchbarkeit der vorgenannten Phasen für die Bereitstellung komplementärer 

chromatographischer Selektivität in Bezug auf  RP und HILIC demonstriert, letzteres 

detaillierter beschrieben in Publikation VIII.  Eine  große Herausforderung war die 
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Bestimmung der  Konfiguration der Aminosäuren mit  mehr als einem stereogenem Zentrum 

(Thr/allo-Thr, Ile/allo-Ile)  und derer, die als Konstitutionsisomere vorlagen (Leu/Ile). 

 

Eine besonderes Problem, gelöst von der Analysenstrategie durch kombinierten Einsatz von 

LC und GC, unter Verwendung von Umkehrphasen (RP), Phasen mit  hydrophiler Interaktion 

(HILIC) und enantioselektiver stationärer Phasen, war die Lokalisierung des im Peptid 

festgestellten D-Leu, da  seine Position durch die Gegenwart mehrerer Leu im Lipopeptid 

verschleiert wurde. 

Um das Verständnis der enantioselektiven Interaktion zwischen den eingesetzten 

flüssigchromatographischen stationären Phasen und Aminosäuren und Derivaten letzterer 

zu vertiefen, berichtet Publikation I über die Anwendung quantitativer Struktur-Retentions- 

und Struktur-Enantioselektivitäts-Beziehungen für die quantitative Untersuchung enantio-

selektiver molekularer Erkennungsmechanismen.  Durch Anwendung generalisierter linearer 

Modellierung vom Free-Wilson-Typ, konnte Publikation I die Hypothese validieren, dass der 

Beitrag individueller Molekülteile zur Bindungsenergie linear unabhängig ist. Der 

Hauptbeitrag zur Retention der Analyten konnte auf π-Interaktionen mit den 

Derivatisierungssubstituenten zurückgeführt werden, ein Befund der sich kongruent zu den 

Ergebnissen experimenteller Studien, unter anderen auch jenen von Publikation II, verhält. 

Da Massenspektrometrie heute die chromatographische Detektionsmethode der Wahl 

darstellt, was folgerichtig einen Bedarf an zu dieser Technologie kompatibler stationärer 

Phasen nach sich zieht, schließt der erste Teil dieser Dissertationsschrift mit Publikation VII, 

in welcher die Massenspektrometriekompatibilität der eingesetzten chiralen Phasen 

verbessert wurde.  Mit einer Oberflächenchemie auf Basis von hydrolysestabilen 

quervernetzten Methylpolysiloxan, welche  mittels Thiol-ene-click-Reakivität eine Plattform 

für Modifikation mit verschiedenen Oberflächenliganden bereitstellt, konnte eine 

signifikante Verbesserung der Massenspektrometriekompatibilität demonstriert werden.  

Anhand   enantioselektiver Cinchonacarbamate als Beispielliganden wurde die erhöhte 

Phasenstabilität und die daraus resultierende Verbesserung der massenspektrometrischen 

Sensitivität via hochauflösender quadrupol-Flugzeitmassenspektrometrie untersucht und 

bestätigt. 
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Im zweiten Teil dieser Dissertationsschrift wurde die anspruchsvolle Analytik, sowohl aus 

chromatographischer als auch massenspektrometrischer Perspektive, von Regioisomeren 

pentazyklischer Triterpenoidfettsäurenester, welche auch unter milden Ionisations-

bedingungen instabil sind, von Publikation V adressiert. Bisher unbekannte 

Triterpenoidester mit entzündungshemmenden Potential, unter ihnen gemischte Ester von 

Faradiol, Myristinsäure und Palmitinsäure, konnten unter Anwendung orthogonaler 

analytischer Methoden, namentlich NMR, GC-MS und LC-HR-QTOF-MS, in Extrakten von 

Calendula officinalis nachgewiesen werden. Um die herausfordernde chromatographische 

Trennung von gemischten regioisomeren Diestern zu adressieren, wurden speziell an diese 

Aufgabe angepasste C30-RP stationäre Phasen für die molekülformselektive 

Chromatographie eingesetzt. Chromatographische und massenspektrometrische 

Herausforderungen, letztere resultierend aus der bemerkenswerten Instabilität der Analyten 

während der Ionisation in Gegenwart von Wasser, sogar unter den milden Bedingungen der  

Elektrospray (ESI)  oder  der chemischen Ionisation bei Atmosphärendruck (APCI), konnten 

miteinander harmonisiert werden. Erreicht wurde dies durch Anwendung eines binären, 

nicht-wässrigen Eluentensystems, kalter und somit entropisch für die Regioisomerseparation 

günstiger LC-Säulentemperatur und adäquater Anwendung und Anpassung der Parameter 

des APCI-QTOF-MS für Sensitivität, Massengenauigkeit und Auflösung. 

 

Der dritte Teil der vorliegenden Dissertationsschrift war der Massenspektrometrie intakter 

Proteine gewidmet (Publikationen IV IX X and XI). Unter Einsatz der Massengenauigkeit, 

Massenauflösung und auch für große molekulare Spezies ausreichende Sensitivität des Sciex 

5600+ TripleTOF konnten, mit angepasster massenspektrometrischer und chromato-

graphischer Methodenentwicklung, analytische Fragestellungen rund um Intaktproteine 

adressiert werden. Unter diesen, u.a. Antikörpercharakterisierung und eine, die Fähigkeit zur 

Massengenauigkeit und Auflösung unterstreichende Anwendung des QTOFS, um Bindung 

und korrekte Lokalisation kovalent bindender Kinaseinhibitoren mit sub-kDa Molekülgewicht  

an intakte Zielproteine mit >40kDa Molekulargewicht direkt nachzuweisen. 
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Schließlich enthält der vierte Teil dieser Dissertationsschrift zwei Studien (Publikationen III 

and XII), welche die Interaktion zwischen G4-DNA-selektiven Liganden und G4-DNA-

quadruplexen untersuchen. Letztere ist eine in vivo Form der DNA, welche von 

onkologischem Forschungsinteresse ist, da sie häufig in den Promotorregionen von 

Onkogenen anzutreffen ist. Liganden, welche spezifisch an diese DNA-Form binden, sind 

Gegenstand der Forschung welche auf Onko-Imaging und potentielle Krebstherapeutika 

abzielt. 

Die Untersuchung solcher nichtkovalenten Komplexe würde bevorzugt durch NMR 

vorgenommen. Erschwert wird die Auswertung solcher NMR-Spektren regulär und auch im 

Falle von Publikation III und XII durch beträchtliche Peakverbreiterung und -überlagerung, 

beides resultierend aus relativ zur NMR-Zeitachse schnellen bis mittelschnellen 

Austauschraten von Liganden, welche an verschiedene Bindestellen binden. 

Fluoreszenztitration, welche in beiden Studien als orthogonale Technik eingesetzt wurde, 

konnte ebenfalls nicht die Stöchiometrie der Komplexe aufklären. Der Beitrag des Autors 

war die Entwicklung einer Methode zur hochauflösenden nativen Elektrospray quadrupol-

Flugzeitmassenpektrometrie (ESI-HR-QTOF) um Stöchiometrie und Bindungsmodus 

vorgenannter Komplexe zu erhellen. Die zu überwindende Hürde war die Bereitstellung 

einer Methode, welche in der Lage ist, Stöchiometrie und Eigenschaften nichtkovalenter 

Komplexe unverändert aus der Lösung in das Vakuum des massenspektrometrischen 

Ionenpfads zu übertragen, ohne hierbei durch Ionisationsprozess, Übergang von 

Atmosphärendruck zu Vakuum oder den Flug durch den Ionenpfad zum Beispiel 

Sekundärstrukturen oder Ligandenbindung zu verfälschen. 

Die entwickelte native-ESI-QTOF-MS Methode kann diese Anforderungen für nichtkovalente 

DNA-Ligand-Komplexe von mehreren kDa Molekülgewicht erfüllen, und dennoch die 

spezifische Bindung niedermolekularer Spezies (z.B. Ammonium NH4+) an den Komplex 

nachweisen. 
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Insgesamt konnten die in dieser Dissertationsschrift zusammengefassten Studien die große 

Nützlichkeit und Anwendungsbreite der hochauflösenden quadrupol-Flugzeitmassen-

spektrometrie, entweder gekoppelt an entsprechende Flüssigchromatographie oder als 

direkt-infusions-MS,  zur Lösung verschiedener herausfordernder analytischer Frage-

stellungen im Kontext der (bio)pharmazeutischen Analytik veranschaulichen.  
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General introduction I 

 
Short primer on quadrupole time of flight mass spectrometry 
 
Time of flight mass spectrometry represents, predecessed only by sector field type 

instruments[8], the second oldest mass analyzer[10] technology in mass spectrometric 

research, with its original description by Stephens et al.[20] dating back to 1946 and its first 

practical implementation in 1948 by Cameron and Eggers[3].  As with quadrupole or ion trap 

(Paul and Penning types), time of flight mass spectrometry required the advent of soft 

ionization techniques like electrospray (ESI)[21, 9] and matrix assisted laser desorption 

ionization (MALDI)[11] in order to fully integrate the technique into chemical, biological and 

pharmaceutical  fields of research[10].  In contrast to  triple quadrupole (QqQ) type 

instruments as most prominent exponent of tandem mass spectrometers, already devised in 

the late 1970s by Yost and Enke[22], tandem-TOF systems became of interest not before 20 

years later with the development of TOF/TOF[7] and quadrupole-TOF (QTOF)[17]. While 

TOF/TOF remained restricted mainly to offline analysis (MALDI) of biological 

macromolecules, QTOF was rapidly embraced and its use spread into various application 

fields of analytical chemistry/mass spectrometry[5], especially as QTOF systems could be 

readily hyphenated to gas and liquid chromatographic separation, with the  latter  using 

electrospray ionization as coupling ion source resembling the standard configuration (LC-ESI-

QTOF)  encountered in contemporary mass spectrometric laboratories. 

 

 

 

 

 

Performance characteristics 

 

As of date of this thesis, the typical bioanalytical or pharmaceutical analytical LC-MS 

laboratory is equipped with triple quadrupole (QqQ), quadrupole-time of flight (QTOF) or 

Figure TOF 1 QTOF ion path. Qudrupole (Q1,q2) 
section to the left, orthogonal extraction drift tube with 
pusher, reflectron and detector on the right side. The 
back arrow denotes the path of ions during scan. 
Reprint from Chernushevich, I. V., Loboda, A. V. and 
Thomson, B. A. (2001), An introduction to quadrupole–
time‐of‐flight mass spectrometry. J. Mass Spectrom., 
36: 849-865An introduction to quadrupole–
time‐of‐flight mass spectrometry, Copyright (2014) 
with permission from Wiley 
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orbitrap type[15, 14] mass spectrometers. Of those three, the QqQ is still the predominant 

form, especially when targeted quantitative analysis is performed. This bias towards the less 

accurate and resolving system is founded, as assessed by Chernushevich et al. [5] 6 years 

after the introduction of the first QTOF by Morris et al.[17], that QqQ are the more sensitive 

platform for quantitative LCMS analysis, with generally lower limit of detection (LOD) and 

quantification (LLOQ)  and greater linear range when operated in tandem mode. The latter 

describes the operational mode of isolation of the analytes of interest m/z by the first 

quadrupole(Q), fragmentation by collision induced dissociation (CID) by the second 

quadrupole (q2, collision chamber) and isolation of specific fragments by the third 

quadrupole (Q3) prior to detection, termed single reaction monitoring (SRM) or multi 

reaction monitoring (MRM) if performed sequential for multiple analytes. As of date of this 

thesis, this assertion still holds true in general, yet there are analytical situations where the 

QTOF excels: when interferences are unresolved by chromatography and subsequent 

quadrupole ion selection i.e. discrimination of quasi-isobaric species with mass differences 

of less than 1 Da. Especially with very complex samples of biological origin, the substantially 

better mass accuracy and mass peak resolution of QTOF relative to QqQ systems,  can 

provide quantitative equivalence or occasionally even an advantage for the time of flight 

systems. 

QTOF systems excel at three performance characteristics, that in addition enable operational 

modes inaccessible to QqQ sytems:   mass accuracy, mass resolution, and in full mass 

spectra scan speed of the time of flight compartment. 

Often quoted high mass range is, however, not amongst these. As a matter of fact, the large 

mass range stated by the vendors, e.g. 40000 Da for the Sciex 5600+ used in this thesis, is a 

theoretical value for a single charged ion, resultant of ion path parameters like pusher 

acceleration voltage, ion optic geometry and drift path length and detector speed, and 

largely unused by actual ions entering a QTOF. Ions have to pass multiple quadrupoles Q1, 

q2 and transmission RF quadrupoles, that restrict efficient passage of ions with m/z ratios 

larger than 4000, requiring the multiple charging provided by the electrospray ion source as 

prerequisite to actually reach the detector. The reason QTOF is superior to QqQ for large 

molecule analysis is not due to the transmissions characteristics, but provided by high mass 

accuracy and resolution required to discriminate isotopically and or chemically polydisperse 
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multicharged ion species.  See introduction of Part III (intact protein mass spectrometry) of 

this thesis for reference. 

Mass accuracy, as key function of HR-QTOF-MS, needs careful attention during operation 

and data analysis. For the time of flight compartment of QTOF systems it is specified in 

the low ppm range, e.g. below 2 ppm for the Sciex 5600+, which accounts for mass 

differences in the range of one to four electron masses for small molecules (1-1000 Da).  

Mass accuracy is calculated via: 

 

 

Where mmeasured is the actual signal observed and mtheoretical is the calculated monoisotopic 

mass. However, mass accuracy is not a fixed value, but instable over short periods of time, in 

the range of minutes to one hour as opposed to quadrupole that retain mass accuracy over 

longer periods. Temperature deviations subsequent to the preceding mass axis calibration 

are the main cause by introducing changes in high power supply output voltages and 

effective TOF drift path length that result in offset between theoretical and observed ion 

m/z[5]. 

Technical countermeasures reduce the observed mass accuracy drift to approximately 50 

ppm/h, still necessitating frequent mass axis calibration up to one calibration per sample 

analyzed to maintain maximum mass accuracy. This is performed by intermitted 

measurement of a calibration mix spanning the m/z range of interest. Various calibrants 

have been described, amongst them dedicated mixtures, polymers[13, 6] or noncovalent salt 

clusters[2].  For the studies of this thesis either polypropylene mixtures (PPG) or low 

concentrated sodium acetate forming non covalent clusters were employed with the latter 

having the benefit of less memory effect in the ion source[12]. Furthermore, mass axis 

stability can be achieved by constant introduction of a “lock mass”, i.e. a compound of 

known m/z ratio used for real time, also termed internal or online, mass axis stabilization by 

single point calibration amenable when drift tube flight time and m/z are in linear 

relationship[18, 4] or by a posteriori, termed external / offline mass axis recalibration in the 

acquired raw data prior to data analysis[19, 16]  
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Mass resolution as the second key function of QTOF-systems provides usually between R 

30000-40000 resolution of mass peaks for MS1-TOF scan mode. In MS/MS mode, this value 

can differ, e.g. for the Sciex 5600+ in a tradeoff between resolution and sensitivity the 

operator can choose between R=20000 (high sensitivity) and R=35000 (high resolution). 

Since MS/MS spectra are less densely populated, lower resolution is often acceptable. Mass 

resolution is calculated via: 

 

 

Where R is the mass resolution, m/z value at the mass peak apex and ΔmFWHM is the mass 

peak with at 50% of the maximum intensity. 

Mass accuracy and resolution together yield, when compared to QqQ systems, far greater 

fidelity of analyte identification or targeting, respective. It must be noted, that to the 

quadrupole-part of a QTOF system the same performance characteristic as in a QqQ system 

applies, i.e. approximately 300ppm mass accuracy and R=1000 resolution,  implying, that 

interferences quasi-isobaric under quadrupole selection during  SIM/MRM parent ion 

selection are fragmented together in the q2.  Yet, due to the high resolution and accuracy of 

the time of flight compartment as opposed to a Q3, even unspecific fragments, e.g. loss of 

water by both interfering species, can be discriminated.  An example of such an analytical 

challenge resolved by higher analyte targeting fidelity by QTOF was encountered in the 

experiments for Publication V, where the QTOF exhibited more actual sensitivity than the 

QqQ usually regarded superior in this respect: 
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Figure TOF 2  Top: Calculated theoretical spectra of uncharged acetyl salicylic acid (m=180.0423) and 
Glucose (m= 180.0634). Left:  QTOF at R=35000 and 2ppm mass accuracy, left QqQ at R=1000 and 
300 ppm.  Box indicates mass accuracy corridor, i.e. range within overlapped quasi-isobaric species 
would not be discriminated. Bottom: Example of increased analyte targeting fidelity and effective 
sensitivity form Publication V, where quasi isobaric background complicates analysis. Albeit QTOFs 
are generally inferior regarding sensitivity when compared to QqQ systems, presence of interference 
could be addressed by mass accuracy and resolution, thereby actually surpassing the latter 
performance.   

 

 

Specific operational modes of QTOF systems 

The third key function of a QTOF system is the scan speed achieved by its time of flight 

compartment. Flight time of ions for a single raw spectrum (transient) in the drift tube lies in 

the µs range[5].  To reduce noise and gain viable ion statistics of the mass peaks, multiple 

transients are summed to yield one spectrum. Effective scan rates therefore achievable are 

approximately 50 spectra per second, with the Sciex 5600+ excelling with up to 100Hz 

acquisition rate.  This high acquisition rate allows operational modes for QTOF systems, that 

are inaccessible by triple quadrupole instruments and mainly employed for untargeted 

analysis[23]: 
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Information dependent acquisition (IDA): The QTOF operates in a cycle of MS1-TOF-Scan 

and MS/MS scans triggered as a result of the initial MS scan which is examined by an 

algorithm that identifies mass peaks of interest, e.g. intensity charge state, isotopic pattern 

and inclusion and exclusion lists. Mass peaks selected are then subjected to MS/MS analysis, 

i.e. setting of the Q1 transmission window to the respective mass an acquisition of a full 

product ion spectrum after fragmentation in q2. Collision energy can here be automatically 

adjusted to m/z ratio of the analyte (rolling collision energy, especially used for peptides).  

Due to the mode of operation a provision of a few production ion spectra per MS cycle (e.g. 

typically top 4 to top 20), this mode is employed for untargeted qualitative analysis. MS/MS 

spectra then allow the identification of the detected compounds (precursors). 

 Comprehensive MS/MS (SWATH): Ideally, each compound in an untargeted analysis would 

be accessible quantitively with MS/MS data. Yet, relative to the required performance, slow 

target mass adjusting time, accuracy and resolution of the Q1 quadrupole prohibit such an 

approach of completely scanning through each component individually. Instead, the mass 

spectrum is divided into intervals, by standard 25Da but also individual Q1 precursor 

isolation widths are possible, that are transmitted by Q1 to fragmentation in q2 and 

spectrum acquisition in the TOF compartment sequentially.  

  

 

 

 

 

 

 

 

 

 

Figure TOF 3Fig TOF:  Left SWATH and IDA: Reprint from Comparison of Information-Dependent 
Acquisition, SWATH, and MSAll Techniques in Metabolite Identification Study Employing Ultrahigh-
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Performance Liquid Chromatography–Quadrupole Time-of-Flight Mass Spectrometry Chemistry 2014 
86 (2), 1202-1209with Copyright (2014) permission from   American Chemical Society. Right: SWATH 
operation mode: Reprint from Automated SWATH Röst H.L., Aebersold R., Schubert O.T. (2017) 
Automated SWATH Data Analysis Using Targeted Extraction of Ion Chromatograms. In: Comai L., Katz 
J., Mallick P. (eds) Proteomics. Methods in Molecular Biology, vol 1550. Humana Press, New York, NY, 
with permission from Springer 

 

Performance assessment of QTOF systems on the market - what to expect 

At the beginning of this thesis, the participation in procurement[1] of a research grade 

quadrupole time of flight mass spectrometer was included. During application procedures 

for the grant, a system check was developed and submitted to the vendors in order to assess 

performance indicators like e.g. mass accuracy, mass resolution, scan speed, sensitivity using 

a variety of analytes ranging from small molecules and metabolites to intact proteins.  The 

overall averages of the results of this assessment are portrayed below. Due to legal 

considerations, the results are displayed in an anonymized form. It should be noted, that 

sensitivity, also depicted as overall average over all small molecules, is a strongly analyte and 

chromatographic method specific result influenced by various factors and should therefore 

be perceived cum grano salis.     
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Figure TOF 4Fig. TOF4: Results of performance assessment of research grade quadrupole time of 
flight mass spectrometers. Note the missing decline of signal vs scan speed only observed with one 
vendor is due to the employed detection technology that performs independent of scan speed. 
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General Introduction II 

 
Electrospray Ionisation – History, theory and practical implications 

Historic development 

Observations regarding electrospraying of liquids can be traced back as far as 1750, to 

French  physicist Jean-Antonie Nollet reporting on aerosol formation of water dripping from 

an electric charged metallic vessel placed near electrical ground.  The first physical and 

mathematical treatment of this phenomenon was given by Rayleigh[60] , devising the first 

general theory of afore mentioned aerosolization observed in electrospray processes 

deriving from electrical charge amount, geometry and  fluid viscosity a threshold of droplet 

fission, the latter named after its discoverer Rayleigh-limit. 

Further investigations by Zeleny[78, 79, 80] on forms of electrospray emission from 

capillaries first described the formation of a liquid cone emitting a liquid jet under 

appropriate electric conditions, providing the experimental basis for Taylors theoretical 

description of cone jet emission what now is known as the Taylor-cone[68]  

 

 

 

 

 

 

 

 

Figure ESI 1 Picture from Zelenys work showing Taylor cone, jet emission and droplet fission as 
predicted by Rayleigh. Reprint from. "Instability of electrified liquid surfaces." Physical review 10.1 
(1917): 1. Copyright (2017) with permission from American Physical Society 

 

Until the mid 1960s electrospray research and development was, from a mass 

spectrometrists  perspective, macroscopically focused such as liquid dynamics or technical 

applications[7, 8] . The first publication regarding  molecular weight determination using 
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electrospray on volatile solvents can be attributed to Dole[24]. On the basis of earlier 

theoretical and applied research[34, 70, 60] , however, independent of works in the field of 

desorption ionization (FDI)[41, 55, 56] also demonstrating ionization on small diameter 

capillary tips in vacuo, he also proposed macromolecular ion formation by  a repetitive 

solvent evaporation/droplet fission mechanism, later  established under the term “Charged 

residue model” (CRM)[23].  

 

 

 

 

 

  

Figure ESI 2Fig ESI3: Doles original electrospray setup and skimmer system. Reprint from: Molecular 
Beams of Macroions, The Journal of Chemical Physics 49:5, 2240-2249, Copyright (1968), with 
permission from AIP Publishing 

 

Although featuring already atmospheric pressure, hot nitrogen desolvation assistance,  and a 

3 stage nozzle/skimmer vacuum system (atmospheric pressure, 0.1mBar, 13µBar), this 

pioneering  setup besides providing a method for generation of molecular beams of both 

polarities, the findings of Dole and Coworkers[51, 18]  are not considered the birthmark of 

ESI-mass spectrometry, as his detector consisted of a simple Faraday cup and a repeller grid 

for m/z- filtering to some extent yielding ion current vs. repeller voltage rather than m/z-

values. More than the following decade passed till the event of electrospray ionization, as 

result of the works of Fenn et al.[77].  

 

The strong development of high-performance liquid chromatography HPLC during the 1970s 

also increased the demand for a suitable coupling technique to mass spectrometry.  Various 

techniques have been proposed.  Online eluent drying and  ionization, like the moving band 

interface[52], atmospheric ionization techniques employing radionuclide (63Ni) beta 

radiation[38, 39, 36, 37]  or corona discharge ionization[16] of evaporated analytes, diverting 
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a small fraction, usually 1/1000, of LC eluent into a standard chemical ionization(CI) 

interface[9, 4, 53],  inlet systems  using membrane separators for maintaining CI Vacuum[49, 

43] or laser assisted  vaporization[13]. 

 

 

 

 

 

 

 

 

 

 

 

Figure ESI 3Fig ESI3 Two early LC-MS approaches, Moving Band interface and split flow CI interface 
Reprints from: Direct analysis of liquid chromatographic effluents Journal of Chromatography A, 
Volume 122, 7 July 1976, Pages 389-396, Copyright (1976) with permission from Elsevier; and from: 
Liquid chromatography‐mass spectrometry. II—continuous monitoring. Biomed. Mass Spectrom., 1: 
80-82. 1974, Copyright (1974) with permission from Wiley. 

 

At the end of the decade, a review[5] by Arpino and Guiochon summarizes and evaluate the 

proposed techniques and, despite the retrospective obvious usability of electrospray for 

liquid chromatography mass spectrometry coupling (LCMS), consider the split flow 

interfacing and moving band interfaces the most promising approach. 

 All of the aforementioned ionization methods differ in the procedure of atomization prior to 

the common use chemical Ionization to generate  molecular ions thereby suffer from CI 

related limitations like LC-solvent flow and composition constraints, analyte volatility and 

stability requirements excluding especially biooligomers and –polymers from analysis and 

unwanted CI side effects i.e. solvent ionization and clustering resulting in crowded lower 

m/z-spectra region. 
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Vestal and coworkers established a more straightforward approach with the thermospray 

ion (TS) source[12, 11, 14] , allowing for LC flow rates up to 2ml/min. In its basic 

configuration the eluent is simply nebulized into a sonic jet of eluent vapor by electric 

heating and expanding through a capillary into a vacuum of 3 Torr[14]. Using ionization 

promoting eluent additives e.g. formic acid, no external ionization source is needed, ion 

formation results from uneven charge distribution during eluent vaporization and 

subsequent drying of particles. The original TS source also featured orthogonal spraying, i.e. 

the path of the vapor jet was perpendicular to the mass spectrometer orifice and ion 

path[14], enhancing signal to noise ratio. For analytes less prone to ionization by adduct 

formation, the source could be outfitted with either electron ionization arrangement or an 

electric discharge electrode pair, the latter resembling an atmospheric pressure chemical 

ionization (APCI) precursor, albeit operating at reduced pressure. TS had some 

disadvantages, mainly exerting thermal stress on the analytes and limited solvent 

compatibility.   

 

 

 

 

 

 

 

Figure ESI 4 Vestals thermospray (TS) ion source. Reprint from: Thermospray interface for liquid 
chromatography/mass spectrometry, Analytical Chemistry 1983 55 (4), 750-754, Copyright (1983) 
with Permission from American Chemical Society 

 
In 1984 Fenn and coworkers[77] demonstrated the first coupling of Doles electrospray ion 

source to a quadrupole mass spectrometer, showing evidence for the gentle nature of the 

ionization process by identifying a multitude of noncovalent adduct ion cluster consisting of 

solvent molecules and a charged central ion. These findings also provided proof for Iribarne-

Thomson hypothesis,[42, 69], later known as Ion-evaporation-Model (IEM) of solute ion to 

gas phase ion transition, as a mechanism concurrent to Doles CRM.  In contrast do Doles 
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macromolecular ions, Fenn also demonstrated the usefulness of electrospray ionization for 

mass spectrometric analysis of low molecular weight, organic molecules being too instable 

or nonvolatile to be analyzed by at that time common ionization methods like CI, EI or TS. 

According to Fenn[73] , and with respect to the Iribarne-Thomson hypothesis, the ionization 

process of ESI  proceeds in a mirror like fashion to Thermo spray ionization. While TS in basic 

mode produces net charging by atomization of solvent, ESI producing atomization of solvent 

by electrochemical net charging at the capillary tip. 

 

 

 

 

 

 

 

Figure ESI 5 Fenns schematic of the ESI source and example spectrum.  Spray jet still parallel to MS 
orifice and no thermal or pneumatic assistance, yet already counterflow nitrogen. Spectrum showing 
quasimolecular ions as +H+ adducts and noncovalent adducts of arginine. Reprint from: Electrospray 
ion source. Another variation on the free-jet theme, The Journal of Physical Chemistry 1984 88 (20), 
4451-4459, Copyright (1984) with Permission from American Chemical Society  

 

The full capability of ESI was demonstrated in 1988 on the 36th Annual Conference on Mass 

Spectrometry and Allied Topics in the well recognized (7290 cites as of Nov 2016) 1989 

publication[73] of Fenn’s group, for which he got later awarded the Nobel Prize in 2002. The 

paper demonstrated the use of ESI, using both polarity, for small molecule of below 100 Da, 

peptides, oligonucleotides and oligomers in the 3kDa range to various proteins up to 76kDa. 

The work also again demonstrated the soft nature of the electrospray ionization by 

demonstrating spectra showing no signs of ionization related fragmentation and the 

capability of producing noncovalent Coulomb type adducts e.g. [PEG+n*Na+]n+  adducts.  

Fenn and especially his coworker Mann also addressed the challenge of analyte charge 

multiplicity, at the same time beneficial for low m/z transmitting quadrupoles and maleficial  

with regard to spectra complexity, by devising a deconvolution algorithm reconstructing the 
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original molecular weight of a given multiplex signal. With the results of Fenn confirmed by 

Covey[19] , the “esi revolution”  was sparked in 1989, as indicated by Fig ESI7 

 

 

 

 

 

 

Figure ESI 6 Fenns improved source utilizing a transfer capillary; Mass spectrum of cytochrome c 
showing ESI typical charge multiplicity and the results of deconvolutions by Fenn&Manns algorithm. 
Reprint from:  Electrospray ion source. Another variation on the free-jet theme, The Journal of 
Physical Chemistry 1984 88 (20), 4451-4459, Copyright (1984) with Permission from American 
Chemical Society  

 

 

 

 

 

 

 

 

Figure ESI 7  Depicting publication statistics, showing the exponential rise in publications after Fenns 
paper. Source: gopubmed.org, search words as denoted in title 

 

Fenn’s ESI-Source was completed to its common present technical design by enabling 

pneumatic assistance of electrospray[15], thermal assistance[26] and adoption  of the 

orthogonal design, i.e. the ESI spray jet is introduced orthogonally to the axis of the mass 

spectrometer orifice entrance.  Besides from manufacturer specific minor variations, there 

have been no essential changes to the electrospray  source design.   ESI was enabled as a 

mass spectrometric standard, as all commercial available general purpose research grade 

mass spectrometers are equipped with at last an ESI-Source. 
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 Theory of electrospray ionization and practical implications 

The process generating ions in an electrospray consists of three[45] sub-processes, (1) 

dispersion of the analyte containing solvent at a hypodermic capillary into net charge 

containing fine primary droplets, ~10µm in diameter[15]. (2) evaporation of solvents and 

Coulomb partition (“explosion”) to smaller sub-droplets capable of releasing gas phase ions 

and (3) production of gas-phase ions. 

 

General setup 

 

 

 

 

 

 

 

 

Figure ESITOP 1 Electric flow scheme of an electro spray source. a) general scheme, positive polarity 
shown, in case of negative ESI mode, electron flow is reversed and reduction is occurring ad emitter 
tip. Reprinted from Analytical chemistry, 79, 15, Kertesz et al. Using the electrochemistry of the 
electrospray ion source, 5510--5520, Copyright (1994), with permission from ACS Publications 

 

Dispersion to primary droplets 

A potential of usually 2-5kV[17] is applied between the capillary tip and MS interface plate. 

The field strength can be approximated by a relation given by Loeb et al.[50]: 
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With Vc the applied potential, d the distance between tip and interface plate and rc the 

capillary outer radius. As shown by the formula, the most influential geometry parameter is 

rc [45] 

 

 

 

 

 

 

Figure ESITOP 2Fig ESITOP2: Left: Taylor cone formation as result of electrophoretic charge 
separation. Gray: Electric field direction and isopotential lines. Source: own work. Right: Tylor cone, 
droplet formation as a result of varicose waves on charged surface leading to pinching of the cone jet. 
Reprinted from Journal of Mass Spectrometry, 35/7, Kebarle et al. A brief overview of the present 
status of the mechanisms involved in electrospray mass spectrometry, 804-817, Copyright (2000), 
with permission from John Wiley and Sons. 

 
 With common geometries of ESI-ion sources, i.e. d=2-4 cm, rc~0.5mm and Vc=2-5kV, field 

strengths in the order of several 106 V/m are present. This high field strength results in an 

electrophoretic charge separation[7, 32, 65, 67], which provides the basis for the 

deformation of the liquid at the capillary tip into the Taylor cone by electrostatic 

repulsion[68]. 

If the potential Vc is sufficiently high, the electrostatic repulsion caused by the charge 

separation is high enough to overcome the surface tension of the solvent, as predicted by 

Rayleigh[60]. A jet of charged solvent is subsequently emitted from the Taylor cone. Raising 

Vc higher changes the cone-jet emission to multiple-mode (s Fig ESITOP 2) 
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Figure ESITOP 3Fig ESITOP2: Taylor cone jet modes, from left to right: pulsed single jet, dual and multi 
jet mode. Reprinted from Journal of Aerosol Science, 25 /6, Cloupeau et al. Electrohydrodynamic 
spraying functioning modes: a critical review, 1021—1036, Copyright (1994), with permission from 
Elsevier   

 

The actual jet breaks down into the aforementioned primary droplets as result of varicose 

waves induced by interaction of viscosity and surface tension leading to instabilities that 

“pinch” of droplets[54], as already theoretical postulated by Rayleigh[60]  Further 

theoretical[63, 58] and experimental investigation[80, 57, 27] revealed initial droplet size in 

the tens of µm range and that their size can be derived from the jet-cone diameter 

approximately (ØD/ØJ≈1.95, see Fig ESITOP3) and that initial dispersion of droplet diameter 

is basically monodispersed[57].  

 

 

 

 

 

 

Figure ESITOP 4 Taylor cone jet breakdown into charged droplets Reprinted from Journal of Aerosol 
Science, 25 /6, Cloupeau et al. Electrohydrodynamic spraying functioning modes: a critical review, 
1021—1036, Copyright (1994), with permission from Elsevier   
 

Electrochemistry of electrospray process and consequences 

An ESI-ion source is basically and in its most encountered form a two-electrode arrangement 

(s. Fig ESITOP1) operated in directed current, where the polarity can be chosen by the 

operator. Fast polarity switching for quasi-synchroneous interlaced acquisition of both 

polarity species can be performed. Paulie-design based ion traps often offer this option, TOF 

and QTOF system, however, are not capable of this feature. The reason lies in the high 

capacitance of the TOF ion optics that would need to be discharged and recharged, a process 

that usually needs several seconds. 
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Figure ESITOP 5 Electric flow scheme of an electro spray source. Left: grounded emitter configuration. 
Right: floated emitter configuration. RES: resistance of electrospray, IES: overall current of electrospray. 
Reprinted from Analytical chemistry, 79, 15, Kertesz et al. Using the electrochemistry of the 
electrospray ion source, 5510--5520, Copyright (1994), with permission from ACS Publications 
 

Two main configurations are used: grounded and floating emitter. The former keeps the 

emitter tip at ground potential, whereas in floating configuration electrospray voltage is set 

at the emitter tip. Both configurations are considered equal regarding ionization, albeit the 

floating emitter variant is more often encountered, both in literature and in commercial 

available hardware.  

 

Due to safety considerations, the floating emitter design is commonly used in a modified 

form, where an upstream ground connection ensures operator and upstream equipment 

protection from the usual high voltages (kV) used in electrospray ionization (see Fig ESITOP5). 

The additional ground connection opens a second current loop quantified by the current IEXT, 

so any calculations based on ion source current, e.g. attempts to provide signal correction 

for matrix effects, i.e.  ion suppression or ion enhancement effects have to take into account 

that ITotal=IEXT + IES.     
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Figure ESITOP 6 Modified floating emitter configuration with upstream ground RES: resistance of 
electrospray, IES:electrospray current IEXT: external ground current . Reprinted from Analytical 
chemistry, 79, 15, Kertesz et al. Using the electrochemistry of the electrospray ion source, 5510--5520, 
Copyright (1994), with permission from ACS Publications 

 

As result of high field induced electrophoretic charge separation and ultimately emission of 

net charged droplets, a net charge transportation i.e. current flow from the emitter capillary 

tip toward the MS interface place occurs. The opposite charge is enriched in the emitter 

capillary and charge balance requires a redox-chemical conversion.  As Fenn pointed out[54] 

solely for the generation of atmospheric pressure gas phase ions this conversion process 

would not be necessary. Albeit it is immanent, due to the nature of the electrospray 

functioning principle and source construction.  

The overall process resembles in fact an electrolysis, as demonstrated by Blades et al[10]. 

Experimental work by Blades[10] pinpointed this considerations by using a Zinc (Zn) emitter 

needle, utilizing this metals low reduction potential of E0= -0.76V. Blades showed 

qualitatively and quantitatively generation of Zn2+ ions by anodic oxidation in the emitter 

capillary explained the total current observed in the ESI source. These findings could be 

reproduced with stainless steel capillaries, finding actual Fe2+ release in congruency with 

amounts predicted by calculations based on measured total current[46]. Using other emitter 

materials redox potentials higher than that of H2O reduced the amount of metal cations, 

and as Blades assumed in favor of H+ generation from water.   

Table ESITOP 1 Major electrochemical reactions occurring in an typical ESI-source is summarized by 
Kertesz and Vilmos. SHE: Standard hydrogen electrode. Reprinted from Analytical chemistry, 79, 15, 
Kertesz et al. Using the electrochemistry of the electrospray ion source, 5510--5520, Copyright (1994), 
with permission from ACS Publications   

 
 Oxidation 
(positive ion mode) 

E0(V) 
vs. SHE 

Reduction 
(negative-ion mode) 

E0(V) 
vs. SHE 

4OH− → 2H2O + O2 + 4e− 0.4 O2 + 4H+  4e− → 2H2O 1.23 

2OH− → H2O2 + 2e− 0.88 O2 + 2H+ + 2e− → H2O2 0.7 

2H2O → O2 + 4H + 4e− 1.23 2H2O + O2 + 4e− → 4OH− 0.4 

2H2O → H2O2 + 2H+ + 2e− 1.77 2H2O + 2e− → H2 + 2OH− 0.07 

OH− → OH* + e− 1.89 2H+  2e− → H2 0   
O2+ 2H2O + 2e− → H2O2 + 2OH− -0.13   
O2 + e− → O2− -0.33 

Emitter electrode reactions 
   

Fe + 2OH− → Fe(OH)2 + 2e− -0.87 
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Fe → Fe2+ + 2e− -0.44 Emitter electrode reactions 
 

Fe → Fe3+ + 3e− -0.03 Pt(OH)2 + 2e− → Pt + 2OH− 0.16 

Pt + 2OH− → Pt(OH)2 + 2e− 0.16 Fe(OH)3 + e− → Fe(OH)2 + OH− -0.56 

Pt + 2H2O → Pt(OH)2 + 2H+2e− 0.98 Fe(OH)2 + 2e− → Fe + 2OH− -0.87 

 

 

Although reactive species like H2O2 are produced and direct electrochemical reactivity of 

analytes under ESI conditions have been reported[71, 76, 72, 61, 29, 28], generally the 

alteration of analytes and matrix compounds is thought as of minor concern[54]. However, 

regarding the field of untargeted and comprehensive analysis (metabolomics, lipidomics, 

etc.) it might be necessary to reevaluate this résumé, as electrochemical processes might 

introduce unwanted artificial bias or inconsistency of results in conjunction with the use of 

different vendors systems on equal samples. Furthermore, alteration of ionization efficiency 

as consequence inevitable emitter erosion caused by the electrolysis process introduces 

such bias likewise and the sprayer assembly must be inspected regularly.  

 

Ion generation - primary droplet fission 

The stability criterion for a charged droplet was first derived by Rayleigh[60]  as: 

 

Where q is the maximum charge up to which the droplet is stable, a the radius of the 

droplet, γ the surface tension of the liquid and  the electrical permittivity in vacuo. The 

Rayleigh-model describes primary droplet fission as result of the dispersive force exerted by 

the charged species overcoming the surface tension of the droplet liquid. With charge 

density as driving moment, the process is hence also referred to as Coulomb fission or 

explosion. Starting in the 1960s, studies[33, 25, 1, 6, 64]  using Millikan-type condensers or 

quadrupole-droplet-traps, attempted to confirm the Rayleigh formula. These studies 

reported varying methodical accuracy (4-15%), yet concurred to a loss of droplet mass in the 

low percentage (1-5%) and to a loss of roughly 25% of charge. Hence, the fission of droplets 

does not occur as symmetric process but rather as asymmetric ejection of daughter drops. 

Furthermore, fission events below the Rayleigh-limit were reported. Gomez et al. reported 
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images of the fission process clearly depicting asymmetric multiple emission (fig ESITOP6). 

High precision determining mass (1.0-2.3%) and charge loss (10-18%) was provided by Taflin 

et. al.[66] , on the basis of optical resonance measurements, confirming also occurrence of 

pre-Rayleigh-limit fissions. 

 

 

 

 

 

 

Figure ESITOP 7 Flash shadowgraph of a primary solvent droplet at the moment of coulomb fission. 
Visible is a parent drop and multiple offspring drops, each considerably smaller. Reprinted from 
Physics of Fluids, 6 Gomez et al. Charge and fission of droplets in electrostatic sprays, 404--414, 
Copyright (1994), with permission from AIP Publishing 

Ion generation - Charged residue model (CRM) 

The most straightforward hypothesis of gas phase ion formation in light of the recursive 

evaporation-fission cycles is the charged residue model proposed by Dole et al. [24]:   

Primary droplets emitted  from the Taylor cone are ultimately reduced to droplets 

containing one analyte molecule with an additional monolayer of residual solvent and 

charge carriers  (H3O+, NH4
+ etc.)[21, 24], from which after final evaporation of the solvent 

the ion is transferred to the gas phase[45, 40]. Due to electrostatic considerations, it is 

assumed that charge transfer to the analyte occurs during the final evaporation step[45, 40].  

Support for the CRM Model was provided especially for macromolecular species, by 

molecular dynamic calculations (MD) and charge series observation. MD Simulations[3, 59] 

supported solvation and centered embedding of large molecular species inside the ESI 

droplets, rendering direct emission (IEM, vide infra) of such large species kinetically 

inviable[47]. Experimentally, support of the CRM accrued from observation of maximum 

charge of proteins and macromolecules which is described by [M+zrH]zr+ , where zr is the 

Rayleigh charge of a water droplet resembling the globular diameter of the protein [30, 17]. 
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Ion generation - Ion evaporation model (IEM) 

The ion evaporation model (IEM) as introduced by Iribarne and Thomson[42], proposes a 

solution to gas phase transition prior to complete evaporation of the solvent. Instead of 

reaching the Rayleigh limit with subsequent Coulomb fission/explosion, charge load of a 

droplet shrinking by evaporation is reduced beforehand by emission of ions from the 

surface, giving rise to an independent gas phase transition mechanism. In contrast to the 

CRM, ion evaporation is energetically only feasible for ions of small size, for example NH4+, 

metabolites or drugs[2].  As MD simulations suggest, ejection of ions occurs not as an 

unsolvated ion, but by emission of a small nanodrop comprised of a charged small molecular 

ion solvated by few layers or a mono layer of solvent with subsequent evaporation of the 

latter.[20, 2] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ESITOP 8 Left: MD simulation of emission of 
nanodroplet containing one NH4+ ion during ion evaporation 
process. Right: Distance and Energy at emission event.  
Reproduced with permission from: Ejection of Solvated Ions 
from Electrosprayed Methanol/Water Nanodroplets Studied 
by Molecular Dynamics Simulations, Journal of the American 
Chemical Society 2011 133 (24), 9354-9363, Copyright (2011), 
American Chemical Society 
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Ion generation - Chain ejection model (CEM) 

As mentioned in the previous section, intact protein ions are transferred to the gas phase via 

the CRM mechanism. Yet, this holds true for proteins in solvents allowing for native 

conformation, where hydrophobic residues are buried in the core of the tertiary 

structure[47] . If denaturing conditions are present, MD simulations[3, 48] suggest that due 

to the exposure of hydrophobic residues, proteins are not embedded in the core of the 

droplet anymore[3, 59] and are expelled from the droplet surface process somewhat 

resembling a repetitive ion evaporation mechanism along the protein chain. 

 

 

 

 

 

 

Figure ESITOP 9 MD simulation of emission of nanodroplet containing one NH4+ ion during ion 
evaporation process Reproduced with permission from: Ejection of Solvated Ions from Electrosprayed 
Methanol/Water Nanodroplets Studied by Molecular Dynamics Simulations, Journal of the American 
Chemical Society 2011 133 (24), 9354-9363,  Copyright (2011), American Chemical Society 

 

 

Practical implications of the ionization models 

For The first part of this thesis (Publication II and VIII), from the mass spectrometric 

perspective, dealing with LCMS analysis of small molecules and ion suppression, intricacies 

of the IEM are relevant.  IEM efficiency and therefore sensitivity is influenced by eluent 

composition e.g. organic content, pH, salt concentration, viscosity and source conditions as  

temperature, gas flows and voltages[17, 2] but also due to its nature as surface emission 

process by competition of analytes for  droplet surface and charge[35]. Droplet surface 

access is not only governed by analyte hydrophobicity alone, yet is also result of a 

partitioning process dependent on organic content, as nanodroplets of eluents typical for 

liquid chromatography, i.e.  water/organic mixtures, undergo a demixing process under ESI 

conditions[2].  The essence for the practitioner is, that ideally conditions are to be 
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established, where the analyte of interest is the only species entering the ESI process under 

eluent composition and ion source settings finetuned for maximum sensitivity.  Actually, the 

resultant LCMS method is usually a tradeoff determined by chromatographic requirements 

and constraints, sample complexity and origin(matrix), eluent quality and analyte of interest 

properties. Distinct ion source settings can be applied on the chromatographic timescale 

(e.g. scheduled LCMS), if multiple analytes are to be assessed in a single run, with the 

unfortunate exception of source temperature, that usually cannot be stabilized on the 

chromatographic timescale. 

 

For protein mass spectrometry as in the third part (Publications IV IX X and XI) of this thesis, 

subtleties of CRM and CEM are relevant due to their characteristics in intact protein ion 

production, where CRM tends to produce lower and CEM higher charged states[47].  As 

aforementioned, whether CRM or CEM applies, is dependent on protein characteristics and 

the conditions in solution. i.e. the eluent composition if liquid chromatography is coupled to 

the mass spectrometer.  Thus, chromatographic conditions at time of elution influence 

charge state, charge distribution and therefore intensity distribution, complicating 

harmonization of chromatographic and mass spectrometric requirements by adding protein 

parameters, e.g. pI, hydrophobic vs hydrophilic residue content, sequence, tertiary 

structure, post translational modifications and overall solubility amongst others to the 

equation.  Furthermore, observed high charge states of a protein does not exclusively reflect 

the titration state in solution in a simple manner[47, 17, 44]  but are a result of charge 

equilibration during the CEM process[48].  The distribution of charges determining the 

charge series encountered in a protein mass spectrum is also a consequence of initial droplet 

size distribution elicit by ESI sprayer dimension, source gas temperature and, voltage 

settings, eluent composition and flow[45]. 
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Figure ESITOP 10Fig ESITOP9: Left: Influence of ionization mechanism governed by protein properties 
and solvent composition on charge distribution and intensity. a and c: CRM, b and d: CEM. Reprinted 
from  "Modeling the behavior of coarse-grained polymer chains in charged water droplets: 
implications for the mechanism of electrospray ionization." The Journal of Physical Chemistry B 116.1 
(2011): 104-112.  Copyright (2011), with permission from American Chemical Society. Right: Charge 
distribution a consequence of distribution of primary droplet size, Reprint from: Unraveling the 
Mechanism of Electrospray Ionization, Analytical Chemistry 2013 85 (1), 2-9, Copyright (2013), with 
permission from American Chemical Society 

 

 Furthermore, not only primary drop size distribution and thereby charge distribution are of 

importance, yet also average initial droplet size has a major effect on sensitivity, as smaller 

primary droplets facilitate more efficient ionization[31, 47, 74]. Smaller droplet size can be 

achieved by reducing the eluent flow rate (see Fig ESITOP10). [75, 22]. Albeit in order to 

maintain chromatographic performance, post column dispersion volumes. i.e. dwell 

volumes, valve inner diameters, tubing and ESI sprayer needle inner diameter must be 

adapted, i.e. reduced. Unfortunately, sensitivity increase is described by an inverse 

exponential law[62], requiring very low flow rates on the chromatographic flow scale and 

hence small inner diameters in order to harvest maximum signal increase (see Fig ESITOP10). 

In practice, robustness of flow path of especially the ESI sprayer needle behaves inversely, 

resulting in short maintenance intervals, spontaneous ESI spray breakdown and low 

operator walk away capacity. Additionally, analyte quantitation or analyte detection at all 
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when performing qualitatively analysis at limit of detection (LOD) suffers from low 

reproducibility during e.g. ESI needle exchange[62].  

In a tradeoff between sensitivity requirements, instrumentation robustness and results 

reproducibility the fourth part of this thesis implemented a microflow-ESI(µESI) 

methodology (50µl/min, 50µm ESI needle ID).   

 

 

 

 

Figure ESITOP 11Fig ESITOP10:  Signal gain via reduction primary droplets as consequence of reduced 
flow rate. Adapted reprint from: Combined Electrospray Ionization−Atmospheric Pressure Chemical 
Ionization Source for Use in High-Throughput LC−MS Applications Analytical Chemistry 2003 75 (4), 
973-977 Copyright (2003), with permission from American Chemical Society.  

 

For the fourth part dealing with native electrospray mass spectrometry of noncovalent 

quadruplex DNA-ligand complexes, basically all ionization models or rather their prevention 

or finetuning by appropriate methodology are relevant. As Hogan et al. demonstrated[35], 

IEM is occurring also parallel to CRM ionization essential for native ESI mass spectrometry of 

macromolecules, implying the risk of ligand depletion during ionization of the complex, 

whereas occurrence of CEM processes would represent disruption of all but the primary 

structure of the quadruplex DNA. The challenge with regard to ionization for Publications III 

and XII was to synergize solute and ion source conditions in a manner that provided both 

stability of analyte and sensitivity of the method.  
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Abbreviations 

IEM: Ion emission model 

CRM: charged residue model 

ESI: electrospray ionization 

LOD: limit of detection 
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Introduction to Publication II and VIII    

Structural analysis employing chromatography and mass spectrometry 
 

Background of Publication II and VIII and introduction to the analyte of interest 

Both publications are the result of a cooperation between the working groups of Prof. Gross 

and Prof. Lämmerhofer, both affiliated at the Institute of Pharmaceutical Sciences of 

University of Tübingen. Publications had its origin in the Gross group’s interest in new 

antimicrobial cyclic lipopeptides (CLPs).  Generally, CLPs are promising as new type of 

antibiotics due to the rising occurrence of multi resistant bacteria [15, 19, 27] and due to an 

observed low resistance induction [26]. Also, CLPs and their linear analogs are examined as 

potential biocontrol agents in agriculture, as they not only exert antagonistic activity against 

bacteria but against fungi as well [8, 21, 24, 38]. A recent review of discovery of 

antimicrobial peptides, since 2000 has been provided by Xue et al. [37]. 

Different targets for antimicrobial activity were identified, inhibition of cell wall biosynthesis 

[10, 22, 31], pore formation  in [34] or depolarization of cell membrane [20],  or by 

degeneration of the specificity of members of the intracellular Clp protease family , inducing 

uncontrolled proteolysis [16, 17]. Modes of action of CLPs were reviewed by Schneider et al. 

[27]. 

CLPs are encountered as secondary metabolites in  bacteria of the genera Actinomyces, 

Streptomyces, Bacillus, and in Pseudomonas and  are synthesized by nonribosomal 

secondary metabolite pathways [27]. Nonribosomal biosynthesis allows for one distinctive 

feature of CLPs, the incorporation of non-proteinogenic and modified amino acids, mainly D-

amino acids and other chemical classes like carboxy acids, especially fatty acids [25]. This 

property of CLPs,  combined with the intramolecular cyclization, facilitates enhanced general 

and proteolytic stability, circumventing extracellular peptidases secreted by the addressee 

organisms for metabolite acquisition and protection [5, 9, 15, 27].  

As one representative of this class of  bacterial secondary metabolites, the lipopeptide 

Poaeamide originating from Pseudomonas poae [2] was first described by Zachow et al [40] 

in the strain Pseudomonas poae RE*1-1-14. By comparison of deletion mutants to wildtype,  

Poaeamide was identified as antagonist towards the soilborne pathogen Rhizoctonia solani, 
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a pathogenic fungus affecting a variety of agricultural plants [40]. As with other CLPs,  the 

mode of action and  structure vs activity relationships are of interest, at which foundations 

lies the determination of the exact molecular structure of Poaeamide. 

 

Structural analysis of cyclic lipopeptides 

To completely characterize a CLP, its amino acid composition, sequence (primary structure), 

position of ring closure (secondary structure), site of carboxy acid modification and tentative 

other amino acid modifications have to be elucidated. Furthermore, as lipopeptides usually 

contain non-proteinogenic amino acids, chiral analysis of the individual amino acids and 

determination of location of D-amino acids are required. As some amino acids frequently 

found in CLPs represent constitutional isomers, e.g. allo-Threonine or allo-Isoleucine, a 

complete structural determination would comprise information about locations of allo-

isoforms. 

Classically, structural determination of oligopeptides in the size range of CLPs could be 

performed by crystallography or  nuclear magnetic resonance (NMR) spectroscopy or 

combination of both methods, respectively, with the prerequisite that enough adequately 

purified compound for both techniques can be accumulated [12, 23]. In absence of 

crystallographic data, albeit, as NMR is an achiral technique, complete investigation down to 

the configuration level of amino acids needs to be assisted by complementary methods like 

chiral gas chromatography coupled to mass spectrometry (GC-MS). Such an approach was 

followed by Zachow et al. [40]. Yet, enantioselective GC-MS of derivatized amino acids can 

only confirm absence or presence and quantity of respective enantiomers of amino acids, as 

sequence information is lost during sample preparation, i.e. total peptide hydrolysis and 

derivatization.  The sequence position of D-amino acids is derived indirectly, by deduction of 

D-amino acid positions from fragments generated by enzymatic peptide cleavage sites, as 

peptide bonds with D-amino acids are not cleaved by usual proteomic enzymes [40]. 

 

Publication II and VIII describe enhanced procedures for determination of absolute 

configurations by      coaction of enantioselective GC-MS, enantio-selective enzymatic and 
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chemical digestion, HR-QTOF-MS assisted micropreparative reversed phase 

chromatography. Also feasibility and orthogonality of ZWIX(+/-)  enantionselective phases 

was demonstrated. 

 

 General strategy of analysis employed in Publication II and VIII 

 

 

 

 

 

 

 

 

 

 

Figure FP2 1 Analytical strategy of Publication II and VIII. Note that CID sequencing as mentioned 
under the “silver bullet” analysis pathway was not performed, as sequence of Poaeamide was already 
determined by Zachow et al. [40] Source: own work.  
 

Necessity of digestion for analysis of absolute configuration  

A direct method for analyzing oligopeptides (nstereocenters≥nmonomers) regarding configuration of 

each stereocenter is not known besides crystallography. Albeit it can be hypothesized, that 

chromatographic stationary phase material and method are unlikely to be developed for this 

task, as expounded for cinchona alkaloid based enantioselective stationary phases, such as 

the ZWIX(+/-) phases employed in Publication II. 

Mechanistically, enantioselective separation can be described by differences in binding 

affinity of both enantiomers (selectands) towards the stationary phase ligand (selector) that 

manifest themselves in different overall retention time on the chromatographic column, see 
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also introduction to Publication I for reference. These discriminative  affinities result from 

subtle differences in  Gibbs free energy of binding of the respective   selectand-selector 

complexes,  in the range of few kJ/mol or less [7, 29, 30]. Linear independency of individual 

contributions of intermolecular bonds in the selectand-selector complex to the overall 

interaction, i.e. independent, noncooperative, linear additive contribution of molecular 

moieties, has been demonstrated [30]. Therefore, for an oligopeptide, overall affinity could 

be described in terms of Gibbs free energy by a linear combination of each amino acid 

residue increment. The binding energy for each amino acid would be modified by stereo-

configuration at the α-carbon,  on average by 0.1 kJ/mol [30]. The resulting overall Gibbs 

free energy would be ambiguous regarding amino acid stereo-configuration. Furthermore, 

this scenario would require every amino acid to interact pari passu, which is improbable due 

to secondary structure formation of oligopeptides and distance between stationary phase 

ligands: with practically achievable ligand densities ≤50% on silica based phases, average 

distance from ligand to ligand, when measured as distance of silanol groups is 6.6 Å [3], 

whereas the distance from one amino acid side chain to the next has 3.5 Å [14]. The 

observed interaction and hence retention can therefore be regarded as the result of 

statistical  superposition of interactions of varying number of amino acids of the peptide 

with  chiral selectors along the path through the column. 

Experimental support for this hypothesis is provided by the decline of selectivity α between 

all-R and all- S oligopeptides with increasing peptide chain length [6]. Czerwenka et al. could 

separate oligomers of Alanine up to n=10,  yet α decreased to ~1.5 (baseline separation) or 

lower above a chain length of 3. Similar selectivity has been reported for stereoisomeric D/L 

permutations for di-, tri and tetrapeptides [11, 13, 36]. Mixed stereo-configurations of the 

respective peptides would therefore lay in between the two retention times of the all-R and 

all-S oligopeptides with the possibility of inconclusive results comprising determination due 

to identical binding energy.  

Constraints from a practical standpoint would be, that for an exact determination of an 

intact oligopeptide of unknown stereo-configuration, chromatographic standards providing 

all D/L permutations must be available, hence a library of n² compounds, where n=length of 

peptide, and chromatographic accuracy and precision (retention time) would be challenging 

if not unachievable in order to unequivocally determine absolute configurations.  If de novo 
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analysis with unknown sequences would be targeted, the demands would be amplified by 

the number of expected different amino acids.  

The previous paragraphs expound the necessity of a hydrolysis step for the determination of 

absolute amino acid configuration in oligopeptides, as depicted in Fig FP2.1. Usually 

enzymatic proteolytic protocols (Pepsine, Trypsine, etc) as common in proteomic workflows 

are employed, yet it can be beneficial to employ chemical hydrolysis protocols. On the one 

hand, depending on D-amino acid position and peptide sequence, the fragments generated 

by enzymatic hydrolysis may not be suited for identification of D-amino acid position, as 

proteases have specific cleavage sites. Publication II demonstrated this limitation of 

enzymatic fragmentation, as position of a D-Leu was determined to be either 1 or 4, a 

curtailed and inconclusive result, that needed further investigation. 

 

On the other hand, chemical digestion can be performed much faster. As a matter of fact, for 

Publication II incubation time for chemical digestion as employed for full hydrolysis (6N HCl, 

110°C, 24h) had to be reduced to the order of minutes (20 min vs 90 for enzymatic 

hydrolysis) to yield a library of fragments with a length distribution expedient for D-amino 

acid determination.  Consequently, chemical digestion resembles a faster and more generic 

method, independent of oligopeptide sequence, e.g. with chemical digestion, identification 

of the D-Leu position left open by the enzymatic approach could be completed for 

Publication II. 

 

Direct analysis of digestion product mix 

As aforementioned, enantioselective cinchona alkaloid based stationary phases like ZWIX(+/-

) are capable of readily separating small oligopeptides up to n=3 or 4 in some cases allowing 

for straightforward analysis of oligopeptide mixes yielded by chemical or enzymatic 

digestion [6, 11, 13, 36], if suitable standard libraries are available. In case of Publication II, 

suitable standards were not available due to cost reasons, yet analysis with ZWIX(+/-) phases 

provided beneficial orthogonal chromatographic selectivity. 
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ZWIX (+/-) as complimentary selectivity to RP C18 

Peptide separation via reversed phase chromatography as part of proteomic workflows is 

the standard approach [32, 35, 39]. Albeit, as these workflows usually target the generation 

of longer oligopeptides (n=10-20), that are separated by C18 reversed phase 

chromatography for identification, i.e. sequencing via mass spectrometric CID-MS/MS 

fragmentation analysis and subsequent sequence mapping [1]. Small oligopeptides are not in 

the focus of these workflows, due to their sequence ambiguity regarding large oligopeptides 

and proteins and as a result employed chromatographic methods are not optimized for 

separation of these small peptides.  Also C18 resembles a poor choice for  di- to 

pentapeptides, as presence of  a single hydrophilic residue (Ser, Thr, Glu , Asp) or even more 

charged residue (Lys, His, Asn, Gln) under the usual acidic RP conditions (0.1% formic acid in 

eluent,  pH ~ 2.9) often result in non-retention and elution with column dwell time t0. For 

sole identification via coupled tandem high resolution mass spectrometry, this still may 

suffice, yet quantitative information is usually distortet by ion suppression (see Publication 

VII for reference) and baseline separation is mandatory for workflows relying on preparative 

chromatography steps for pure compounds used in downstream analysis like in Publication 

II.   

Enantioselective zwitterionic stationary phase material like ZWIX(+), based on trans-

(1’’S,2’’S)-N-[[[(8S,9R)-6’-methoxycinchonan-9-yl]oxy]carbonyl]-2’’-

aminocyclohexanesulphonic acid, and ZWIX(-), based on trans-(1’’R,2’’R)-N-[[[(8R,9S)-6’-

methoxycinchonan-9-yl]oxy]carbonyl]-2’’-aminocyclohexane-sulphonic acid) bear selectivity 

that is not provided and orthogonal to C18, as depicted in Fig FP2.2 

 

 

 

 

 

 

 



Part I - Publications I, II, VII and VIII 
 

 
73 

 

 

 

 

 

 

 

 

 

Figure FP2 2Fig FP2.2 Left: Orthogonality Plot for C18 and ZWIX. Right: Sequence of Poaeamide 
hydrolysis fragments.  C18 is indiscriminative against peptides of 5 residues and smaller, which elute 
with dwell time t0, at 2 min. ZWIX performs with orthogonal selectivity, due to the underlying 
retention mechanism.   Reproduced with permission from Publication II, Copyright (2016), Elsevier  

 
 

 

 

 

 

 
Figure FP2 3 Structure of ZWIX (+/-) and ionic/pi-interaction binding mode Reproduced with 
permission from Publication II and from lisz I., Bajtai A., Péter A., Lindner W. (2019) Cinchona 
Alkaloid-Based Zwitterionic Chiral Stationary Phases Applied for Liquid Chromatographic Enantiomer 
Separations: An Overview. In: Scriba G.K.E. (eds) Chiral Separations. Methods in Molecular Biology, 
vol 1985. Humana, New York, NY 

ZWIX (+/-) and anomeric analysis 

 A full stereoconfiguration analysis would include position of allo-Isoforms of amino acids, as 

the presence of this isoforms has been shown to exert influence on peptide backbone 

rigidity and biological activity [4, 18]. In case of Poaeamide, the amino acids in question 

would be Leucine (Leu), Isoleucine (Ile) and Threonine (Thr). Literature on the separation of 

allo-isoforms is scarce. For allo-Threonine, complete separation was demonstrated by Zhao 

et al [41], however, by using an offline two dimensional method, with the first dimension 

comprising of reversed phase and the second of a chiral stationary phase.  

AA and dipeptide: 1 I; 2 L; 3 LE; 4 LL; 5 LS; 6 SI; 
7 SL; 8 TL;  
tri- to pentapeptides: 9 ETL; 10 SLL; 11 TLL; 12 
ETLL; 13 ETLLS; 14 LETL; 15 LETLL; 16 LSLL; 17 
LLSLL; 18 SLLS; 19 SLLSI; 20 TLLS; 21 TLLSL;  
hepta- to nonapeptides: 22 ETLLSL; 23 
ETLLSLL; 24; ETLLSLLSI; 25 LETLLS; 26; LETLLSL; 
27 LETLLSLLS; 28 LLSLLSI; 29 LSLLSI; 30 TLLSLL; 
31 TLLSLLS; 32 TLLSLLSI;  
3-HDA-peptides: 33 3-HDA-LETLL; 34 3-HDA-
LETLLS; 35 3-HDA-LETLLSL; 36 3-HDA-LETLLSLL; 
37 3-HDA-LETLLSLLSI 



Part I - Publications I, II, VII and VIII 
 

 
74 

 As two dimensional approaches are accompanied by increased technical effort and reduced 

sensitivity [28, 33], a comprehensive one-dimensional and straightforward chromatographic 

method for separation all 4 configurations (D/L; allo/normal), ideally without prior 

derivatization would still be desirable. The capabilities of ZWIX-type stationary phases were 

examined in this regard. Although no complete separation was achievable, the results of 

Publication II could be basis for further investigation and improvement.  In accordance with 

the separation mechanism (s. Fig FP2. 3 and introduction Publication I), the separation of Thr 

is more complete (Fig FP2.4), as an inverted configuration of a hydroxy group is expected to 

have a greater discriminatory effect on a separation mediated by polar / ionic interaction. 

Isoleucine with its isomer Leucine was less readily separated, as the different configurations 

of the short aliphatic sidechain are anticipated to have only minor steric effects. For 

Threonine, with derivatization by Sangers reagent (1-fluoro-2,4-dinitrobenzene) to DNP-Thr, 

a separation feasible for qualitative interpretation could be provided. To conclude, for ZWIX-

type and related chiral selectors, the employment of other derivatization agents, as well as 

different stationary phase materials (e.g. core shell) and column dimensions, linear velocity 

etc. would be a worthwhile examination, as optimization of chromatographic performance 

could yield baseline separation.   

 

 

 

 

 

 

 

 

Figure FP2 4 Left column: Separation of underivatized allo-isoforms of Thr and Ile/Leu. Right: column: 
increase of selectivity by derivatization with Sangers reagent.   Reproduced with permission from 
Publication II, Copyright (2016) Elsevier.  
 

 



Part I - Publications I, II, VII and VIII 
 

 
75 

Results of Publication II / VIII    

The absolute configuration of Poaeamide with exception of the allo-isomeric configurations 

could be demonstrated. Although not necessary for stereo-configuration analysis in case of 

Publication II, as results generated from pepsin and chemical digests via C18 

chromatography were sufficient to solve all D and L configurations, the usefulness of 

Cinchona Alkaloid-Based zwitterionic chiral stationary phases (ZWIX +/-) as valuable tools 

providing orthogonality to C18 and HILIC type columns could be demonstrated. The latter 

was more detailed discussed in Publication VIII. 

 

Abbreviations 

CLP: cyclic lipopeptides  

NMR: nuclear magnetic resonance spectroscopy 

GC-MS: gas chromatography coupled to mass spectrometry 

HILIC: Hydrophilic interaction chromatography 
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Introduction to Publication I 

Linear modeling of binding increments in enantioselective chromatography  

As mass spectrometry is a nonchiral analysis technology, enantioselective chromatographic 

methods are required when examining analytical questions whose analytes can be present 

with different stereo configurations, as for example retrieving individual D/L amino acid 

configuration of antimicrobial active oligopeptides examined by Publication II, as described 

further down in this thesis.  At the foundation of enantioselective method development and 

application lies the theoretical and mechanistic understanding of the process of 

chromatographic enantioseparation, i.e.  of the interaction of enantioselective stationary 

phases (selector) and the respective chiral analytes (selectands). 

 

Publication I contributes to the state of knowledge by  examining  enantioseparation of 

amino acids and related compounds on cinchona alkaloid carbamate based enantioselective 

stationary phases by quantitatively examining the energetic contribution of individual 

substituents of the analytes to the overall binding mechanism via quantitative structural 

retention relationships (QSRR) implemented  in the form of Free-Wilson analysis of binding 

increments.  

Liquid chromatography as a tool for studying biological QSAR 

Originating from pharmaceutical studies of relationship between molecular structure and 

biological activity, the term quantitative structure activity relalionship (QSAR) refers to 

mathematical models relating molecular constitution, structure, functional moieties and 

intrinsic properties like dipole moment, polarity et cetera to biological or chemical activity. 

Two different fundamental approaches were published 1964, Hansch-Analysis and Free-

Wilson-Analysis, named after their respective Nestors, Corvin Hansch [25],  Spencer Free and 

James Wilson [19]. The former approach uses quantitative descriptors of physicochemical 

properties of a compound as predictor variables and biological activities as response value, 

the latter a binary scheme of substituent presence and position in a molecule as predictor 

variables [36].  
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Initially, liquid chromatography was utilized as a tool assessing physico-chemcial properties 

for biological QSAR, rather than itself being studied using the latter, providing for fast 

probing of hydrophobic parameters of compounds and their substituents respectively [67, 

68] At this juncture liquid chromatography yielded retention volumes [27] or indices [7] for 

direct correlation to biological activity or supplied estimations of QSAR relevant parameters 

like logP [46, 69] and CLOGP [33], pKa [27].  As of the date of Publication I (2014) there are 

still studies published correlating retention data to biological activity [35]. An early review on 

these applications is given by Kaliszan [31]. 

The term quantitative structure retention relationship (QSRR) was coined by  Nasal et al. [51] 

in a  biological QSAR study correlating the liquid chromatographic retention of beta-

adrenolytic and antihistamine drugs on a stationary phase of alpha 1-acid glycoprotein to 

their physiological protein binding data. 

 QSAR as a tool studying retention processes in liquid chromatography 

After a pioneering work of Puech et al [55] in the field of quantitative structure retention 

relationship (QSRR) in thin layer chromatography,  the first application of Hansch-Analysis 

studying retention processes in liquid chromatography was given by Baker et al. [8],  

demonstrating on a set of morphine and fentanyl derivatives the feasibility of Hansch-

Analysis for predicting the retention index of drugs and for assigning the stereoconfiguration 

from liquid chromatograms. 

 

Characterization of stationary phases 

Zhao et al. [75], focusing more on the properties of stationary phases for liquid 

chromatography rather than on the analytes, devised the application of linear solvation 

energy relationships (LSER) to the examination of retention characteristics of  aromatic and 

aliphatic stationary phases. LSERs, introduced first by Altomare et al [3] to liquid 

chromatography research, generally by means of an Abraham solvation parameter model [1] 

relate retention behavior of a set of analytes on a given stationary phase to excess molar 

refraction, the analyte dipolarity/polarizability, the overall or effective hydrogen-bond 
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acidity and basicity of the analyte, and  the McGowan [44] characteristic volume by multiple 

linear regression, hence the term LSER [64]. 

The LSER used by Zhao correlated the analytes retention to its molecular volume, dipolarity, 

hydrogen bond acidity and basicity and molar refraction as well as parameters describing the 

mobile and stationary phase. While being more complex than a Hansch-Analysis, Zhao’s 

work demonstrated the applicability of molecular structure based approaches to the 

examination of chromatographic interaction and the characterization of stationary phases. 

Predicting retention times – Evaluation of LCMS-data as research driving force 

Major research interest regarding QSRR was elicited by the desideratum of predicting 

retention times. A literature database search refined for results treating only QSRR on 

reversed phase chromatography (RPLC) on Pubmed-services [72] using combinations of 

search terms like “retention” “prediction”/”predicting”, “chromatography”, “modeling” 

yielded 20 publications studying the prediction of small molecule retention and, driven by 

the interest in the proteomic analytical key technology liquid chromatography coupled mass 

spectrometry (LCMS) 45 works handling the accurate prediction of peptide  retention times. 

Amongst the techniques employed for predicting retention times were simple Hansch and 

Free Wilson-like additive models of molecular residue or hydrophobicity coefficients and 

peptide chain length [22, 26, 43] and combination of aforementioned additive models with 

calculated molecular properties like van der Waals volume and cLOGP [32, 6, 5], artificial 

neuronal networks [53, 61, 18], machine learning approaches like support vector machines 

[40, 58], regression trees and random forests [57, 66],  bayesian regression [66] and 

uninformative variable elimination [56]. 

Although Publication I dealing with enantioseparation on quinine-carbamate based chiral 

ion-exchange columns, being the most extensively researched subfield in this discipline, 

peptide related QSRR on C18 columns serves as an exemplification of what can be expected 

from modeling of chromatographic processes and attempts on predicting retention. In the 

scope of this introduction it adjusts expectance for a rather simple linear regression based 

Free-Wilson- type of analysis.   
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In a recent review Moruz and Käll [49] recapitulate predictive accuracy which various 

retention prediction techniques for peptides. However, as Motuz and Käll demonstrate 

referencing various works ([34, 54, 59], to cite just a few) even with overall correlation 

coefficients of R²>0.9 an accurate prediction cannot be accomplished. Accurate prediction in 

this regard would be a retention time forecast with deviations not significantly exceling 

experimental retention fluctuations. Albeit some peptide sequences can be predicted 

accurately, alteration in single amino acid sequence position [29], secondary structure [76]  

and mobile phase can lead to outliers in experimental vs. predicted retention. Especially, as 

Moruz points out, de novo QSRR prediction, i.e. accurate retention time forecast relying 

solely on sequence, synonymous to molecular descriptor information in the terminology of 

QSSR, and description of stationary and mobile phase is yet to be achieved. 

The same holds true for QSRR of organic molecules other than peptides, like metabolites, 

drugs, xenobiotics, toxins, etc, as demonstrated by Wang et al. [71]. Comparing multiple 

linear regression, partial least squares and random forests methods on a set of over 1700 

compounds in C18 chromatography, Wang demonstrated general applicability of 

aforementioned QSRR techniques, yet lack of exact retention prediction and retention order 

compared to experimental chromatograms. 

Value of QSRR in LCMS / chromatographic fundamental research and application 

Rather than accurately predicting retention times,  the value of QSRR, especially for mass 

spectrometry coupled to liquid chromatography, currently lies elsewhere: Improved positive 

identification of analytes [52, 63], minimizing of false positive identification [34], reduction 

of  interferences [48], optimization of information dependent acquisition (IDA) mass 

spectrometry in complex mixtures [45], determination of nonlinear chromatographic 

gradients for optimal usage of gradient peak capacity for whole cell digests [50], bottom-up 

proteomics [41], and studying of retention mechanisms [2, 74]. As Moruz and Käll [49] also 

pointed out, data independent (mass spectrometric) analysis (SWATH) [70] in order to 

reduce complexity and amount of data generated thereby  would be a highly desirable 

application of QSRR, given that the de novo prediction obstacle could be overcome 

sufficiently.   
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More recently, with the advent of high resolution mass spectrometry based metabolomics, 

employing especially non-targeted LCMS-strategies as its major tool, increased research 

interest in application of QSRR to untargeted metabolite identification [21, 73, 39, 77, 13, 

23] emerged. 

QSRR and stereoselective chromatography 

Whereas the major research interest in QSRR is focused on non-stereoselective, especially 

reversed-phase chromatography, the very nature of stereoselective chromatography 

discriminating between structural species as a matter of course leads to examination of 

relationships between structure and retention. The term QSRR was extended to quantitative 

structure enantioseparation relationships (QSERR) by Kaliszan et al. [30]. Among the 

published studies, in QSERR models like Hansch-Analysis [30, 4, 11, 12] linear solvation 

energy relationships [14, 42, 10, 47], comparative molecular field analysis 

(CoMFA)/comparative molecular similarity analysis (CoMSIA) [14, 60, 17, 16] and neural 

networks [65] have been utilized. 

 

Chiral retention - molecular interaction 

Before describing the application  of Free-Wilson Analysis to rationalize the individual group 

contributions to the retention and enantioseparation of N-derivatized amino acids on 

quinine carbamate chiral stationary phases [30], a brief description of basic chiral 

recognition principles in enantioselective  chromatography is given. A substantial review of 

mechanisms of chiral recognition in liquid chromatography is given by Lämmerhofer [37]. 

In contrast to the solvophobic theory of Horvath [28] or the lipophilic theory of Carr [15]  

applicable to the description of reversed phase chromatography, chiral recognition in  

enantioseparation cannot be explained by macroscopic observables like bulk solubility or 

partition between aqueous and organic phases, respectively, as  enantiomers exhibit 

identical physicochemical properties. Neither the thermodynamics of exclusion from the 

bulk mobile phase (solvophobic theory) nor the adsorption to or partition into the bulk 

stationary phase (analogous to Carrs lipophilic theory for RP)  are suitable to adequately 

describe enantioseparation. Instead, molecular spatial differences between enantiomers 
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affecting  attractive and repulsive forces, like H-bonds, ionic interactions pi-pi-interactions or 

dipole stacking [37] give rise to a net difference in free energy of transition between the 

mobile and  stationary phase, hence the difference  in retention.   

 

The most common yet simplistic model of chiral recognition is the “three point interaction 

model”  describing the  formation of a complex between  chiral selective stationary phase 

(CS) and each of the two R/S-enantiomers (selectands SA: R-SA and S-SA). As depicted in Fig 

FP1.1, the ideal three point interaction is only achieved  by one of the selectands, while the 

other is only capable of less selector-selectand interactions. The complex formation is 

governed by intermolecular forces resulting in a complex stabilising enthalpic contribution 

(ΔHint). According to Fig FP1.1 the complex formation/stabillisation is thermodynamically 

affected by destabilizing entropic contributions (loss of translational, rotational and 

vibrational degrees of freedom ΔSr/t, ΔSrot, ΔSvib), destabilizing enthalpic contributions 

(desolvation of CS and SA, ΔHsolv) on the one hand, and stabilizing enthalpic and entropic 

contributions (intermolecular forces ΔHint, entropy increase by desolvation ΔSsolv).  The 

respective steric configurations of both selectands allow the intermolecular bonds/forces 

and subsequent enthalpic and entropic contributions to be established to different 

magnitudes. This results in an “ideal fit” of one enantiomer, a complex possessing lower 

Gibbs free energy, resulting in a more stable complex, stronger interaction and thus longer 

retention on the stationary phase.  
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Figure FP1 1 Three-point interaction model illustrating molecular recognition of two chiral selectands 
(SA) R-SA and S-SA with one chiral center. Reproduced from Journal of Chromatography A, 1217,6, 
Lämmerhofer, M., Chiral recognition by enantioselective liquid chromatography: Mechanisms and 
modern chiral stationary phases, 814-856, Copyright (2010), with permission from Elsevier.   

 

 

 

 

 

 

 

 

 

 

Figure FP1 2 Magnitude of intermolecular forces governing chiral recognition. Values are in vacuo, 
actual energies are modulated by experimental parameters, e.g. mobile phase composition, 
temperature. Reproduced from Journal of Chromatography A, 1217,6, Lämmerhofer, M., Chiral 
recognition by enantioselective liquid chromatography: Mechanisms and modern chiral stationary 
phases, 814-856, Copyright (2010), with permission from Elsevier. 

 

Thermodynamic description of chiral recognition 

The binding of each of the selectands SA to the chiral selector CS reversible forming the [CS-

SA] complex is an equilibrium process, thus being quantified by the standard Gibbs free 

energy. Let Ki be the equilibrium constant of chiral selector and selectand interaction: 

 

                                                                   (1) 

                                                                     (2)                                                                            (3) 

 

 

As described before referring to [37], the Gibbs free energy of the binding process consists 

of enthalpic (ΔHint , ΔHsolv) and  entropic contribution (ΔSr/t, ΔSrot, ΔSvib,  ΔSsolv) 
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                                                                          (4) 

                                                                                                                                                                                                 (5) 

                                                                     (6) 

 

Both equations can be combined to the van’t Hoff equation 

                                                      (7) 

 

Now the equilibrium constant Ki is not directly observable in liquid chromatography. Yet a 

linear relationship between Ka and the retention factor ki can be established using the phase 

ratio φ= Vstationary /Vmobile., where V is the volume of the respective phase in the 

chromatographic column: 

                           (8) 

Although other equations describing the relation between ki and Ka,, are known this one is 

the most widely used in  basic chromatographic theory. 

Therefore, equation 7 can also be written as 

 

                                                                            (9) 

 

This describes a linear relationship between retention factors and the Gibbs free energy of 

complex formation. Here, the basic assumption for Publication I emerges with Equation 9: If 

all Gibbs free energy contributions to the complex formation of individual molecular groups 

responsible for binding of SA to CS behave additively, i.e. non-cooperatively, the retention 

factors are a linear combination of the individual group contributions and the magnitude of 

the individual group contributions can be accessed by a general linear regression model. 

                                                                                                                                                                                                                         

(10) 
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As Publication I treats chiral separation, besides ki also the selectivity α can be expressed 

accordingly and enantioseparation is the given by  

                                                                                                                              (11) 

 

An early study employing this thermodynamic framework was published by Berthod et al. 

[9]. 

 

Free-Wilson-Analysis – QSAR method originating from pharmaceutical research 

In the original work [19], SM Free and JW Wilson use a linear equation l to describe and to 

some extend predict the biological activity of several classes of compounds. Other than 

Hansch-analysis [hansch1964p], the Free-Wilson approach uses binary coefficients 

describing the presence or absence of a molecular group at given position in the compounds 

structure. Let Yi be the observable biological activity of the compound i the equation can be 

written as: 

 

 

Where Ci is the functional groups’ individual contribution to the observable Y and bi is a 

binary coefficient, denoting presence by 1 and absence by 0 and n being the overall number 

of different substituents. Commonly the group contributions Ci are calculated either relative 

to the average contribution of all residues tested [19] or relative to an  unsubstituted 

reference compound [20], e.g. having only H-substituents in all examined positions, where µ 

is the reference compounds observable: 

 

 

The latter approach resembles somewhat close [36] the Hammet-equation for reactivity of 

organic compounds [24], also assigning the H-substituted compound as reference.   
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Also commonly, the response is found to be linear on a logarithmic scale. Consistently, as 

shown in the previous paragraph, the responses kR, Ks and αR,S of chiral separations are 

expected to be found on the logarithmic scale according to the thermodynamic  equations. 

 

The group contributions are solved for by linear regression analysis on a training set of 

compounds, which, provided there is indeed a linear independence of group contributions, 

eliminate the need for comprehensive testing of all possible combinations of functional 

groups and positions in the molecule: Table TP1.1 demonstrates the principle of Free Wilson 

Analysis, by means of a Free-Wilson-Table and shows the results published in the original 

study of Free and Wilson on  the inhibitory potencies of a series of tetracyclines against 

Staphylococcus aureus [19]. A review on Free-Wilson QSAR principles and studies is given by 

Kubinyi et. al. [36]. 

 

Table TP1 1Free-Wilson QSAR analysis of biological activity of tetracyclines. Reproduced from Journal 
of Medicinal Chemistry, 7,4, Free and Wilson, A mathematical contribution to structure-activity 
studies, 395--399, Copyright (1964), with permission from ACS Publications   

 
  

R X Y Biological 
activity 

Compound H CH3 NO2 Cl Br NO2 NH2 CH3CCONH 
 

III 1 
 

1 
  

1 
  

60 

IV 1 
  

1 
 

1 
  

21 

V 1 
   

1 1 
  

15 

VI 1 
  

1 
  

1 
 

525 

VII 1 
   

1 
 

1 
 

320 

VII 1 
 

1 
   

1 
 

275 

IX  
 

1 1 
   

1 
 

160 

X 
 

1 1 
    

1 15 

XI 
 

1 
  

1 
 

1 
 

140 

XII 
 

1 
  

1 
  

1 75 
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R H CH3   

  75 -112   

X NO2 Cl Br 

  -26 84 -16 

Y NO2 NH2 CH3CCONH 

  -218 123 123 

    

 

Utility of Free-Wilson-Analysis 

As Free and Wilson state, the main utility of such an approach is to study the underlying 

additivity principle of group contributions, i.e. independence of individual group 

contributions and gain a quantitative measure of each group contribution. Molecular 

moieties violating the additivity principle, e.g. those with cooperative effects are revealed by 

their poor fit to linear model, i.e. high regression residuals. 

Functional groups can be assessed by their influence on chiral separation, especially those 

specifically introduced by derivatization in order to modify enantioseparation. Also groups 

actually diminishing enantioseparation can be revealed. 

Binding hypotheses of CS-SA complexes derived from structural chemistry methods (X-ray 

diffraction, NOE-NMR) can be examined quantitatively without the need of a comprehensive 

library of compounds, as long as the linear independence of group contributions holds true.  

Limitations of Free-Wilson-Analysis 

Inherently to its principle using only presence or absence of groups instead of 

physicochemical or spatial parameters, Free-Wilson-Analysis can only provide group 

contributions for groups being examined in the training set. De novo calculations are 

impossible and estimations on compounds bearing untrained groups or having an altered 

molecular structure of the basis compound are not feasible, as this would require invalid 

presumptions of the untrained groups enthalpic and entropic contributions. The Free-
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Wilson-Model is thus no approach used for de novo challenges, but rather in a descriptive 

and explorative application.  

The assessment of the predictive quality Free-Wilson models is dependent furthermore on 

acceptance criteria for successful prediction. Where accounting for ca. 90% of observed 

variance by a linear model can be sufficient in biological activity analysis, like in the original 

work [19], it can be inadequate for calculations demanding better accuracy like retention 

time prediction in liquid chromatography. 

 

Goal and approach of this work 

Goal of publication I was to examine and rationalize the individual group contributions to the 

retention and enantioseparation of N-derivatized amino acids on quinine carbamate chiral 

stationary phases [30][38]. The set of compounds consisted of 142 training compounds, 

mostly amino acids which were N-carbonyl derivatized with the protecting groups shown in 

fig FP1.3. The chromatography was conducted on a quinine carbamate chiral stationary 

phase, also shown in Fig. FP1.3: 

 

 

 

 

 

 

 

 

 

Figure FP1 3 Protecting groups (a), chiral selector (b) and (c) X-ray crystal structure of co-crystallized 
quinine carbamate and 3,5-dinitrobenzoylamino acid leucine and illustrating the CS-SA complex and 
the intermolecular bonds stabilizing the complex. Reproduced from Journal of Chromatography A, 
1363, Sievers-Engler et. al, Ligand-receptor binding increments in enantioselective liquid 
chromatography, 79-88, Copyright (2014), with permission from Elsevier.   
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In order to handle the size of the dataset and facilitate statistical procedures, a software 

network as shown in Fig  FP1.4 was implemented using Java, R, and MySQL: 

 

 

  

 

Figure FP1 4 Software network implemented for Publication I. Reproduced from Journal of 
Chromatography A, 1363, Sievers-Engler et. al, Ligand--receptor binding increments in 
enantioselective liquid chromatography, 79-88, Copyright (2014), with permission from Elsevier.   

Results and discussion 

The successful application of Free-Wilson-Analysis to derive the retention increments on the 

enantiomers could be shown in Publication 1. This success was based on the finding, that the 

assumed independence of contributions of the respective molecular groups to the binding to 

the stationary phase holds true. Otherwise, the application of a linear model would result in 

insufficient performance expressed in low correlation coefficients. These findings were 

substantiated by cross validation by means of scrambling tests and by leave-n-out. The 

scrambling test was conducted by randomly reassigning retention coefficients k1 and k2 to 

tested compounds, resulting as expected in low quality linear models and predictive 

capability of the latter. The leave-n-out test was derived from the frequently used leave-one-

out cross-validation test in order to deal with the extent of the data set. Monitoring the 

correlation coefficient R² and the predictive capability while repeatedly (n=10) removing an 

increasing number of randomly chosen training compounds, the Free-Wilson approach 

maintained modeling performance up to over 40% of the initial 142 training compounds 

removed. 

Whilst the models exhibiting good correlation (R>0.95), the standard deviations of the 

predicted retention indices were too large measured by the demanding requirements of an 

exact prediction of retention time and enantioseparation, a finding in accordance to the 

simplistic approach of the Free-Wilson model.  

Albeit good overall fit, a deviation from the additivity principle could be revealed: Derivatives 

of basic, i.e. positive charged compounds e.g. Arginine or Histidine, showed poor fit to the 
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linear model. These findings were confirmed by establishing a GLM with only neutral 

charged training compounds und subsequently adding an increasing number of negative, 

positive or neutral charged compounds to the model. Whilst negative and neutral charged 

compounds had no effect on model quality, the addition of positive charged training 

compounds deteriorated model quality.  

While the examination of the mechanistic nature of nonconformance of basic compounds to 

the GLM was not in the scope of Publication I, the disclosure of these compounds behavior 

attests to the usefulness of the Free-Wilson modeling approach. As linear modeling revealed 

inapt, this could be an indication for a cooperative binding mechanism. Although other 

reasons could account for this deviation from linearity as well, the results demonstrate how 

linear modeling can serve as cross-check for mechanistic assumptions revealing demand for 

further mechanistic investigation. 

With regard to the different stabilization of CS-R-SA / CS-S-SA complexes, hence the 

difference in retention and enantioseperative selectivity, the Gibbs free energy contribution 

of the protecting groups was found to be the driving factor, while the influence of the amino 

acid side chain itself is not significant. While three of the aliphatic amino acid residues, tert-

Leucine, Isoleucine and allo-Isoleucine, exerted an increasing effect on selectivity, all other 

side chains contributed via a reduction of enantionselectivity. Furthermore, a second acidic 

group in the amino acid side chain revealed to be competitive to the primary one, though 

only when in close proximity to the stereogenic center. 

Finally, one finding directly assent to the binding model derived from the x-ray structure for 

co-crystallized CS-SA complexes and further showcasing the mechanistic utility of Free-

Willson-Analysis:  As illustrated in Fig FP1-3 there is a stabilizing in H-bond between the 

chiral selectors carbamate-carbonyl oxygen and the selectands alpha-N-H-moiety, its 

formation sterically affected by the configuration of the stereogenic centre. Accordingly, 

beta-amino acids with reduced interaction possibility due to longer distance and secondary 

amino acids lacking the possibility of the H-Bond completely, exert almost no difference in 

contribution of the side chain between the two enantiomers.  

Overall the derived models provide useful information on the chiral recognition mechanism 

and importance of the group contributions to retention and enantiomer separation. 
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Abbreviations 

QSRR: quantitative structural retention relationships   

QSAR: quantitative structure activity relationship  

logP: octanol-water-partition coefficient 

CLOGP: logP predicted by  group contribution calculation method 

pKa: negative decadic logarithm of acid constant 

LSER: linear solvation energy relationships  

IDA: information dependent acquisition    

QSERR: quantitative structure enantioseparation relationships  

CoMSIA: comparative molecular similarity analysis   

CoMFA: comparative molecular field analysis 

CS: chiral selective stationary phase  

SA: selectand 

GLM: generalized linear model 
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Introduction to Publication VII    

Low bleed mass spectrometry compatible stationary phase  
Minimizing noise and continuous ion suppression  
 

Background of Publication VII 

Publication VII put forward a platform technology for preparation of stable functionalized 

silica based stationary phases for liquid chromatography utilizing a thiol-ene click reaction to 

graft surface-crosslinked poly(3-mercaptopropyl)methylsiloxane-coatings and ligands onto 

vinyl-modified silica  particles. The main objective was to devise a surface chemistry that, 

under conventional chromatographic conditions, exhibits minimal ligand bleeding interfering 

with subsequent coupled detection technologies. The feasibility of the employed bonding 

chemistry to attain this objective was exemplified on stationary phases with enantioselective 

tert-butylcarbamoylquinine (tBuCQN) surface ligand chemistry[38]    

 

Low ligand bleed stationary phases are beneficial for the most common detection 

technologies applied at present in liquid chromatography, namely UV-VIS, fluorescence, 

charged aerosol and mass spectrometric detection [24, 2, 45]   

UV-VIS detection and fluorescence are the least affected by ligand bleeding when referring 

to alkylsilane surface chemistry, the most common being of C18-type as usually no 

interference of absorption wavelengths of ligands and analytes are encountered.  Yet, with 

surface chemistries that provide additional binding mechanisms, especially offering π-

interaction by plain or substituted phenylalkyl  surface chemistries, or more complex ligands 

that contain molecular moieties of interfering absorbance either by functional requirements 

or simply by necessity of the synthetic route building the ligand scaffold,  raised baseline 

signal levels can become of concern. If actually disturbing UV-VIS detection, signal 

interference is additive, i.e. noticeable by increased baseline or background noise. Albeit and 

still, the relative insensitivity of optical spectroscopy based coupled detection technologies 

towards ligand bleeding manifested itself in these technologies not expediting research 

interest in the field of stable stationary phases, especially what isocratic elution is 

concerned. For gradient elution the situation may be different and the problem also 
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significant manifested by baseline drifts. Consequently, with the increasing dominance of 

mass spectrometry as major detection technology, in liquid chromatographic terminology 

“low bleed stationary phase” is regarded synonymical for “mass spectrometry compatible” 

Charged Aerosol detection (CAD) and its predecessor technology evaporative light scattering 

detection (ELSD) in contrast are highly susceptible towards column bleeding and require 

stable stationary phases [45]. By nature of both detection processes, i.e. evaporation to a 

solid aerosol cloud and detection by lateral light scattering (ELSD) or electric aerosol 

detection (CAD) and due to the lack of an analytical discriminatory dimension of this 

technologies [33, 11] other than the required nonvolatility of responsive analytes, essentially 

signals of all compounds regardless of their constitution or chemical nature are affected. 

Lower limit of detection (LLOD), lower limit of quantitation (LLOQ) are severely affected by 

instable stationary phases. Conversely CAD is a valuable method for investigation of column 

bleeding. 

Mass spectrometry, representing the most selective of the aforementioned detection 

technologies by nature of its signal generation (ionization and specific fragmentation) and 

general signal resolution (mass peak broadness) especially with high resolution mass 

analyzers time of flight systems (TOF, QTOF, Orbitrap) is affected by column bleeding in a 

more specific way. With the rare exception of analytes of interest  as well as lysed ligands 

being isobaric/possessing identical MSn transitions, stationary phase ligand bleeding affects 

mass spectrometry not by overlaying the desired signals by increased baseline and noise, but 

rather by quelling the analyte signal in an undesired process termed ion suppression [24]. 

As the authors contribution to publication VII was the mass spectrometric examination of 

the reduced ligand bleeding of the new presented stationary phase platform, the following 

paragraphs highlight some of the aspects of ion suppression and stationary phase stability in 

liquid chromatography coupled mass spectrometry. 
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Ion Suppression in liquid chromatography coupled mass spectrometry - general aspects  

In general, the term ion suppression when referring to liquid chromatography coupled mass 

spectrometry describes a deleterious effect of compounds coeluting to the analytes of 

interest, hence the absolute analyte signal is governed by more factors than analyte 

concentration itself. The signal of interest is reduced or even subject to complete extinction 

[2]. The opposite effect of elevated signal levels, named ion enhancement, although less 

frequently encountered, can also be observed [19, 16]. Even though the latter effect can be 

exploited beneficially e.g. by usage of a dopant additive in the eluent (e.g. NH4F in LC-MS of 

estradiol [15]), generally any kind of distortion of ion signals is undesired and aim of 

respective countermeasures. The undesirability of any signal alteration is especially 

aggravated for untargeted comprehensive mass spectrometric workflows (e.g. of SWATH-

type [1]) as it is not ascertainable nor ensurable by the very nature of an untargeted 

approach that signal enhancement or suppression affects all analytes in an uniform manner, 

thereby introducing problematic signal bias for subsequent statistical evaluation procedures 

of such workflows [22, 48]. 

 

Worse and in opposite to targeted mass spectrometric approaches  where signal deviations 

are usually detected by use of internal standards, or to ion suppression events caused by 

singular causes revealing themselves during appropriate statistical treatment enabling 

removal of such outlier results, signal alteration in untargeted approaches may remain 

unnoticed in spite of method validation and QC efforts, especially for low abundant analytes 

[39]. In consequence, ion suppression is a main concern regarding the fidelity of untargeted 

LC-MSn approaches [17] and measures reducing or even eliminating know sources of ion 

suppression, like ion suppression caused by constant elution of lysed column ligand as result 

of instable ligand-scaffold binding chemistry, are of paramount importance [46, 10, 23]  

 

 

 As described in the following paragraphs (vide infra), such a signal bias is essentially to be 

expected when operating chromatography in gradient mode, thereby altering ionization 



Part I - Publications I, II, VII and VIII 
 

 
106 

conditions by means of the changing eluent composition itself, or when  complete 

compound separation is expected to be incomplete, as, for example, in samples containing 

biological matrix and therefore a plethora of different compounds. 

As aforementioned, ion suppression can be caused by coeluting compounds causing peak 

shaped regions/intervals of certain extent of ion suppression in the chromatogram 

(momentary ion suppression) or by compounds eluting and affecting ionization permanently 

(continuous ion suppression)  either as part of the mobile phase,  contaminants  captured by 

and eluted from various parts of the LC-MS-system (fluidic path, column, ion source) or 

originating from stationary phases susceptible to degradation, especially by lysis of the 

stationary phase surface modification, e.g. for a common C18-type column the C18-ligand or 

alkyl endcapping moieties of lower molecular weight. Combination of both sources of ion 

suppression are also encountered, depending on the sample matrix, eluent system, 

stationary phase type and especially in gradient mode [ [2, 19, 16]. 

To eliminate one source of ion suppression, stationary phases employed in liquid 

chromatography coupled to mass spectrometry should exert minimal lysis and elution of 

ligand. i.e. a bonding chemistry providing excellent chemical stability under the 

chromatographic conditions (eluent compositions, column operating temperatures, sample 

composition). Stationary phases featuring this property are labeled as mass spectrometry 

compatible. Regarding the influence of the surface chemistry, besides the minimized chronic 

ion suppression, also chromatographic performance parameters like retention capacity, 

retention times, peak shape and asymmetry are preserved for longer time by low bleed 

columns, thereby reducing data distortion by column aging-induced shifts of elution 

parameters in untargeted approaches.   

Mechanisms of ion suppression 

The predominant ionization method employed in liquid chromatography coupled mass 

spectrometry especially in the field of analysis of biological samples is the electrospray 

ionization (ESI) [25]. Besides this major ionization technique, atmospheric pressure chemical 

ionization (APCI) and atmospheric pressure photoionization are employed if examined 

analytes are less compatible with the ESI process (s. general introduction for reference).  All 

described techniques share in common charging and transfer to the gas phase of analytes, 
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yet with ESI charging occurs in the primary step, opposed to APCI/APPI gas phase transfer is 

the initial process. Furthermore, as described in the general introduction of this thesis, for 

ESI two models describe the transition of charged analytes to the gas phase, the ion 

evaporation model (IEM) for small molecules, and the charged residue model (CRM) for 

large molecules, e.g. large peptides, proteins or polymers. This crystalizes four vantage 

points for ion suppression processes [3]: I) competitive inhibition of charging of the analyte 

by matrix solutes, II)  gas phase ion charge neutralization, inhibition of gas phase transition 

by  III) coprecipitation or IV)  by deferral of efficient electrospray ionization via interference 

with the iterative droplet-fission process or with the ion evaporation processes by alteration 

of viscosity and surface tension of the generated droplets. 

Charge competition (I) between different solutes during the primary ESI-droplet formation 

was described first by Kerbale et.al [25], stating a maximum amount of 10-5 charged ions in 

one primary ESI-droplet. 

Ion suppression by gas phase charge neutralization (II), foremost by proton transfer reaction 

were observed by Chin et al [7] and Buhrman et al [6].  

Evidence for precipitation hypothesis (III) was provided by King et al[27] by collecting 

residues generated under ion suppressing conditions from the mass spectrometers orifice 

spray shield surface and reanalyzing these under non suppressing conditions, revealing that 

a fraction several times the detected analyte amount is excluded from the ESI process and 

deposited on the orifice surface. King et al. also confirmed that ion suppression by 

coprecipitation is, as expected, facilitated by sulfates or phosphates. 

Interference with the ion generation process (IV) has been reported regarding analyte vs 

matrix competition for surface access necessary for IEM [9, 44]  

To conclude from the enumerated vantage points for ion suppression described by the 

literature cited above, the only copious remedy for ion suppression is the removal of matrix 

components, adequate chromatographic separation where the latter is not achievable and, 

as in Publication VII, minimizing of any further introduction of extraneous compounds like 

surface ligands form chromatographic stationary phases. 
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Momentary Ion Suppression  

Acute ion suppression evokes from compounds coeluting with a chromatographic peak 

profile simultaneously with the respective analytes of interest. A plethora of ion suppressing 

compounds have been identified [3, 16], e.g. detergents, ion pairing reagents [4, 13, 20] , 

inorganic anions or other buffer compounds [27], polymers [35] and compounds facilitating 

proton exchange [34]. By their very nature being complex mixtures of a large variety of 

compounds that are often charged as essential property of their metabolic function or for 

containment inside the cell membrane [49], raw biological samples generally give rise to 

chromatograms with extended regions of ion suppression and appropriate assessment 

thereof and  countermeasures against during method development must be applied [24]. 

The source of acute ion suppression usually lies within the sample matrix compounds 

themselves. Yet other origins are known. One example is accumulation of eluent or additive 

impurities [26] on the column head during weak elution conditions and separation during 

the following gradient, essentially mimicking an injection. This is aggravated by non RP-types 

of chromatography, like HILIC or IEC chromatography, as strong ion suppressing ionic 

compounds are particularly enriched on the column during initial weak eluting conditions 

[21]. Furthermore, introduction of ion suppression by sample preparation workflows or 

inappropriate materials in contact with samples matrix must be avoided. 

As stated above, with targeted approaches acute ion suppression can be detected, in some 

cases evaded by apt measures during method development or to some extent corrected for. 

Consequently, examination of matrix/ion suppression effects during bioanalytical method 

development and validation is advised for the research laboratory [2] and required by 

regulatory bodies [14] for clinical, monitoring, forensic etc. applications. On the contrary, 

with untargeted comprehensive mass spectrometric approaches, the actual presence of ion 

suppression remain unnoticed. 

Continuous Ion Suppression  

In opposite to momentary ion suppression, chronic ion suppression is the result of ion 

suppressing compounds permanently being introduced to the ESI source. Potential sources 

are unretained eluent constituents/contaminants, contaminations of the fluidic path of the 

chromatographic system or column perpetually desorbed by the eluent stream, or, more 



Part I - Publications I, II, VII and VIII 
 

 
109 

inherently, ligands eluting from the column as result of lysis reactions of the stationary phase 

surface modification, mainly by lysis of the  Si-O-Si-ligand bond. Albeit being introduced 

permanently and uniformly into the ion source, the extent of ion suppression is dependent 

on respective analyte species and can be modified by eluent composition in case of gradient 

elution mode. Lower limit of detection (LLOD), lower limit of quantification (LLOQ), method 

sensitivity are affected always, and additionally  and linear range can be reduced by chronic 

ion suppression [3]. 

Countermeasures towards ion suppression - Objective of Publication VII 

Momentary ion suppression can be reduced by appropriate sample preparation reducing 

matrix compounds with adverse effect. Usually this can be achieved by solvent or solid 

extraction protocols, the latter also applicable as online-SPE performed by the 

chromatographic system. If not possible to remove ion suppression factors, chromatographic 

separation thereof from the analytes of interest should be achieved by tuning the 

chromatographic parameters like column selectivity, temperature, eluent composition,  

gradient shape, or by two dimensional liquid chromatography (2DLC). 

Chronic ion suppression can be counteracted by ensuring adequate chromatographic eluent 

quality, integration of cleaning procedures in chromatographic methods and sample 

sequences, preemptive ion suppression assessment and preemptive cleaning procedures. 

Fundamentally, as focused in Publication VII, stable stationary phases with minimized 

column bleeding allowing for labeling as LC-MS compatible  are a necessity in order to 

minimize chronic ion suppression. 

Chemical instability of silica based columns – column bleeding 

Main contributors to degradation of silica particle based stationary phases are temperature 

and foremost pH. While high pH (>8) eluent compositions are known to rapidly degrade the 

silica support material hydrolytically, effectively altering the column bed in the sense of 

critical chromatographic  properties  of the internal eluent pathways (altering A and C terms 

of van-Deemter equation when using isocratic conditions for assessment) to an extent of 

physical collapse of stationary phase particles and column bed as whole [28], acidic 

conditions  decompose porous silica particle based stationary phases more gradually yet 
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permanently by catalyzing hydrolysis of the Si-O-Si siloxane bonds of the surface ligand [28] 

while leaving the silica support intact during the usual operational life cycle (few thousand 

injections) of chromatographic columns [47, 29]. Ligand lysis has been described extensively 

by Kirkland et al [28, 31, 30, 18]. 

Ligand siloxane bond lysis results in a continuous deterioration of chromatographic 

performance, observable by decline of chromatographic retention factors k and peak 

resolution and symmetry, hence reduced peak capacity of the column. Unfortunately, as 

observed by Kirkland [29] the loss of chromatographic performance can be described by an 

exponential decay law, i.e. the adverse interanalysis effects are most strongly observed 

during the initial phase of chromatographic column lifetime and  impact on chromatographic 

results in between analytical runs and sequences/batches of runs is particularly large during 

the initial decay phase. This property of instable silica based stationary phases is especially 

undesirable for untargeted mass spectrometric applications, as bias between samples is 

introduced by chromatographic performance and simultaneous ion suppression decrease.  

 

Stable surface chemistry for LC-MS applications 

Generally, in order to provide for stable stationary phases for liquid chromatography, two 

major approaches have been pursued in the past: use of alternate scaffold materials, based 

on inorganic metal oxides e.g. alumina, zirconia or titanium based stationary phases and as 

second approach, development of stable surface chemistry for silica based stationary phases 

[8]. The first approach has been studied intensively and yielded stationary phase scaffolds 

with overall pH stability (0-14) exceeding those of silica materials [36, 8, 12]. Albeit, as result 

of  a less stable M-O-Si bond (M= Zr, Al) of alternate metal-oxide scaffolds [40] , the general 

superior stability of the scaffold material relative to silica based  materials does not apply to 

surface ligand modification stability, actually the contrary is reported [37, 8]. In order to 

achieve enhanced ligand stability, polymer coating or cladding techniques have been applied 

[42]. Yet, alternate metal-oxide based materials suffer from reduced achievable theoretical 

plates due to reduced specific surface area [5] or reduced chromatographic efficiency as 

result of restricted mass transfer [42]. 
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A major disadvantage described for the alternate scaffold materials results from strong 

Lewis base and acid activity effectively providing stationary phase scaffolds with inherent ion 

exchange (IEX) capabilities, in contrast to an ideal stationary phase material whose 

chromatographic selectivity would solely be governed by surface modification, as a matter of 

speaking possessing chromatographic inertness. While the inherent IEX mechanism can be 

used beneficially for particular analytical questions [38], generally it must be masked by 

mobile phase additives when RP retention mechanism are required [42]. These additives, 

necessarily ionic by mode of action, e.g. phosphates, are incompatible with mass 

spectrometric detection and with surface ligands that rely on specific ionic interactions 

adjusted by mobile phase ionic activity as the quinine carbamates [38] employed in 

Publication VII.  

 To summarize, up to the present day, alternate scaffold materials provide no substitute for 

mass spectrometric compatible silica based stationary phases, an observation the majority 

of chromatography aimed research literature in this field [8]  and  availability of 

commercially stationary phases and columns for LC-MS applications stands testimony to. 

As silica still provides the principal scaffold for stationary phases in liquid chromatography 

[8]  the second general approach aims to enhance ligand stability by application of surface 

ligand chemistries that circumvent or reduce the susceptibility of the Si-O-Si-ligand bond to 

hydrolysis under chromatographic conditions. A straightforward method hereby is, to utilize 

organo-silanes with bulky moieties bonded directly to the silicone atom in the ligand in order 

to sterically hinder the hydrolysis, while still resembling a brush type surface modification 

[29]. 
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Figure FP7 1 Steric protection as simple and effective approach to protect the labile Si-O-Si bond in 
silica based stationary phases Left: Schematic of silica surface and employed ligands, Right top: Steric 
protection from hydrogen bonding of residual unmodified silanols. Right bottom: phase stability 
expressed via perpetuation of k of 1-phenylheptane vs column volumes of eluent flow applied to 
column.   Reproduced from Review on the chemical and thermal stability of stationary phases for 
reversed-phase liquid chromatography Journal of Chromatography A Volume 1060, Issues 1–2, 10 
December 2004, Pages 23-41 Copyright (2004), with permission from Elsevier 
 

The stability enhancement observed by chromatographic assessment, e.g. monitoring of 

evolution of retention factors of appropriate indicator analytes [29] could be confirmed by 

the orthogonal methodology  of CP/MAS 29Si-NMR by Scholten et al. [43]. According to the 

findings of Scholten et al. steric protection by suitable groups at the ligand Si shield the Si-O-

Si hydrogen bonding by vicinal unmodified silanol groups, as depicted in Fig. FP7.1.  which 

supports the assumption of effective steric protection against acidic eluents. 

A further variant of the steric protection concept is the use of bidendate stationary phases. 

Instead of monomeric brush type ligand, two ligands are interconnected via Si-Q-Si bridge, 

where Q is an ethyl or propionyl chain. 

 

 

 

 

 

 

 

Figure FP7 2 Bidendate stationary phase. R= steric protection group or second ligand   Reproduced 
from Review on the chemical and thermal stability of stationary phases for reversed-phase liquid 
chromatography Journal of Chromatography A Volume 1060, Issues 1–2, 10 December 2004, Pages 
23-41 Copyright (2004), with permission from Elsevier 
 

An advancement of the bidendate concept for futher improvement of column stability could 

be achieved by combining mechanical resilience of silica based materials with chemical 

inertness by immobilization of  polymer coatings on the material surface, amongst others 

mainly polysiloxane coatings [41, 8]. Usually, these coatings represent crosslinking of the 

brush type ligands by aforementioned polymers, e.g. polymethylsiloxane in case of 
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Publication VII.  The crosslinked immobilized linkers employ the same bonding chemistry as 

the brush type ligands e.g. Si-substituted alkylchlorosilanes incorporating also the steric 

protection of the Si-O-Si-Bond as in the stable brush type ligands, see Fig FP7.2 for reference.  

These types of stable stationary phases were assessed to have excellent stability in neutral 

conditions with up to 50000 column volumes and enhanced stability in alkaline pH, 

indicating a protecting effect for the silica scaffold that is usually the cause of column failure 

under these conditions rather than ligand hydrolysis. 

 

 

 

 

 

 

 

  

 

  

 

Figure FP7 3 Left a: Cross linking via polymethylsiloxane; b: sterically protected brush type ligand.  
Reproduced from  Publication VII, Copyright (2016), with permission from Elsevier  Right: Stability 
assessment in neutral (top) and alkaline (bottom) eluent for different immbilisation and 
posttreatments of polymer coated columns. see reference for details. Reproduced from High-
performance liquid chromatographic stationary phases based on poly(methyloctylsiloxane) 
immobilized on silica: III. Stability evaluations, Journal of Chromatography A Volume 987, Issues 1–2, 
14 February 2003, Pages 93-101 Copyright(2003) with permission from Elsevier. 
 

Publication VII contributed to stable stationary phase research in advancing the 

polymethylsiloxane polymer coated type of column by providing an easy modifiable platform 

bearing as polymer coating   poly(3-mercaptopropyl)methylsiloxane that could easily be 

modified with ligand via a thiol-ene click reaction. For demonstration of concept, 

enantioselective stationary phases based on quinine carbamates [38] were synthesized and 

examined regarding column stability and mass spectrometric compatibility.  
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Methods for evaluating phase stability and MS compatibility 

Stationary phase stability can be assessed either indirect by functional assessment via an 

appropriate chromatographic test case, usually probing retention factors (k), peak resolution 

(R) and asymmetry, theoretical plates (N) or plate height (H), peak capacity etc. of amenable 

analytes or direct i.e. by monitoring of the surface ligand lysis, usually by charged aerosol 

detection or mass spectrometry [45, 8].  The first route of assessment is independent of 

coupled detection technology and gives a straightforward estimation of maximum 

achievable useful column lifetime under given eluent composition (pH, salt concentration) 

and column operation temperature.  However, by only evaluating chromatographic 

readouts, no conclusions can be drawn regarding compatibility with particular detection 

technologies, i.e. mass spectrometry or charged aerosol detectors,  that can readily be 

affected by ligand  concentrations in the eluate generated by ligand bleeding from a new 

manufactured column, as small amounts of ligand lysis products can exert strong influence 

on signal generation e.g. ion suppression [45, 2, 24]. 

The assessment of detector technology compatibility e.g. mass spectrometry compatibility of 

a stationary phase is therefore best done by the direct approach. However, it should be 

noted, that chromatographic lifetime of the column as revealed by the functional 

assessment of chromatographic parameters might not be derivable in a straightforward 

manner from the direct measurement approach. 

Publication VII employed two general test methods, first direct monitoring of ligand bleed 

intensity by MRM and TIC monitoring and second comparison of LLOQ for selected 

compounds on brush type vs. immobilized polymethylsiloxane coated stationary phase. The 

examination of LLOQ improvements gives direct insight to stationary phase LC-MS 

compatibility.  
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Results of Publication IV 

Publication IV could provide a platform technology for the preparation of functionalized 

silica modified by immobilized poly(3-mercaptopropyl) methylsiloxane instead of plain 

polymethylsiloxane. This scaffold can easily be functionalized to various column selectivities 

by thiol-ene click reaction with respective alkene mojety bearing ligands. Demonstration of 

the basic principle was performed with the preparation of enantioselective tert-

butylcarbamoylquinine carbamates based stationary phases [38]. The ligand stability was 

assessed by high resolution time of flight mass spectrometry (HRMS QTOF). Relative to brush 

type ligands, the background intensity measured by total ion current (TIC) could be lowered 

by 70-80%, indicating significant reduction of column bleeding and increase of mass 

spectrometric compatibility.  This finding was confirmed by enhanced sensitivity of the 

polymer coated columns relative to the brush type variant with comparable 

chromatographic performance, as LOD as well as LLOQ were also decreased by 70%  

 

 

 

Abbreviations 

IEM: Ion evaporation model 

IEX: Ion exchange chromatography 

CP/MAS 29Si-NMR: cross polarization/magic angle spinning nuclear magnetic resonance 

spectrometry 
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Introduction to Publication V / Conference Publication I:   

Shape selective chromatography coupled to atmospheric pressure chemical ionization mass 
spectrometry for the analysis of instable triterpenoid ester regioisomers 
 

 

Background of Publication V / Conference Publication I  

Lipophilic extracts and preparations thereof from Asteraceae Calendula officinalis are 

applied for centuries [31] as well as worldwide [32],  due to their assumed anti-inflammatory 

and wound healing properties. Although still under discussion [5, 27] it is considered, that 

the anti-inflammatory properties arise from 20-taraxastene derivatives, especially monols, 

diols, and triols and fatty acid esters thereof [19, 58] foremost of the extracts’ major 

triterpenoid compound faradiol [10, 57, 34].  

Publication V originated in cooperation with and from works of Nicolaus et al. studying the 

properties of triterpene alcohols and esters [35, 37, 36] with the group of Prof. I. Merfort, 

Institute of Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, University 

of Freiburg.  During these works, elucidating presence and the intact structure of potential 

fatty acid diesters was targeted. Albeit their general presence reported earlier [56] exact 

intact structures of presumed diesters were not established and verified previously. 

The 20-taraxastene derivatives focused on in Publication V were faradiol, arnidiol, arnitriol, 

maniladiol and lupane-3β,16β,20-triol. 

Due to the complex composition of lipophilic extracts of Calendula officinalis, structural 

elucidation has to be performed by employing a concerted multiplicity of analytical methods 

like NMR, MALDI-MS, GC-EI-MS and APCI- and ESI-LC-MS/MS [35] i.e. complementary 

techniques that in summa compensate sufficiently for the lack of a single preferable 

analytical method  for each compound constituting the extract.   

The author’s contribution to Publication V comprised the development of suitable mass 

spectrometric and liquid chromatography coupled mass spectrometric methods and 

procedures to complement the NMR based findings of Nicolaus et al.  

As described in the following paragraphs, instability of compounds of interest under the 

respective analytical technique conditions, ambiguity of their decay products and 
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regioisomerism impairing standard chromatographic methods had to be addressed by 

adequate methodological countermeasures and preparation of customized chromatographic 

materials and columns. 

In source decay instability and implications on chromatographic requirements 

A major difficulty in mass spectrometric detection of regioisomers of the faradiol esters and 

diesters examined in Publication V was the instability of generated [M+H]+ pseudomolecular 

ions. Instability of terpenoids in electrospray ionization (ESI) has been reported earlier by 

[25] and by Ma et al.[30]. Both reported instability predominantly for terpenoids bearing 

hydroxyl groups, with the extent of instability depending on the molecular structure. 

Congruent with the findings of Publication V, Ma et al [30] reported instability in extenso for 

terpenoid diols.  

 Whereas the general intricacy is, that all connate species give rise to similar fragmentation 

patterns in collision induced dissociation tandem mass spectrometry (CID-MS²), this 

ramification is especially aggravated in case in source decay gives rise to isobaric species, as 

depicted in Fig FP5.XX:  

 

 

 

 

 

 

 

 

Figure FP5 1 Fragmentation pattern of [M+H]+ homogeneous and heterogeneous faradiol esters 
examined in Publication V. Reproduced from Journal of Pharmaceutical and Biomedical Analysis, 118, 
195-205 Mastering analytical challenges for the characterization of pentacyclic triterpene mono- and 
diesters of Calendula officinalis flowers by non-aqueous C30 HPLC and hyphenation with APCI-QTOF-
MS, Copyright (2016), with permission from Elsevier 
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For the faradiol esters, it was perceived during experimentation with mono and diester 

standards, that the 16-hydroxy-group was particularly prone to decay into a [M+H-H2O]+  As 

depicted in Fig FP5.XX, this leads to a common in source fragment ion with m/z=635.576 for 

the 3-O-myristoyl derivatives, and for m/z=663.6074 for the 3-O-palmitoyl derivatives. The 

ambiguity of origin of both respective decay products precluded these ions to be used for 

confirmation of presence of the diesters by direct infusion experiments without prior 

chromatographic separation, particularly from a complex extract.  

What is referred to as “in source decay” can occur at two locations in common commercial 

mass spectrometers (ref. Fig FP5.2):  In the source itself and in the transition zone between 

rough vacuum and high vacuum. The decay processes in the transition zone are influenced 

by rough vacuum pressure and voltages accelerating the ions in the ion beam, and resemble 

collision induced dissociation (CID). Albeit ion path layout and tuning of voltages is 

commonly optimized for neutral particles removal and maximum ion transmission in order 

to provide maximum sensitivity, some manufacturers designs permit the user to 

intentionally tune specific voltages in order to achieve fragmentation, in particular with 

single quadrupole mass spectrometers, where no other means of CID are present (e.g. 

“Fragmentor voltages” between transfer capillaries and skimmer in Agilent mass 

spectrometers). The processes at this stage are largely unaffected by the source chemistry. 

Covalent pseudomolecular ions ([M+nH]n+ / [M-nH]n- ) can be fragmented reproducibly and 

predictably in the same manner as in QqQ-CID, whereas noncovalent, coulomb type clusters 

like metal cation, acid anion or water adducts ([M+nX]n+/-)/ [M+nX+xH2O]n+/-) predominantly 

are dissociated without breaking of covalent bonds, in consequence lowering sensitiivity.  

 The Sciex 5600+ TripleTof mass spectrometer used in Publication V employs neither a 

transfer capillary nor a skimmer at the transition from rough to high vacuum due to 

sensitivity enhancement reasons (higher transmittance). In source decay occurs besides the 

ion source in the QJetTM-compartment and in the transition zone right after the orifice 

assembly. Relevant voltages are ion source floating voltage (ISFV) and declustering potential 

(DP), as both modulate the ions longitudinal kinetic energy (ref. Fig FP5.2).   
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Figure FP5 2 Quadrupole compartment of Sciex 5600+ ion path, applied voltages and  locations of in 
source decay. Note that the only user adjustable voltages are DP and ISVF.  Source: own work and 
reproduced from J. Jasak, AB SCIEX TripleTOFTM 5600 System Basic Training, Part 1 Technology, 
Copyright (2014), with permission from Sciex. 

 
The decay processes in the source on the other hand is dependent on source parameters 

and chemistry [25].  The faradiol esters of Publication V exhibited neutral loss of water or a 

fatty acid, that can be tuned for maximum sensitivity or at last relative minimization of decay 

by solvent composition and ion source parameters like voltages, gas flows and 

temperatures. 

In source fragmentation was found to be extensive and complete using electrospray 

ionization as no [M+H]+ species of the triterpene diesters were detectable. Albeit still 

extensive, with atmospheric pressure chemical ionization (APCI) and optimized settings the 

[M+H]+ species could be identified.  For this, ion collision energy was kept at low levels 

(CE=5V for MS, 17 V for MS/MS), employing high sensitivity MS/MS mode, long acquisition 

time (1Hz) and multichannel averaging (MCA, 80 time bins), the latter reducing noise at the 

cost of resolution. Results are summarized in Table TP5.1 

In source decay area 1: 
Ion source 

In source decay area 2: 
rough vacuum area 
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Table TP5 1 Results for direct infusion experiments. Reproduced from Journal of Pharmaceutical and 
Biomedical Analysis, 118, 195-205 Mastering analytical challenges for the characterization of 
pentacyclic triterpene mono- and diesters of Calendula officinalis flowers by non-aqueous C30 HPLC 
and hyphenation with APCI-QTOF-MS. Copyright (2016), with permission from Elsevier. 
 

Compound Sum formula Calculated 
m/z 

Found m/z Δ 

mDa 

Δ 

ppm 

FMM C58H102O4 863.7851 863.7815 −3.60 −4.17 

FMP /FPM C60H106O4 891.81639 891.8181 1.71 1.92 

FPP C62H110O4 919.84769 919.8358 −11.89 −12.93 

 

While these findings confirmed the presence of dimyristoyl (FMM) and dipalmitoyl (FPP) 

diesters in the C. officinalis extract complementary to the NMR results, the actual presence 

of the mixed esters FMP/FPM needed to be further elucidated as the 16-O deacetylation was 

common, yet not exclusive. Comparison (Fig FP5.3) of 3-O-deacylation intensities exhibited 

by diester standards synthesized from 3-O-monoesters with the extract could not rule out 

presence of both diesters.    
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Figure FP5 3 Results for direct infusion experiment for mixed esters. Top: Extract, middle: FMP 
standard, Down: FMP standard, down: extract. Reproduced from Journal of Pharmaceutical and 
Biomedical Analysis, 118, 195-205 Mastering analytical challenges for the characterization of 
pentacyclic triterpene mono- and diesters of Calendula officinalis flowers by non-aqueous C30 HPLC 
and hyphenation with APCI-QTOF-MS, Copyright (2016), with 
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Hence, chromatographic separation prior to mass spectrometry was mandatory. As FMP and 

FPM are regioisomers with identical methylene (CH2) count, the chromatography could not 

only rely on the well-established methylene selectivity of C18-type phases [50, 21], yet had 

to constitute regioselective/shape selective RP-chromatography. Foundations of the C30 

chromatography will be described in the following paragraphs. 

 C30-n-alkyl silica as favourable shape selective material 

Early accounts of shape selectivity are given by Sander et al.[47] demonstrating the shape 

selectivity of monomeric and polymeric phases of various alkyl chain length separating 

phenanthro[3,4-c]phenanthrene (PhPH),1,2:3,4:5,6:7,8-tetrabenzonapthalene (TBN) and 

benzo[a]pyrene (BaP). Interest in chromatographic separation of PAHs in field of oil analysis 

and other fields in which PAHs are of importance, led to the development of according 

Standard Reference Materials (SRM) at the National Institute of Standards and Technology 

(NIST) [54]. Of these, SRM 869 was established to judge shape selectivity of chromatographic 

phases [6]. 

 

 

 

 

 

 

 

 

 

Figure FP5 4 Use of SRM 869 for examination of shape selectivity. Reproduced from LCGC North 
America, 26, 10, Shape Selectivity in Reversed-Phase Liquid Chromatography, 948-998, Copyright 
(2008), with permission from Advanstar Communications. 

 
Shape selectivity is judged by the separation factor αTBN / BaP, where lower values of alpha 

indicate higher shape selectivity, see Rimmer et al. [6]. for reference. One of Sanders 

TBN, 
aplanar 

BaP,planar 
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findings were, that longer alkyl chain lengths on the immobilized selector increased shape 

selectivity [47]. An early review on shape selectivity regarding planar and aplanar molecules 

like PAHs or triterpenoids as examined in Publication V is also given by Sander [48].  

Following these early works, after being established by Sander [45], a plethora (selected 

examples [17, 42, 53, 52]) of papers dealing with application of C30 phases has been 

published. A notable amount of these works is dedicated to analysis of carotenes and similar 

compounds, establishing the C30 bond silica phases as “carotenoid phase”. 

Albert [1] in 1998 reviewing some of the intervening works, summarizing that the C30 

phases, albeit offering no benefit over C18 regarding small molecules, indeed possess 

superior shape selectivity,  as long as mobile phase and separation temperature are 

customized to the respective analytical question.   

Basic requirements on the structure of n-alkyl bond silica surfaces regarding shape selectivity 

In order to provide for shape selectivity, the stationary phase must provide some kind of 

scaffold discriminating solutes possessing similar polarity, solubility and lipophilicity but 

unequal spatial configuration. Considering the most fundamental case of shape selectivity, 

i.e. shape selective separation of solutes with different shape yet otherwise identical 

properties regarding RP chromatography, in analogy (yet not identical!) to chiral recognition 

(ref. to introduction of Publication I) Gibbs free energies of both analytes binding to the 

shape selective phase must be different from each other.  

A model for this mode of action where the difference in Gibbs free energy arises from 

differences in steric hindrance was given by Wise and Sanders [55], named the “slot model”. 

According to this model, the stationary phase is comprised of “slots” of defined diameter 

and length. The first discriminant of the analytes is the length-to-breath (L/B) ratio, those 

with high L/B ratio are capable do permeate further in the alkyl layer, establish more 

interactions with the alkyl phase and thus are longer retained. With SRM 869, as expected a 

shape selective phase will retain the planar BaP longer, hence αTBN / BaP, <1. See Fig FP5.4 for 

reference.  
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These properties can result neither from a phase mode of binding exactly following a 

solvophobic mechanism / partitioning mechanism [28] nor by  the opposing binding enthalpy 

based view by Carr and coworkers [41] as both models explain retention based on isotropic 

interaction of eluents, stationary phase and solutes [44]. Concordantly, the n-alkyl layer of 

shape selective RP stationary phases cannot solely interact with the solutes in an equivalent 

manner than to corresponding bulk phase of free n-alkanes. 

Insights on n-Alkyl bond silica by FTIR 

The surface density of alkyl ligands was found to be half that of the corresponding bulk 

liquids [8] indicating, that the properties of the respective bulk alkane phase are not 

applicable [9]. An earlier work by Sander et al. [43] employing FT-IR for the study of RP 

stationary phases revealed, that, judged by the matching  IR-spectra,  dry C18 bound silica 

show indeed some similarity to the same silica material with only physically associated 

alkylsilane or n-alkanes. This behavior is however altered by the mobile phase: under aquatic 

conditions, the alkyl layer assumes a liquid or glass like phase (indistinguishable by IR) 

whereas in a high organic environment a brisle / brush like conformation with organic 

solvent in between is assumed. 

An in depth study of the n-alkyl bond silica employing FTIR was provided by Singh et al [49]. 

Monitoring CH2 stretching modes for conformational order, deuterated CD2 rocking modes 

for gauche conformation monitoring at selected sites and wagging modes to assess kink 

(gtg), double gauche (gg) and end gauche (tg) sequences, his work elucidated that, the 

length of the alkyl chain is proportional to conformational order, the amount of double 

gauche conformers is reduced with increasing chain length and by lowering temperature. 

 

  

Figure FP5 5  “Slot model” illustrating molecular recognition of analytes 
with varying L/B-ratio. Reproduced from LCGC North America, 26, 10, 
Shape Selectivity in Reversed-Phase Liquid Chromatography, 948-998, 
Copyright (2008), with permission from Advanstar Communications. 
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Figure FP5 6  Conformers of n-alkane chains. Source: own work. 

 
Singh also demonstrated, that of all chain lengths (C8-C30) examined, C30 exhibits the 

lowest number of gtg- and gg-conformers at a given temperature and that the fraction of 

both conformers is minimized rapidly with decreasing temperature, making it the most 

ordered phase studied. These findings regarding C30 have been confirmed later by [51]. 
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Figure FP5 7 Top: Change of CH2-anti-symmetric stretch band maxima as result of decreasing number 
gauche conformers. Bottom: C30 exhibiting highest order i.e. lowest gauche defect number over 
broad temperature range. Reproduced from  Singh et al., J. Phys. Chem. B, 2002, 106 (4), pp 878–888, 
Shape Selectivity in Variable Temperature FT-IR Studies of n-Alkyl Modified Silica Gels, Copyright 
(2002), with permission from American Chemical Society. 

 
 
 

 

 

 

 

 

 

Figure FP5 8 Changes in conformational order in C18 phases in high (left) and low (right) 
temperature, as portrayed by Singh et al. Reproduced from Singh et al., J. Phys. Chem. B, 2002, 106 
(4), pp 878–888, Shape Selectivity in Variable Temperature FT-IR Studies of n-Alkyl Modified Silica 
Gels,, Copyright (2002), with permission from American Chemical Society. 
 

Raman spectroscopy – a method complementary to FTIR, same results.  

Employing mostly the ratio of antisymmetric to symmetric methylene bands 

I[νs(CH3)]/I[νs(CH2)] [26] as a measure of conformational order, Raman spectroscopy as 

method complementary to FTIR was used to confirm the latter findings on the influence of 

alkyl chain length [11], column temperature [13] and mobile phase composition [12]. Being 

an emission type spectroscopy, Raman spectroscopy could even be employed to study the 

properties of stationary phases / RP ligands in actual chromatographic columns [11]. 

 

 

Influence of solvent organic content - SFG spectroscopy 

Studying influence of solvent composition on structure and topology of alkyl silica phases by 

sum frequency generation (SFG) spectroscopy Henry et al. [20] demonstrated  C18 phases 

are unaffected by high aqueous conditions in terms of the  “phase collapse myth”, i.e. that 

under high concentrations of water in  the mobile phase the alkyl phase, collapses  to a “oil 
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drop” liquid / glass like state conformation. Henry’s findings confirm Raman spectroscopic 

observations by Doyle et al [11]. Yet, presence of water reduces order in the alkyl layer. In 

contrast, pure organic conditions were found to facilitate additional order of the alkyl chains.  

 

NMR of alkyl silica phases 

Nuclear magnetic resonance can be used to study surface coverage and conformational 

conditions of alkyl silica phases. Due to the insoluble nature, NMR on alkyl silica phases is 

performed either as solid state or suspended state NMR [2]. The modification of the surface, 

ligand density can be monitored by 29Si-CP/MAS NMR spectroscopy. Insights to the tethered 

alkyl chain can be retrieved by 13C- CP/MAS or HR/MAS NMR spectroscopy. C30 phases in 

particular have been studied by NMR by Albert and coworkers at University of Tübingen [3, 

16, 38, 40]. One of these works by Pursch et al. [39] yielded the same results as other 

spectroscopic methods: Examining the ~2.6 ppm distant signals arising from trans and 

gauche conformers [15] (see Fig FP5.8) yielded: increased surface bonding density decreases 

gauche conformers, whereas temperature and gauche ratio are positively correlated.  
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Figure FP5 9 C30 alkyl chain conformation shift for main chain CH2 groups (C4-C27), from trans 
δ=32.6 ppm to gauche δ=30 ppm with increasing temperature and decreasing surface density α. 
Reproduced from Anal. Chem., 1996, 68 (2), pp 386–393, Temperature-Dependent Behavior of C30 
Interphases. A Solid-State NMR and LC−NMR Study Copyright (1996), with permission American 
Chemical Society. 

In silico chemistry – Simulations of RP-Phases 

Most in silico molecular studies on chromatographic systems are performed by molecular 

dynamics (MD) simulations, as Monte Carlo (MC) approaches are too computationally 

intensive for the extent of the simulated systems.  Two fundamental works regarding alkyl 

silica surface order employing  MD simulations on C8, C18 and C30 type of RP-Phases by 

Lippa et al. examined influence of chain length and ligand surface density [28] and of mobile 

phase and column temperature [29]. The results of these studies are congruent with the 

spectroscopic and chromatographic experimental findings: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure FP5 10 Results from Lippa et al. MD calculations, Anal. Chem., 2005, 77 (24), pp 7862–7871, 
Copyright (2005), with permission from American Chemical Society Publications. 

 

T = 298K 
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Order, governed  by a low  ratio of gauche (tg), double gauche (gg), and kink (gtg) 

conformers to trans conformers of the chains of the alkyl phase increases with chain length 

and surface density but  decreases with temperature. See Fig FP5.4 for reference). 

Furthermore, the work of Lippa [29] revealed, that C30 ligands require less surface density, 

see fig FP5.9. As depicted, the same order can be achieved at room temperature and with 

lower surface density in C30 phases as with C18 at higher surface densities and sub ambient 

temperatures. 

 

Facilitating shape selectivity – C30, high surface density and low temperature  

To summarize, the in silico results of Lippa and others [4, 24, 29, 28], as well as the 

congruent experimental results [7], [14], [13, 43, 49, 23] by FTIR, Raman, NMR and  

chromatographic experimentation revealed why C30 phases possess advanced capabilities 

as shape selectors / carotenoid phase: 

• Gauche dihedrals and shape selectivity: Gauche dihedrals and of the alkyl chain 

relative to silica surface are reciprocal to each other. Up to 20% gauche dihedrals do 

not impair high shape selectivity (αTBN / BaP <1.0), 20%-30% result in intermediate 

(αTBN / BaP 1.0-1.7), above 30% yield low shape selectivity (αTBN / BaP >1.7).  

• Gauche dihedrals and temperature: Increasing temperature for C18 from 274K to 

332K more than doubles gauche dihedrals (12% to 16). Directly Comparing 

trifunctional C18 to C30, increasing temperature from 24° to 60° affects order of 

C18 (19% to 26.5% gauche), but does not affect C30 (9.5% to 10.7% gauche).     

• Chain density: Chain density does not affect gauche concentration in C30 as strong as 

it affects C18.  In order to achieve low gauche concentration (10%-15%) surface 

density has to be increased to over 5 µmol/m² (5.9 for 10% gauche), an occupancy 

difficult to achieve experimentally. With C30 this value is already reached with at 2.7 

µmol/m² (16% gauche) and high shape selectivity (10%gauche, αTBN / BaP 0.55), can be 

achieved still below 5 µmol/m². 

• Monomeric vs polymeric alkylsilanes: With C18, in order to achieve low gauche 

concentrations, trifunctional C18 (polymeric phase) and therefore a more extensive 
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synthetic route [46] must be employed. In contrast, with C30 10% gauche and αTBN / 

BaP 0.55,   is readily achievable using monofunctional chlorotriacontylsilane, hence 

the preferable easier synthetic route to a monomeric alkyl silica phase can be 

followed. 

• Phase diameter: With C18 phase thickness varies with temperature, albeit the effect 

is stronger with monomeric phases (25% vs 4% reduction of phase thickness 

between 273 and 298 K). With C30, phase thickness is, as expected from low 

temperature influence on gauche concentration and tilt angle not significantly 

affected. 

• Topography:  Smoothness of the alkyl phases surface, described by tile angle of the 

alkyl chains relative to the silica surface and by the peak to valley distance on the 

top of the alkyl surface (for graphical ref. see FP5.9). C30 materials have lower tilt 

angles, and are as aforementioned, less susceptible to temperature influence.  

A comprehensive more recent review of order, disorder and shape selectivity in alkyl 

stationary phases is given by Sander [44]. 

 

Results of Publication V  

The more straightforward task of confirming the presence of faradiol as well as the myristate 

and palmitate esters of arnidiol, arnitriol A, lupane-3β,16β,20-triol, and maniladiol, was 

achieved by non-aqueous reversed phase C18 chromatography. Due to the high lipophilicity 

of the triterpene monoesters, no elution could be achieved employing a classic RP 

water/acetonitrile gradient. Hence, a non-aqueous gradient was applied, running from 100 

% acetonitrile delivered by Channel A to 100% methanol delivered by Channel B in 25 min. 

Non-aqueous gradients, while uncommon to RP chromatography, have been applied by 

previous works [18, 33] . 

  

As described in the sections on shape selective chromatography, C30 was considered as the 

eligible stationary phase. Concluded from the cited previous works, a monomeric type ligand 

chemistry would suffice, achieving high shape selectivity (αTBN / BaP =0.55) already with low 
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surface density.  Different surface coverages have been synthesized, employing surface 

modification by reflux of Kromasil 100 Å 5 μm silica gel with triacontyldimethylchlorosilane. 

 

 

 

 

 

 

Figure FP5 11 Kromasil 100, 5µm modification as employed in Publication V. Molar ratio of 
triacontyldimethylchlorosilane to silanol groups was varied to yield several surface densities, of which 
1.41 µmol/m² was evaluated as suitable.  Source: own work. See Publication V for reference. 

 
Implementing the reciprocal temperature/shape selectivity relationship, chromatography 

was conducted at low temperature (8°C). Albeit it has to be ascertained, that lowering 

temperature was limited by backpressure of the chromatographic column and the given flow 

rate and binary gradient from methanol to isopropanol. Instrumentation hardware (Agilent 

1290 Infinity I Series) limits backpressure to a maximum of 120 MPa.  Under these 

conditions, FMM, FMP/FPM, FPP could be resolved. The pronounced 16-O-instability of the 

mixed esters could be utilized for structural assignement. For cross checking, the trace of the 

20-taraxastene skeleton (m/z = 407.3673) was compared to the results, revealing not only 

the FMP/FPM regioisomers could be partially resolved by C30-RP chromatography, but also 

the regioisomers of the faradiol monoesters.  

 

  

   

 

 

 

 

Figure FP5 12 Left: High-Res TOF-MS C30 low temperature, nonaqueous gradient extracted ion 
chromatograms. Blue: XIC for FMP, m/z 635.5761±2.5 mDa; Red; FPM in source decay, m/z 663.6074 



Part 2 - Publication V 
 

 
138 

±2.5 mDa Dotted trace: synthesized standards. Right: cross check on 20-taraxastene skeleton (m/z = 
407.3673). Reproduced from Journal of Pharmaceutical and Biomedical Analysis, 118, 195-205 
Mastering analytical challenges for the characterization of pentacyclic triterpene mono- and diesters 
of Calendula officinalis flowers by non-aqueous C30  

 
The gradient employed was a non-aqueous type, running from 100 % methanol delivered by 

Channel A to 100% isopropanol delivered by Channel B in 25 min, as with classic RP water to 

organic gradients separation could not be achieved. It was assumed, that this results on the 

one hand from the strong lipophilicity of the diesters hence long retention time and peak 

broadening (longitudinal diffusion term of van-Deemter equation B/v) under 

aqueous/organic conditions. On the other hand, it can be hypothesized, that the reported 

(ref. previous section, Doyle et al. [11]) reduction of order in alkyl silica phases under high 

water concentration reduces the shape selectivity of the given in house manufactured C30 

phase below a threshold required for separation of the diesters, especially FMP\FPM. 

Additionally, the confirmation of the presence of monoesters of faradiol, arnidiol, arnitriol, 

maniladiol and lupane-3β,16β,20-triol could be achieved.  

To conclude, advanced chromatographic separation by shape selective C30 phase and 

particular MS settings with APCI ion source and MCA feature could lead to the adequate 

analysis of these difficult to characterize analytes and sample mixtures. Only the smart 

combination of the appropriate LC and finetuned MS could accomplish this success. 

 

     

Abbreviations 

FTIR: Fourier-transform infrared spectroscopy 

FMM: Faradioldimyristate 

FPP: Faradioldipalmitate 

FMP/FPM: Mixed esters of faradiol and myristic/pamitic acid 

SFG: sum frequency generation  

MC: Monte Carlo simmulation 
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Introduction to Publications IV, IX, X, and XI  

Intact protein mass spectrometry  

                                                                                                                                                                                                                             

Background  

This part will be focused on some fundamental properties of commercial QTOF-systems 

regarding large ion species mass spectrometry, in particular mass spectrometry of intact 

proteins, as they are usually optimized for small molecules and peptides. As Compton et 

al[15] describe, expectations regarding mass accuracy, mass resolution and sensitivity must 

be adjusted, as these performance parameters are subject to effects resulting the chemistry 

and physics of ion motion in mass spectrometers. For the experimenter, these properties 

must be understood and applied to instrumental settings in order to achieve maximum 

analytical performance with intact protein mass spectrometry.   

 

Deconvolution errors, isotopic peak broadening and chemical noise 

Deconvolution Error: Mass resolution, and thereby peak broadness, is described by R= 

m/FWHM meaning the absolute amount of the relative measure R is dependent on mass of 

the ion. e.g. FWHM at 500 dalton is 14mDa, where at 150kDa it is already 4.2 Da for single 

charged ions at the same resolution. Fortunately with ESI, proteins are multiply charged, i.e. 

their mass spectrum consists of an array of m/z signals described by m/z= [M±nH]±n /z, 

termed a charge envelope (s. Fig FP4.1).  This multi charging shifts their m/z signals in the 

m/z=1000-4000 range, implying apparent peak broadness (FWHM) of ~30-100 mDa during 

measurement.  However, a drawback is introduced by data interpretation. For spectral 

interpretation, the charge of each peak zcal is derived from the charge envelope and used to 

calculate the mass M of the protein as shown in Fig FP4.1 for a H-adducted charged 42kDa 

protein. 
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Figure FP4 1 Charge envelope of 42kDa JNK3 kinase with m/z values and corresponding charge.  
Source: unpublished data, method according to Publication X. A and B denote two subsequent m/z 
signals (with m/z B > m/z A), zcal the calculated charge in the series, MProton, mass of proton 
(1.007276466583 Da, usually 1.0073 or even 1 suffices Note that peak is broad (~10-20Da at the 
basis) as result of isotope envelope and adduct subspecies 

 
As shown in figure FP4.1 the charge and mass of the protein is reconstructed from the m/z-

domain by multiplication, also multiplying deviation measured from theoretical m/z-value 

arising from actual measurement errors, peak maximum detection errors or calibration 

errors. Randomly distributed errors can be rectified by averaging over charge envelope as 

opposed to calibration errors. 

Resolution is more severely affected when reconstructing mass peaks during deconvolution. 

As the m/z peaks are comprised of a finite amount of data points their spacing is increased 

by the factor identical to charge state, resulting in a reconstructed peak that appears 

broader than the actual peak would be detected. Also, each signal has a different 

“broadening factor”, as it has a different charge 
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Figure FP4 2 Deconvolution result of an IgG antibody. Note the reconstructed peak is much broader as 
resolution (35000) of the Sciex 5600+ would imply.  Reproduced from Publication XI Papain-
functionalized gold nanoparticles as heterogeneous biocatalyst for bioanalysis and 
biopharmaceuticals analysis, Analytica Chimica Acta, Volume 963, Pages 33-43 Copyright (2017), 
with permission from Elsevier. 
 

The problem of charge multiplicity induced calculation errors cannot be remedied physically 

on QTOF-Systems, as the transition window yielding sufficient S/N is determined by Q1 

transmission characteristic fixing the useable m/z–corridor (for Sciex 5600+: ~900-4000 m/z). 

This requires higher charge states for larger proteins to pass Q1 and thereby introducing a 

mass dependency of mass accuracy and resolution, degrading with increasing mass. An exact 

and frequent calibration of TOF mass axis is mandatory to prevent systematic errors, e.g.  a 

drift of 50ppm, typically in the time scale of one hour, for the 42kDa protein of Fig FP4.1 

would give rise to 2 Da deviation, inacceptable for many applications. 

As a consequence, data interpretation/deconvolution algorithms usually operate on the m/z 

data, rather than reconstructing an uncharged molecular peak[32, 40, 35]. 

 

Isotopic peak broadening and asymmetry) A major effect on mass spectroscopic resolution 

is elicited by isotopic distributions[8, 26]. Proteins consist mainly from elements with the 

following number of sotopes: Carbon(3), Hydrogen(3), Nitrogen(2) and Oxygen(3). With 

increasing atom count, the monoisotopic peak becomes less predominant, e.g. for an alkane 

with chain length of 90 the monoisotopic and (1x13C)-Species have already same intensity. 

With large Proteins, what is actually ionized and detected, is a series of Isotopologues each 

observed separated by  Δ(m/z) =1/z.  With typical High-Res-QTOF systems, the threshold 

where the peaks cannot be resolved any more lies in the low 20kDa region. Above, isotope 

patterns converge to one peak that resembles the average mass instead of monoisotopic 

mass. This effect can be observed in Fig FP4.1 where the base of the peaks of the charge 

envelope is much broader as resolution at this m/z value (R=35000, ~ 40mDa FWHM) would 

suggest. Fig FP4.3 gives a depiction of theoretical calculations demonstrating the effect. 
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Figure FP4 3 Model of monoisotopic peak and 1x13C isotope pea. Calculated for a QTOF-System with 
R=35000. Left: Protein with 18kDa, 15fold charged at m/z=1201.0072. Isotope peak can be clearly 
distinguished. Right: Protein with 42kDa, 35fold charged no isotopic peaks can be resolved at this 
molecular weight due to high charge of protein moving individual peaks too close together. Source: 
calculation by R-script.   

 
Isotopic peak broadening contributes to sensitivity decreasing with protein mass additionally 

to decreasing detector response (vide infra) as a respective amount of protein is distributed 

into a plethora of Isotopologues, of which a certain amount manifests as noise at the peak 

flanks rather than as signal. 

Some deviation in mass accuracy can occur as result of asymmetry of Isotopologue 

distribution when using data interpretation software that employs symmetric gaussian 

smoothing. Peaks arising from Isotopologue distributions are described by a Poisson 

distribution. Standard mass spectrometric data interpretation software albeit usually 

employs gaussian based signal filter algorithms for mass spectra analysis, e.g. for data 

representation or smoothing steps during peak detection[21]). Some distortion of peak 

maxima position is introduced and S/N increase by filtering is not at maximum[41].  

With increasing protein mass the isotopic distribution approaches gaussian shape [48] which 

reduces the effect. For smaller proteins, this effect can be minimized by choosing 

appropriate calibration standards, i.e. macromolecules, ideally proteins/peptides of similar 

masses and subjecting calibrant signals and mass spectra to identical post measurement 

recalibration. Furthermore, adapted smoothing and peak detection algorithms can be 
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applied. If not required by sample amount/concentration, instrument settings (vide infra) 

yielding isotopic resolution completely eliminate this issue.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

Figure FP4 4 Top: Asymmetric Isotopologue distribution and influence of gaussian filtering on mass 
accuracy. Dotted line) simulated theoretical peak shape by combining gaussians with σ= 0.5 and 1.5 
respectively, x0=10. Gray line) simulated noise added, solid line) Gaussian smoothed data exhibiting 
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divergence from actual peak maximum.  Middle: Small peptide/protein with asymmetrical isotope 
envelope, yielding mass determination error when measured as overlapped m/z signal due to 
instrument settings. Bottom: large protein (~60kDa). Poisson distribution of Isotopologues is 
symmetrical enough to be approximated by Gaussian filter without mass accuracy distortion 
 

Chemical noise) As charge state increases with size, so does the probability of forming mixed 

adducts that not only contain H+ but non-covalent charge carriers like Na+ and NH3+ or 

neutral adducts in some instances. This results in a decreased S/N ratio by generating 

multiple closely spaced m/z signals for each charge state. For example, when using a High-

Resolution QTOF with R=35000 the calculated FWHM peak broadness in antibodies is 50 to 

100mDa.   Measuring a 150kDa IgG with a charge state of z=100 gives a signal at m/z 

1501.0072, with one proton exchanged for Na+ at m/z 1501.22702, with NH4+ at m/z 

1501.17746, with a H2O molecule as neutral adduct at m/z 1501.17723.  

ESI source noise) Mass spectra generated by ESI always exhibit a noticeable amount of 

noise, due to instabilities in the ionization process and[9], especially with low S/N spectra as 

encountered often due to analyte amount restrictions. Fig. FP4.5 demonstrates this with a 

mass spectrum of IgG. Especially high signal spikes on the flanks of the charge envelope m/z 

signals affect peak detection and achievable mass accuracy. 

 

 

 

 

 

 

 

 

Figure FP4 5 Typical example of intact IgG mass Spectrum 1.8µg of Intact IgG on column. Note peaks 
are not Gaussian symmetric as opposed to the smoothing and detection filters commonly employed. 
With low signal intensity, ESI source fluctuations manifest as spikes that can give rise to artifacts by 
smoothing and peak maximum detection.  Source: unpublished data, method according to Publication 
IX 
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Ion transmission in QTOF-mass spectrometers and its practical implications 

For ion trajectories in the time of flight mass spectrometric compartment itself it has been 

demonstrated that mass resolution and mass accuracy are independent of m/z, with a slight 

deviation from this rule on the lower end of the m/z ratio due to  increased impact of 

detector pulse duration variations and voltage jitter[13]. However, these studies have 

employed in vacuo ion generation. With an atmospheric pressure ion source, this finding 

gets invalidated by the processes during transition from atmospheric pressure to the 

vacuum of the ion path and the perpendicular extraction employed in QTOF-systems.   

During the ESI-process, ions get accelerated by the ion spray potential (ISFV, ion spray 

floating voltage with Sciex 5600+) towards and through the orifice (opening of few µm) into 

of the mass spectrometers ion path.  Naturally, driven by the large pressure gradient 

between ESI-source housing and ion path, not only ions but large amounts of gas from the 

ion source (usually N2) transit through the aperture forming a defocussed free jet expansion 

plume[18]. During this pneumatic influx, ions are further accelerated and are unfavorable 

diverted from the axis of the ion path. Ion velocities at this stage are comprised of a 

perpendicular component v⊥ as result of free jet expansion and a parallel component v∥ 

comprised of pneumatic acceleration additionally to the electrostatic acceleration by ion 

source voltage and(ISFV) and declustering potential(DP)[29]. Ion energies at this stage are 

proportional to m/z and amount to several hundred keV for multiply charged protein 

ions[12]. 

 

As only a minority of ion trajectories follow the intended ion path and the downstream 

portion of the ion path (Q1 to detector) is sealed by a small aperture refocusing has to be 

performed in order to transmit as much ions as possible through the latter orifice via a 

focusing ion optic. The methodology therefore was described first by Krutchinsky et al. [29] 

employing a quadrupole in RF mode constraining ion movement and collisional dampening 

by the elevated vacuum pressure in this ion path stage. The Sciex 5600+ TripleTof includes 

an implementation of Krutchinskys Ion-Optics (QjetTM and Q0). 
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This type of interface refocusing approach has some important implications for intact 

protein mass spectrometry. The focusing relies on the two factors: collision with residual gas 

(collisional cooling/dampening) and containment/focusing by RF voltage/frequency both 

aspects have been studied extensively[4] It was shown in silico[29]  and experimentally[12] 

that increasing the pressure in the interface region facilitates focusing of intact proteins. Yet 

this option is usually not implemented in commercial type mass spectrometers, like the Sciex 

5600+ used in this thesis. 

 

 

 

 

 

 

 

 

Figure FP4 6 Left calculated ion trajectories in the interface region transitioning form atmospheric 
pressure to vacuum of myoglobin(17kDa) ions. Reproduced from Collisional Damping Interface for an 
Electrospray Ionization Time-of-Flight Mass Spectrometer, Journal of the American Society for Mass 
Spectrometry, Volume 9, Issue 6, Pages 569-579, Copyright (1998), with permission from American 
Society for Mass Spectrometry. Right: Collisional dampening and residual gas pressure in the interface 
region. Reproduced from Protein complexes in the gas phase: technology for structural genomics and 
proteomics, Chemical reviews, Volume 107, Pages 3544-3567, Copyright (2007), with permission from 
ACS Publications. 

 
The other option is to optimize the RF frequencies and voltages for the transmission of large 

ions. Hang and Coworkers [27] demonstrated this approach. As they pointed out with (Fig 

FP4.7) az set to zero as in RF-Mode, ion transmission would be governed by the AC-potential 

determining qz alone(V=0), theoretically, i.e. all ions with qz from 0 to 0.908 pass the RF-

quadrupole. However as potentials are applied along the RF-Quadrupole (biased RF) in 

commercial systems to facilitate ion transmission down the ion path, the actual az-line in the 

Matthieu-Diagram would be a parallel to az=0, narrowing the operational window along 0< 

qz.<0.908.  Ions with qz outside of this corridor are on instable trajectories and do not pass 

the RF-Quadrupole. This applies especially as at the lower end of the qz scale, as the 
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equations and stability diagram imply (Fig FP4.7). RF voltage amplitude and frequency must 

be tuned to match the respective ion m/z. yet at the same time allow for sufficient energy 

dissipation due to collisional dampening. As Hang et al. [27] demonstrated, due to the high 

kinetic energy gained by large ions during vacuum transition, high RF voltage amplitudes and 

low frequencies are required. Albeit on the cost of shifting small mass ions outside of the 

stable qz regions, i.e. complete loss of signal for smaller ions.      

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure FP4 7 Top-left) Matthieu diagram and solutions for az and qz. For RF-mode, az is set to zero.  
Reproduced from Quadrupole ion trap mass spectrometry: a view at the turn of the century,  
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International Journal of Mass Spectrometry, Volume 200, Issues 1-3, Pages 285-312  Copyright 
(2000), with permission from Elsevier. Bottom left) Influence of RF frequency on transmission Bottom-
right) Influence of RF voltage amplitude on transmission  .  Reproduced from Practical considerations 
when using radio frequency-only quadrupole ion guide for atmospheric pressure ionization sources 
with time-of-flight mass spectrometry,  Analyst, Volume 128, Pages 273-280  Copyright (2003), with 
permission from - Royal Society of Chemistry  

 
 
A further consequence of the transmission characteristics of RF-quadrupoles affects QTOF 

mass spectrometry of large intact proteins. As shown in the previous paragraph, 

transmission conditions are optimized by RF voltage and amplitude specifically for each m/z 

value. As not only the interface quadrupole(s) but also the Q1-quadrupole is operated in RF-

Mode during a MS1-TOF-Scan this affects ion transmission efficiency and therefore signal 

intensity. To compensate for that, with small molecules the TOF scans are actually 

composite scans of subsequent transients with different Q1 settings, yielding a m/z 

independent transmission characteristic. With the Sciex 5600+ this is set by the Q1 

transmission settings, usually employing two setting, one low m/z and one high m/z. Yet, the 

Q1 transmission setting is constraint by a maximum setting, e.g. m/z 1250 for the 5600+ 

QTOF. Species with larger m/z are affected by the diminishing ion transmission efficiency the 

farther they are from the optimal m/z. Albeit for the given m/z  az and qz  might indicate 

transmission stability,   non-uniform transmission efficiency is also induced by insufficient 

focusing for a fraction of the energy dispersed ions [5, 24].   

As intact proteins give rise to charge envelopes of a multiplicity of charges this leads to a 

distortion of the otherwise symmetrical charge envelope. The larger an intact protein gets, 

the further away are the individual charge state m/z ratios from the optimum m/z regarding 

transmission efficiency, hence, sensitivity worsens with protein size by insufficient RF-

quadrupole transmission.  

The distortion effect is demonstrated by Fig FP4.1. On the opposite, as slope of the function 

describing ion transmission efficiency of RF-quadrupoles diminishes with m/z distance to the 

optimum, Fig. FP4.5 exhibits no indication of envelope shape distortion indicating an almost 

even distributed, but with an average above m/z 2500 low absolute ion transmission.  

As QTOF-systems usually possess perpendicular extraction configuration, i.e. the flight path 

in the TOF–drift tube is perpendicular to the quadrupole compartment (QJet,Q0,Q1,Q2), 
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spatial focussing, uniform trajectory vector orientation and especially horizontal kinetic 

energy distribution perpendicular to TOF flight path) also take effect in the time of flight 

compartment. Ions with velocities unfit to the TOF transmission time window overshoot the 

detector plates [12, 4].  

 Fig FP4.6 depicts this issue and influence of optimal pressure in interface region (collisional 

dampening). As multi-purpose commercial systems do not offer the possibility of vacuum 

pressure regulation, RF-quadrupole (QJet, Q0, Q1 and Q2) settings must provide for optimal 

ion impact distribution across the detector plates. These settings, as in the interface region 

are exclusive for large ions.  

 

 

 

 

 

 

 

 

 

 

Figure FP4 8 Left: Linac: linear acceleration rods additional to Q2(collision cell). For intact proteins, 
collision energy applied to this rods must be increased to ~30V, Reproduced from Methods and 
apparatus for reducing artifacts in mass spectrometers US6909089, USPTO Right: Detector overshoot 
as result of kinetic energy distribution and possible remedy by collisional dampening/ uniforming. 
Reproduced from Protein complexes in the gas phase: technology for structural genomics and 
proteomics, Chemical reviews, Volume 107, Pages 3544-3567, Copyright (2007), with permission from 
ACS Publications. 

 
Aforementioned collisional dampening reoccurs in the collision cell (Q2) due to the increased 

pressure in this region.  To facilitate ion transmission, a linear acceleration potential is 

applied (s. Fig FP4.8). Experimentally, it can be found that the adequate linear acceleration 

potential for transmission of small molecules without fragmentation through the Q2 is 

insufficient for large molecular species. The user accessible setting for this linear 

acceleration voltage with the Sciex 5600+ is the collision energy (CE, actually a voltage 
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setting). For small molecule, CE=5V is sufficient for transmission, settings above result in 

collision induced fragmentation (CID), depending on ion stability and mass/size CE=10V- 40V 

are typically employed for fragmentation. With intact proteins, CE=30V is recommended. 

Settings below result in insufficient ion transmission. This requirement results in further 

incompatibility of parameters for simultaneous small molecule and intact protein mass 

spectrometry, as with the large CE, small molecules are fragmented.   

The essence of this paragraph for the experimental practice of this thesis is that the ion path 

voltages and frequencies of quadrupole time of flight mass spectrometers must be tuned to 

provide for efficient transmission and detection of large species like intact proteins, as these 

systems are usually optimized for and provided with standard settings for small molecules 

and peptides. Actually, with standard settings, no signal for intact proteins could be detected 

at all. For the employed Sciex 5600+ TripleTof, the operator is provided with the “intact 

protein script” adjusting aforementioned settings,  leaving only ion source parameters, 

declustering potential (DP 150-300V for large proteins), collision energies (CE, 20-30V) to  be 

optimized by the operator for the respective analyte of interest. However, as described 

previously, it has to be kept in mind that large and small molecule ion path tunings are 

mutually exclusive. Hence, TOF mass axis calibration cannot be performed with the usual low 

molecular species (e.g. polypropylenglycol, peptide standards), as they are usually not 

detected. Yet, if no eligible calibration standards are available, mass axis calibration can be 

done sufficiently in small molecule mode prior to activation of protein settings. Furthermore, 

it is not possible to detect proteins and small ligands or other respective matrix components 

in the same experiment,  except when differences in  measured protein mass is used to 

derive the ligands mass, subjected of course to the reduced mass resolution and mass 

accuracy conditions characteristic for large ions.  

Properties of mass spectrometric detectors important for protein mass spectrometry 

Mass spectrometric ion detection is primarily based on one of three mechanisms: direct 

charge generation(Faraday Cup), inductive detection (Orbitrap, FTICR) and 

secondary/cascade electron detection (MCP, EMH)[22].  Of these, only the latter two are 

relevant for mass spectrometry of large macroions, due to their sensitivity. As the author’s 

work was based on a Sciex 5600+ TripleTof mass spectrometer, which detector utilizes a 
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stack of two multichannel plates (MCP), the properties of MCP detectors and implications on 

the experimental approach in protein analysis shall be focused on in the following. 

Multichannel plates are fused arrays of drawn glass tubes each consisting of an etchable 

core glass cladded in nonetchable lead glass. After cutting the array at an angle (~8°) to 

provide an angle for later perpendicular ion impact relative to MCP disc surface, the core 

class  is removed by etching and the remaining lead glass surface is reduced in a hydrogen 

surface resulting in a conductive, yet resistive surface, yielding a continuous potential 

gradient (overall resistance : 109 Ω) rather than a stepwise as in a discrete dynode[3]. The 

overall 1-10mm thick arrangement which exhibits  approximately 10000-450000 channels 

per square centimeter, depending on channel diameter (10-100µm), each resembling an 

individual dynode[47] albeit the impact of all resulting output electrons is a single composite 

signal.  

 

 

 

 

 

 

 

 

Figure FP4 9: a) Discrete Dynode. Resistors between individual plates generate potential gradient 
necessary for secondary electron acceleration. b) Multichannel plate. c) Single channel of straight 
walled MCP; ion impact angle has to be non-perpendicular to surface as usually achieved by angled 
cut of MCP disc. Potential is provided by semiconductive/resistive lining of glass channel. d) Chevron 
arrangement. Reproduced from Nucleic Acids Research, Volume 34, Issue 19, 1 November 2006, 
Pages 5402–5415, Copyright (2006), with permission from Oxford academic. 

 
The gain of a single MCP is limited to 10³ to 105 by positive ion feedback mechanism. At the 

output region, even under low pressure of mass spectrometers, residual gas molecules are 

ionized by the high energetic (~30-100eV) output electrons and subsequently accelerated 

towards the MCP cathode, interfering with and limiting generation of secondary electrons. 

This restriction in gain can be circumvented by bending[25] or twisting of channels[38] (both 
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difficult to manufacture) or, as commonly implemented by manufacturers, a chevron 

arrangement of two MCP as depicted in Fig FP4.9, allowing for gains of up to in the 107 

order[14].  

For detection of large molecular ions, MCPs have specific properties with respect to 

sensitivity that have to be considered. The gain of the MCP detector array, expressing the 

number of output electrons per impacting ion, is dependent on various factors such as angle 

of impingement, acceleration voltage across the MCP plates (often named detector voltage 

or MCP voltage in commercial mass spectrometers), but also on ion species, molecular 

weight, charge state and velocity thereof[34]. Influence of molecular weight and impact 

velocity/energy was established employing MALDI-TOF[23, 33, 10] rather than ESI-QTOF 

systems, as MALDI yields mostly singly charged ions and MALDI-TOF systems contain no 

quadrupoles, which would  bias sensitivity by its m/z dependent transmission 

characteristic[16]. 

Geno et al[23] derived a  function calculating the  secondary emission coefficient γ, where 

ion mass contributes linear, ion velocity contributes exponentially. Aforementioned 

secondary emission coefficient γ describes the probability of a single ion to produce 

secondary electrons upon impact, i.e. being detected by a MCP (P=1-e-y derived by Beuhler 

et al.[5]). Even for the in protein terms lightweight bovine insulin peptide(5.8kDa) an 

acceleration voltage of 40kV would be necessary[23]   based in calculations, yet are difficult 

to achieve experimentally[23]  with sufficient supply stability for accurate TOF-mass 

spectrometry.  It should be noted, that the probability functions uses ion mass and not mass 

to charge ratio. 
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Figure FP4 10 Left) Overlay of measured and calculated detection probability of bovine insulin vs. 
acceleration voltage. Reproduced with permission from International Journal of Mass Spectrometry 
and Ion Processes, Issue 92, 1989, Pages 195–210, Copyright (1989), with permission from Oxford 
academic. Right-top) Detection probabilities for different molecular weights (up to 150kDa for intact 
antibodies) and acceleration voltages calculated according to formula derived by Geno et al[23]. 
Right-bottom) Detection probability as function of molecular mass, acceleration voltage 15kV (e.g. 
Sciex 5600+) 

 
The formula of Geno et al [23] was extended by Westmacott et al [44, 45], deriving  function 

for secondary electron yield ye=2.8*10-18mv4.3. This has been confirmed by others [37, 31, 

10] ], with a range of  velocity exponents form 3.2 to 4.4 attributed to differences in 

mathematical fit and MCP material and setup.  

These findings  indicate that MCP secondary electron multipliers are indeed inferior for 

macroions like proteins and other detectors have been devised for mass spectrometry like 

conversion dynode  produced secondary ion detection[39] or cryogenic superconducting 

tunnel junction(SJT) detectors, the latter achieving 100% detection probability for individual 
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macroions [20],  [45], albeit on the cost of  more intricate instrumental setup. The drawbacks 

and complicacies of these alternate detection technologies manifest themselves in the 

observation that commercially available research grade TOF instruments (Sciex, Bruker, 

Agilent, Waters) even targeting large molecular analysis still are designed with MCP based 

ion detection. Above findings are directly relevant to experimental work. 

 As depicted in Fig FP4.10, for larger proteins detection probability and therefore sensitivity 

of mass spectrometric detection is severely reduced for MCP-detectors. Increase of 

acceleration voltage, if actually permitted on user level access of commercial mass 

spectrometric instrumentation is no remedy for this problem as shown in FP4.10. Proteins as 

small as 20kDa would require >80kV acceleration voltage, let alone intact antibodies, where 

500kV would be necessary, both difficult to achieve. It can also be seen that below 2000 

Dalton detection probability reaches P=1, indicating that virtually all ions reaching a MCP 

channel are detected. In contrast to macromolecules, where detection efficiency drops off 

starting with 20mers concerning peptides/proteins. 

What has been demonstrated as beneficial regarding detection of proteins or other 

macromolecules is a reduction of the MCP voltage, i.e. potential across the multichannel 

plate by 5-10% (e.g. Sciex 5600+: reduction by 100V). This measure is apparently 

counterintuitive, as rather an increase of MCP voltage to release more secondary electrons 

per impact as last resort to achieve sensitivity or mandated by degradation of MCP detector 

has to be applied.  According to Sciex, S/N enhancement by MCP voltage decrease results 

from a disproportionate decrease of noise generated by singly charged species, while 

response to multiply charged ions is unaffected. 

 

Time digital converter – Sciex 5600 TripleTOF– impact on experimental settings 

Apart from other vendors (Bruker, Agilent, Waters) the Sciex 5600+ employs a four channel 

time to digital converter (TDC) operating at 40GHz for data acquisition instead of an analog-

digital (ADC) converter. While ADC measure the current on the detector anode induced by 

the secondary electrons output and thereby gain information on the number of ions 

impacting in a given time window, the TDCs record the impact of individual ions 

qualitatively. Therefore, TDC have to operate on higher frequencies (40GHz vs 2-4GHz for 
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ADCs) to provide for quantitative (intensity, peak height, peak shape) information, otherwise 

multiple ions impacting in a too short time frame are detected as one ion, a process called 

pileup. To do so, the time after the start signal (simultaneously with rising edge of pusher 

voltage) is divided into small, picoseconds long time bins. If an ion fires the MCP within such 

a time bin, the arrival time is recorded and associated with that time bin (multi-hit TDC). 

To form a spectrum, this process called transition is repeated, ten to a few thousand times 

and data are combined to yield one spectrum, depending on user set spectral acquisition 

rate. This requires a certain temporal dilatation of the ion packets of identical m/z. As 

individual microchannels are thereunto inactive for a dead time in the order of µs during 

charge restoration, sensitive detection relies both on distribution lateral in longitudinal 

distribution of the ion packet.   

 

 

As described in the previous section, with MCPs the detection probability of an impacting ion 

triggering a pulse on the detector anode is decreasing with ion velocity, which in turn is 

dependent on the ion mass during TOF acceleration. As shown in Fig FP4.10, the probability 

at 15kV acceleration voltage as fixed in the Sciex 5600+ TripleTof is around P=0.1. As 

detection with a TDC is a binary event, the probability to detect all of them in their 

respective time bins is significantly lower (Pall= (Psingle)n) and most of the ions are effectively 

omitted during detection. This scenario can be improved, if multiple time bins are combined 

into one, increasing the probability that one of the incident ions triggers detection of this 

combined bin, albeit on the cost of spectral resolution, as the underlying time grid is set less 

granular. For small molecules, time bins are usually 1-4, for macromolecules, up to 80 time 

bins can be combined.   
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Figure FP4 11 Above: MS-chromatogram of Trypsin demonstrating influence of combining time bins 
from 1-80 DC bins on sensitivity. All runs were performed as C4-RP trap&elute in backflush mode to 
remove polar and low MW compounds. By combining multiple time bins peak height could be 
increased by a factor of 20-30. Right: Individual mass spectral peak, demonstrating the effect of 
combining time bins on resolution and granularity of mass spectra 
 
 

Experimental approaches to intact protein mass spectrometry with Sciex 5600+ 

The following considerations were employed in publications IV, IX, X, and XI to conduct 

sensitive protein mass spectrometry: 

a) For rather pure samples, direct infusion with low flow rates in the µl/min regime and 

composite spectra generation by MCA can be beneficial. Otherwise, reversed-phase 

trap and elute in backflush mode should be employed, in order to purify the protein 

from all nonvolatile low molecular compounds causing either ion suppression or 

increased level of unwanted adducts (e.g. Na +) and to achieve a sharp and high peak, 

as with mass chromatogram peak height is of importance for sensitivity and high S/N. 

In case of protein mixtures, adequate chromatography is mandatory as overlapping 

charge envelope complicate spectra.  
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b) Trap and elute was performed employing C4-RP-trap columns, these exhibit good 

retaining of proteins, yet allow removal of low molecular weight and polar 

contaminants. 

c) Declustering potential (DP): Increased values reduce amount of adduct species of 

respective proteins. The absolute signal intensity reduction caused by higher DP is 

overcompensated by depopulation of mass spectrum, overall increasing sensitivity. 

d) Collision energy increase: Usually higher voltages are necessary, e.g. for Sciex 5600+: 

30V, a voltage where many small molecular species would already be fragmented. 

e) Q1 transmission window: 100% on m/z=1250 (instrument limit) to achieve maximum 

transmission for multiply charged protein ions, usually with m/z from 900-2000. 

f) Intact protein mode script: Tuning ion path voltages and frequencies to 

accommodate for efficient transmission of macro ion beams should be employed 

g) Decrease of MCP potential by 100V considerably increases S/N ratio. 

h) Time bins: Increasing with target mass (not m/z), from 10 to 80 bins combined.  

 

 

 

 

 

 

 

 

 

 

 

Figure FP4 12 The minimal absolute amount of protein in ng on column to yield a S/N > 10 versus 
molecular weight of protein. For intact antibodies (~150kDa) 2-3µg on column are required. Results 
correspond to the literature opinion. Proteins used for this demonstration graph were 
Lactoglobulin(18kDa), Triosephosphate isomerase(26kDa), Glyceraldehyde-3-Phosphatase, 
Aldolase(39kDa), Human serum albumin(66kDa) 
 

 



Part 3 – Publication IV, IX, X and XI 
 

 
165 

Objective and results of Publication IX and XI 

Both Publications are focused on protease conjugated gold nanoparticles (IX: Pepsin; XI 

Papain) and their utilization as heterogeneous proteolytic catalysts for proteomic workflows 

and in middle-down/up proteomics[50]. In general, heterogeneous enzyme catalysts provide 

for easy and fast removal of catalyst by centrifugation or filtration, or if magnetic carriers are 

employed, by magnetic separation[42]. Although dependent on the carrier system 

employed[49, 30], immobilization can enhance enzymatic stability and reaction rate, 

especially if carrier systems in the nanoscale are chosen [28].  

Additionally to exemplifying the classic bottom up approach, Publications IX and XI 

demonstrated the application of gold nanoparticle proteases in middle-up proteomics. The 

latter term refers to a proteomic workflow starting with enzymatic disassembly of large 

proteins inaccessible by Top-Down proteomics into larger peptides (>5kDa) and proteins that 

are readily accessible by such an approach 

[19, 50, 26]. This methodology enables faster characterization, e.g. determination of post 

translational modifications and sequencing. Regarding intact IgG antibodies, the most 

common approach is to cleave them into their subunits Fab and Fc prior to intact protein 

mass spectrometry. 

 

 

 

 

 

 

 

 

Mass spectrometric top down proteomics have advantage of being less time consuming as 

protracted protein digestions (usually 12h).  Yet, as shown in the previous sections, a major 

factor restricting the applicability of mass spectrometry on intact proteins is the 

instrumentation itself with respect to sensitivity, resolution and mass accuracy.  

Figure FP4 13 Middle down proteomics 
employing a nanocarrier with 
immobilized proteases. Reproduced from 
Publication XI Papain-functionalized gold 
nanoparticles as heterogeneous 
biocatalyst for bioanalysis and 
biopharmaceuticals analysis, Analytica 
Chimica Acta, Volume 963, Pages 33-43, 
Copyright (2017), with permission from 
Elsevier. 
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Consequently, a middle down approach yielding lower MW fragments increases sensitivity 

exponentially (see Fig FP4.10) thereby reducing required concentrations/absolute amounts, 

especially for ex vivo bioanalytical purposes (less important in analysis of biotechnological 

products due to large amounts generated). Also, with a middle up approach, digesting IgGs 

to their smaller subunits, mass accuracy of intact mass spectrometry is significantly 

increased, in case of the Fc/2(~24kDa) subunits even isotopic resolution can be achieved. 

For Publication IX and XI, intact protein mass spectrometry using a high resolution µESI-

QTOF-System was successfully employed to demonstrate the catalytic activity of 

nanoparticle conjugated proteases  Both works also confirmed the utility of gold 

nanoparticle conjugated proteases for a middle-up approach with heterogeneous proteolysis 

providing fast(high throughput amenable) and convenient sample preparation protocol for 

analysis of antibodies, circumventing instrumental restrictions of contemporary commercial 

QTOF-mass spectrometers  for increasing result fidelity.   

 

Objective and results of Publication X 

Publication X was masterminded by the Group of Prof. Laufer, Institute for Pharmaceutical 

Sciences, University of Tübingen. This work provided covalent bonding inhibitors of c-Jun N-

terminal kinase 3 (JNK3), a member of the mitogen activated protein (MAP) kinase family. 

The inhibitors are based on a pyridinylimidazole scaffold exhibiting an electrophilic warhead 

covalently bonding to Cys-154. 

 JNK3 is a part of the stress activated SAP/JNK signaling pathway and responsible for 

activation of transcription factors c-Jun/AP-1 by phosphorylation[7]. As this transcription 

factor is involved in regulating apoptosis and misregulation is shown to affect cell 

proliferation it is well established as oncogene,  indeed the first oncogene discovered[43]. 

With JNK3 being located upstream in the signal cascade, it is a target for anticancer 

strategies. Also,  knock-out experiments  could demonstrate that  it represents a promising 

therapeutical target for neurodegenerative disorders like Alzheimer’s, Parkinson’s and 

Huntington’s desease [1], especially as its expression being specific to neuronal and cardiac 

tissue as well as testis as opposed to its ubiquitous isoforms JNK1 and JNK2[6, 7]. 
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Figure FP4 14 Left) Docking of pyridinylimidazole derivative from Publication X into crystal structure 
of JNK3(PDB: 1PMN) Right) Scaffold structure and moieties studied. Right bottom: Example of 
Inactive (noncovalent) warhead used for comparison.   Reproduced from Publication X, Tri- and 
Tetrasubstituted Pyridinylimidazoles as Covalent Inhibitors of c-Jun N-Terminal Kinase 3, Journal of 
Medicinal Chemistry, 60 (2), pages 594–607 Copyright (2017), with permission from ACS Publications. 

 

Publication X studied affinity and specificities regarding covalent inhibition of JNK3 of various 

derivatives of a pyridinylimidazole scaffold(s) (Fig FP4.14).  Biological enzymatic inhibition 

(IC50) was evaluated with enzyme-linked immunosorbent assays (ELISA), in vitro metabolism 

was accessed via LC/MS. The task of the author of this thesis in Publication X was to confirm 

the covalent bonding by mass spectrometry.  

Examining covalent protein modification can be performed by two approaches, bottom-up 

or top down.  The bottom-up-approach is the classic approach of proteolytically digesting 

the protein to small peptides, analyzing them by reversed phase LC-MS/MS, identifying the 

peptides by their fragmentation pattern, and reconstructing the intact protein from these 

results. Modifications can be identified on peptide fragment level and, with the low mass of 

the analyzed, lower accuracy mass spectrometric systems, as triple quad (QqQ) systems can 

be employed. Actually, covalent modification analysis is implicit to proteomic bottom-up 

workflows, as many proteins are covalently modified in vivo (PTM).    

Yet, bottom up has some constraints for covalent analysis of inhibitors. Relatively large 

sample amounts have to be subjected to lengthy digestion protocols usually 8-12h digestion 

additional to pre- and postprocessing(purification) steps. Also, proteolytic protocols are not 
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universally applicable  as their feasibility depends presence and distribution of respective 

protease cleavage sites, which in worst case may result either in peptides too long to be 

accessible by some mass spectrometric systems when operating in small molecule mode as 

usual in proteomics, or in short ambiguous fragments of few amino acids attached to the 

ligand, prohibiting to pinpoint the exact location of the amino acid residue derivatized with 

the covalent binder. The latter constraint however applies also to top-down approaches 

while the former (long peptides) could be resolved by intact protein analysis of the long 

peptide fragments, albeit requiring ample unambiguous peptides for identification.  

Furthermore, covalent modification may alter or prohibit proteolytic cleavage, or the 

relevant covalent bond between protein and ligand may even be instable under proteolytic 

conditions. 

In contrast, top down approaches are feasible for fast and high throughput and can in 

principle be adapted for automated library screening. For in vitro experiments with pure 

recombinant protein, chromatography(minutes to hours) can be replaced by short trap and 

elute protocols employing reversed phase trap columns (seconds), where the time 

constraint is usually of technical nature(autosampler)  Sample amount is dependent on size 

as elaborated previously (Fig FP4.10), but is usually in the ng to µg (absolute amount on 

column) range. 

With top down approaches, noncovalent as well as covalent interactions can be examined. 

Non covalently bound ligands require careful tuning of ionization and ion path parameters 

(see also Introduction to Publication III/XII) and bear the risk of false positive evaluation 

based on nonspecific association.  Still, noncovalent protein-ligand interactions are 

inaccessible by bottom up approaches, as interactions dependent on secondary and tertiary 

structures are disrupted during proteolysis. In contrast, assessment of covalent ligand 

bonding requires the opposite instrumental settings, i.e. dissociation of noncovalent 

interactions must be assured. This is achieved by appropriate temperature and gas flow 

settings in the ESI ion source ensuring complete desolvation and by sufficiently high 

declustering potential at the ion path entrance. 

For Publication X, a µLC (60µl/min) chromatographic gradient protocol using a monolithic 

PS/DVB based capillary column (0.5 mm ID) was established. Ionization was performed with 
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a µLC emitter tip for increased sensitivity. For exact assay conditions, the reader is referred 

to supplemental material of publication X. Albeit employing larger volumes (200µl of 

1pmol/µl JNK3) for convenience, actual injection consumed only 5 pmol(210ng) absolute 

amount of recombinant JNK3 (42kDa) per assay. This demonstrated the feasibility of such a 

top-down approach for inhibitor library screening, as 1000 candidates could be screened 

within less than 5 days, consuming approx. 200µg of recombinant JNK3. This could further 

be optimized by sample volumes, automated handling, and pre concentration via trap and 

elute chromatography. 

 As previously indicated, exact bonding location of positive covalent inhibitor candidates 

must be evaluated to confirm specific binding. In theory, this could be assessed directly with 

covalently inhibited JNK3 by EDD /ETD fragmentation similar to PTM analysis[46]. Yet the 

Sciex 5600+ TripleTof offers only CID fragmentation, inferior for MS/MS analysis of large 

proteins, suffering from low sequence coverage[36] and limited structural information [17, 

2]. For covalent modifications, a special caveat is reported: Long Peptides/Proteins with 

covalent modifications tend to lose this modification upon CID. Simultaneously, most 

backbone fragmentation of peptide/protein is suppressed in favor of dissociation of the 

modification, masking location information and hampering peptide fragment identification. 

Therefore, direct CID fragmentation of intact protein was deemed unfeasible for proving 

covalent binding location. When employing a bottom up approach, CID of modified peptides 

could of course be employed as usual. 

Instead, as in publication X, in house expressed and purified recombinant JNK3 was 

employed, it was the most straightforward approach to use a JNK3-C154A mutant generated 

by directed mutagenesis. This mutant has the active residue Cys154 reacting with the 

warhead of the inhibitors by Michael-addition replaced by an inactive alanine. As expected, 

none of the inhibitors found to bind with the wildtype JNK3 was reactive towards the JNK3-

C154A mutant. 

Overall, the covalent binding to JNK3 could be successfully proved by intact mass 

spectrometry. Masses of covalently inhibited JNK3 could be determined with less than 

10ppm mass error, molecular masses of calculated inhibitors from the charge envelope 

could be determined with subdalton mass accuracy. To cross check, noncovalent inhibitors 
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were incubated with the target, without yielding modified JNK3 (i.e. non-covalent inhibitor-

JNK3 associates). 

Table TP4 1 Overview of results. Reproduced from Publication X supplemental material, Tri- and 
Tetrasubstituted Pyridinylimidazoles as Covalent Inhibitors of c-Jun N-Terminal Kinase 3, Journal of 
Medicinal Chemistry, 60 (2), pages 594–607 Copyright (2017), with permission from ACS Publications. 

 
Compound 
# 

active 
warhead 

Protein Average Mass [Da] Reconstructed inhibitor 

Calculated Measured error ppm Expected Found 

7 Yes 42784.5576 42784.2239 -7.8 578.328 578.6617 

8 no 42205.8959 42205.5105 9.1 0 0 

15 no 42205.8959 42205.9047 0.2 0 0 

21 yes 42690.471 42690.103 -8.6 484.2071 484.2071 

23 no 42205.8959 42206.342 10.5 0 0 

 

Objective and results of Publication IV 

Publication IV is classified within this thesis as a minor scientific contribution (s. List of 

author contributions). Therefore, it shall be only briefly described. Publication IV examines 

halogen bonding to the Met146 residue with regard to affinity and selectivity in the human 

kinome. Ligands substituted with Chlorine, Bromine and Iodine are compared to 

unsubstituted (H-) compounds.   The author’s contribution to publication IV is the intact 

protein analysis of C‑ Jun N‑ Terminal Kinase 3 (JNK3) and mutants demonstrating the 

selectivity of methionine, namely M146A, M146L, and M146T.    

Mass accuracy (<2ppm) and resolution (35000) of the Sciex 5600+ TripleTOF allowed for 

subdalton accurate MW determination. This enabled confirmation of mutation success in a 

straightforward and fast trap and elute LC-MS analysis, with minimal amounts of protein 

required (50ng per measurement) and without the need for a time-consuming bottom up 

proteolytic workflow and subsequent LC-MS/MS analysis. The experimental mass 

spectrometric and chromatographic conditions are described in supplemental material of 

Publication X. 

Table TP4 2 Results from Publication I. Mass error is in the lower mDa and accuracy of 4 ppm and 
lower as usually would be expected of low MW mass spectrometry could be achieved.  

  
M146A M146L M146T 

Mcalc 42145.7821 42175.8084 42175.8084 

Mmeas 42145.5927 42175.7227 42175.7227 
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Error mDa -189 -86 -86 

Error ppm -4.5 -2.0 -2.0 

 

Abbreviations 

FWHM: Full width at half maximum of peak 

FTICR: Fourier transform ion cyclotron resonance 

MCP: Multi channel plate 

 EMH-Horn: electro multiplier horn 

MALDI-TOF: Matrix assisted laser desorption ionization time of flight mass spectrometry  

Da, kDa: Dalton, Kilodalton 

kV: Kilovolts 

LOD: limit of detection 

LOQ: limit of quantification 

DP: Declustering potential 

MCA: Multi channel alignment 

SJT: superconducting tunnel junction 

ADC: Analog digital converter 

TDC: time digital converter 

ELISA: enzyme-linked immunosorbent assays  

PS/DVB:  polystyrene-divinylbenzene copolymer 

CID: collision induced fragmentation 
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Introduction to Publications III and XII  

Native ESI-MS of DNA of complexes with DNA binders 

                                                                                                                                                                                                                                 

Background of Publications III and XII 

Both publications examine interactions of DNA-G-quadruplexes with dicarbocyanine and 

benzothiazole ligands being potential candidates for analytical or pharmaceutical 

applications. Above-named quadruplexes are one form of less abundant secondary 

structures of DNA besides the prevalent duplexes, i.e. double stranded DNA or B-DNA. 

Especially repetitive sequences facilitate the formation of hairpin, triplex, cruciform, left-

handed Z-form and quadruplexes, as reviewed by Kervin et al. [26].  These non-B-DNA 

structures are thought to induce genetic instability and hence thought to contribute to or 

cause human diseases [26].   

In particular, guanine (G)-rich DNA sequences exert the tendency to form into tetrastrand 

assemblies named G-quadruplexes (G4). These complexes are formed by stacked planar 

arrangements of four guanine bases, bound by Hoogsten base pairing stabilized by π-π-

interactions between the planes and interaction with alkali cations. The latter are located 

inside a channel formed by the four guanine bases as shown in Fig P3-1: 

 

 

      

 

 

 

Figure FP3 1 Structure of G-tetrads. A)  Hoogsten-base pairing of guanine bases forming one G4- 
quadriplegic plane. B) section of poly(d)G. Helix formed from multiple planes of G4, stabilisation  by 
pi-pi stack, helix is right handed. C) Interior channel with alkali metal ions further stabilizing structure.   
Reproduced from Nucleic Acids Research, Volume 34, Issue 19, 1 November 2006, Pages 5402–5415, 
Copyright (2006), with permission from Oxford academic. 

 
From the pharmaceutical perspective, as the major prerequisite for the formation of G4-

quadruplexes, namely G-rich sequences are found in the telomeric regions of chromosomes 
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and promotor regions of oncogenes, e.g. MYC and BCL2, G4-quadruplexes have become 

targets for therapeutic approaches, particularly for anticancer strategies [37, 38, 10]. 

In this perspective the ligand studied in Publication III is the brainchild of the Weisz-Group at 

the Institute of Biochemistry at the University of Greifswald. It presents and examines 3,3’-

diethylthiadicarbocyanine (DiSC2(5)) as selective fluorescence probe for DNA G4-

quadruplexes. 

Publication XII, also masterminded by the Weisz–Group, identified a benzothiazole 

derivative as selective ligand candidate for G4-quadruplexes and thoroughly characterized it 

as a basis for further chemical derivatization in order to yield fluorescence probes for 

detection of G4-quadruplexes.  

Both works examine the binding of their respective ligands to a the MYC-G4-quadruplex 

(amongst others) by various methods to check topology of targets (CD) initially and after 

ligand binding,  examining interaction sites (NOE-NMR, CSP-NMR ),  determining binding 

stoichiometry and affinities (fluorescence titration, UV/VIS, native ESI-TOF-HRMS) and 

studying thermodynamic aspects (ITC) to provide understanding of ligand-target interaction 

and as basis for deriving derivatives with optimized structure regarding selectivity and 

affinity. For structures of ligands and sequences of targets see Fig FP3.2. 

 

 

  

 

 

 

 

 

 

Figure FP3 2 Structure of ligands and targeted oligonucleotides studied by Publication III (DiSC2(5). 
Publication XII (L4)     Reproduced from Publication III and XII, Copyright (2015, 2017), with permission 
from Wiley. 
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Stoichiometries and binding mode - limitations of fluorescence titration  

As fluorescence titration yielded binding affinities, yet not unequivocal stoichiometries, this 

was further investigated by method of continuous variation providing a job plot [25]. Albeit 

still applied in the field, this method is regarded to be of limited suitability concerning 

supramolecular complexes and more applicable as a posteriori verification experiment 

confirming results procured by other techniques [50, 22]. As Hibbert et al. [22] point out, 

whenever possible from practical reasons, repeated titrations should be performed and the 

gained data fit to various models, revealing the most suitable model by statistical procedures 

like shape analysis of residual scatter plot or  sum-of-squares F-test[50].  

 

 

 

 

 

 

Figure FP3 3 Example of fluorescence titration results (left) and a job plot(right):  Job plot obtained by 
plotting the difference (ΔF429) of L4 fluorescence between c-MYC/L4 mixtures and L4 without DNA, 
providing information on binding stoichiometry.  Publication XII (L4).  Reproduced from Publication III 
and XII, Copyright (2015, 2017), with permission from Wiley. 

 
If due to practical reasons an extensive investigation by titration and model fitting as 

suggested by Hibbert is impeded, stoichiometry and binding model must be confirmed by 

orthogonal and preferably direct methods. In case of Publication III and XII, high resolution 

mass spectrometry of noncovalent bound ligand-target complexes, ionized under native 

conditions (native ESI) was utilized for this purpose.     
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Native electrospray ionization mass spectrometry 

The capability of the electrospray ionization process (ESI) to produce non-covalently bound 

species has been reported already in the Nestor publication by Fenn et al. [9]. Shortly after, 

first publications give account on ESI’s aptitude to ionize even supramolecular structures like 

peptides or protein dimers [46], receptor-ligand or enzyme-substrate complexes [13, 14]. 

The term “native mass spectrometry” was coined later in 2004 in a review by van den Heuvel 

and Heck [52], referring to mass spectrometric experimental approaches for ionization and 

ion transmission that retain all structure types, from primary to quarternary under native 

(physiological) conditions. Ideally, also binding modes and affinities are preserved during 

transition from solution to gas phase. The latter of course does not hold true with absolute 

thermodynamic stringency, as the supramolecular complexes are stripped off their solvent 

environment and are multiply charged by adduct ions (e.g. H+, Na+ NH4
+) regularly.      

Initially and still predominantly, the method is applied in the study of intact protein 

complexes, both homogenous and heterogeneous and protein-ligand interactions [33, 52, 

30, 40, 47]. Yet also other  biological supramolecular structures have been subject to study 

by native ESI-MS, e.g. ribosomal [41] and protein-lipid complexes [29, 56] and relevant to 

Publications III and XII drug-nucleic acid interactions [42]  and G-quadruplexes [35].  

Independent of the class of the respective analytes, several prerequisites exist in order to 

obtain veridical results:  1) To preserve the complexes’ native state the chemical 

environment must be kept as close as possible to in vivo, mandating buffered solutions. 2) 

The ionization method must be of the “soft type”, i.e. unintended in-source fragmentation of 

the analytes (e.g. DNA oligomers) shall not be induced and the even more dissociation 

susceptible noncovalent interactions shall not be affected. 3) While transfer into vacuum 

shall preserve the complex, unspecific binding ionic and neutral adducts shall be reduced or 

eliminated. 

Electrospray ionization (ESI) and variations thereof (µESI, nanoESI, emitter array ESI) is 

currently the only source type fulfilling first two prerequisites to such extent, that it is 

implicit referred to by the term “native mass spectrometry” [52].  See also general 

introduction for description of the ESI ion source.  However, as of paramount importance for 

data interpretation, fundamental research is still focused on fidelity between solute and gas 
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phase conformation of analytes, structure and stoichiometry of complexes [31, 6],  and the 

effects of the electrospray charging process thereon [27].   

A considerable complication results experimentally as well as regarding the fidelity of 

generated data from necessities of the ESI process, limiting the range of admissible buffers.  

On the one hand, buffer substances have to be volatile under ESI ion source conditions, 

predominantly ammonia salts of formic, acetic or carbonic acid. The concentrations of these 

buffers on the other hand have to be kept in the lower millimolar range to prevent ion 

suppression and even excessive disintegration and thereby introduction of cations like 

Fe2+/3+ , Ni2+ or other alloy components of ESI source parts (e.g. ESI sprayer needle) into the 

solution by the electrochemical process, potentially interfering with the supramolecular 

complex. 

Furthermore, native pH of the supramolecular complex might not be the ideal pH for 

ionization depending on the chemical moieties of analytes requiring addition of modifiers or 

dopants, e.g.  organic solvents in order to facilitate the ESI process and in order to achieve 

sufficient ionization.   Method development gets even more complex, as an online 

chromatographic separation may be required rather than a direct infusion to the ion source. 

Yet, whenever ionization efficiency and supramolecular complex integrity contradict each 

other, the validity of results must be the essential. 

Native mass spectrometry of DNA in general 

The concerns regarding preservation of noncovalent complexes during ionization and gas 

phase transition, described in the previous paragraph and crucial for Publication III and XII, 

were rebutted by various studies in the past [15, 32]. An early work by Ligh-Wahl et al. [32] 

reports stability of a 20-mer Watson-Crick-DNA-duplex under ESI-conditions, previously 

annealed in 10 mM ammonium acetate buffer. Ligh-Wahl and coworkes also give account to 

influences of buffer composition, as replacing buffer for distilled water yielded no stable 

duplex in the gas phase. Yet, the gas phase stability of isolated duplexes stripped off all 

adducts was shown even under the unfavorable conditions of a quadrupole ion trap 

(collision with damping gas in trap) [7] and it could be demonstrated that base pairing is 

stable enough under EDD/ECD fragmentation [55]. 
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Thus, native ESI-MS of noncovalent complexes could successfully be applied to various 

analytes of interest, like noncovalent binding dyes [4], antibiotics [39], metal ions [34, 3] and 

especially platinum antitumor drugs [24, 5, 53, 28] and DNA-protein ligand complexes, as 

reviewed by  Beck et al. [2]. Further reviews of mass spectrometry of nucleic acids under 

native conditions are given by Hofstadler et al. [23], Beck et al. [2] and more recently by 

Fabris et al. [8]. 

The increased application of IMS-MS to structural biology in the past decade also increased 

efforts to investigate concordance of solute and gas-phase structure, as the mass 

spectrometric methodology holds advantages compared to other techniques, regarding 

required sample amount (usually pmol to nmol range), setup time, speed and thereby 

throughput. These efforts also brought validation for native nucleic acid mass spectrometry. 

These recent approaches regularly employed a variety of complementary methods [1].  

Examples are preservation of Watson-Crick pairing in duplex DNA (BIRD[45]),  hair-pin 

structures (HDX,[36]),  oligonucleotide-drug complexes (DFT and IMS, [30]). The latter 

approach correlating calculated and measured collisional cross sections in vacuo is deemed 

promising [1]. DFT can only be applied for small molecules, in this regard bases of nucleic 

acids. Larger molecules, e.g. oligonucleotides, are simulated with MD simulations. A recent 

(2014) review by Abi-Ghanem and Gabelica [1] highlights the application of this 

complementary approach to single stranded, duplex, triplex and quadruplex DNA and DNA-

drug complexes forms, all consistent with the overall corollary that the solute structure is 

preserved upon transition to gas phase or into vacuum, respectively.  

Native mass spectrometry of DNA G-Quadruplexes 

After the demonstration of feasibility of MD calculations to investigate the structural rigidity 

of DNA duplexes, this was intensively applied in research of gas phase structure of DNA 

quadruplexes. Studies investigating G-quadruplex formation and stability in solution by 

molecular modelling / dynamics [9, 48, 49] and comparison to experimental data [20, 18, 17, 

19, 54, 16] established that G-tetrads exhibit large stability and structural rigidity and a 

significant stabilization by cations in the central channel [44].  
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Yet, it was also validated by cross section comparison [16], binding and H/D exchange with 

intra- and  intermolecular ligands [12] ,  MD calculations [44] and ESI-MS experiments [51, 

43] that G-quadruplexes retain their solute structure including relevant  binding sites during 

the gas phase transition  under electrospray ionization conditions. 

It can be concluded from the previously cited literature, that native ESI-MS is an appropriate 

and valid method for probing complex formation between ligands and G-quadruplexes. As 

multiply charged 10-mer to 20-mer of DNA (~3000-6000 Da) are in focus, the use of a high 

resolution mass spectrometer is mandatory. Previous studies often employed FTICR type 

mass spectrometers, yet technological advance in quadrupole time-of-flight mass 

spectrometers yielding increased sensitivity, linearity, sub ppm mass accuracy, resolution up 

to 40000, and scanning speed established this type of mass spectrometer as feasible for high 

resolution native MS of the G-quadruplexes examined in Publication III and XII. 

 

 

Experimental approach 

As commonly employed in the preceding works cited above, the target DNA was dissolved in 

150 mM ammonium acetate as electrospray compatible volatile buffer. To increase 

ionization efficiency for increased sensitivity without altering buffer composition too much, 

10% (v/v) methanol was added. Data were generated under mild ionization conditions, 

regarding temperature, gas flows, and voltages of ion source and ion path, particularly 

collision energy (CE) and declustering potential (DP), which are essential to tune accordingly 

due to their intended mode of action, i.e. dissociation of covalent and noncovalent bonds. 

To enhance S/N-ratio, the measurements were conducted as direct infusion experiments 

employing multichannel alignment mode (MCA) generating composite spectra of the entire 

infusion run. For exact description of experiments, reader is referred to the respective 

publications. 
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Results of Publication III and XII  

Results for both publications are rather similar and corroborate the findings from the 

spectroscopic measurements and are in agreement with the NMR results of both works. It 

was possible to confirm the stoichiometry for the ligands’ binding to c-MYC-G-quadruplexes, 

as model for oncogene promotor regions. The molar stoichiometry was found in both cases 

to be MYC:ligand  1:1 and 1:2, depending on the concentrations of the respective ligand, 

conforming two binding sites.  Furthermore, it could be derived by titration that the binding 

on both sites occur non-cooperatively, i.e. independent of each other and that L4 exerts 

different affinities for each binding site. 

In conclusion, the results document the power of native ESI-MS to study DNA-ligand 

complexes and characterize their binding stoichiometry in support to other spectroscopic 

methods. Native ESI-MS provides a straightforward and fast method to assess 

stoichiometries of noncovalent complexes.   

 

 

Abbreviations 

CD: circular dichroism spectroscopy 

UV/VIS: ultraviolet–visible spectrophotometry 

NMR: Nuclear magnetic resonance spectrometry 

NOE-NMR: Nuclear overhauser effect NMR 

CSP-NMR: Chemical shift perturbance NMR 

ESI: Electrospray ionization 

ESI-TOF-HRMS:  Electrospray ionization time of flight high resolution mass spectrometry 

ITC:  Isothermal titration calorimetry 

µESI:  micro Electrospray ionization 
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ESI-MS: Electrospray ionization mass spectrometry 

DFT density functional theory  calculations 

IMS-MS: Ion mobility mass spectrometry 

BIRD: Blackbody infrared radiation-induced dissociation 

HDX: Hydrogen-deuterium exchange 

MD: molecular dynamics simulation 

CE: collision energy 

DP: declustering potential 

CCS: Collisional cross section 

EDD: electron detachment dissociation 

ECD: electron capture dissociation 
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a  b  s  t  r  a  c  t

A  set  of N-derivatized  amino  acids were  separated  into  enantiomers  on  a  tert-butylcarbamoylated
quinine-based  chiral stationary  phase  (CSP).  Quantitative  structure–property  relationship  (QSPR)  studies
were then  employed  to investigate  the retention  behavior  and  factors  responsible  for  enantioselectivity.
Computations  were  performed  using  a general  linear  model  and  a Free-Wilson  matrix  with  indicator
variables  as  structural  descriptors.  The  approach  allowed  calculations  of  retention  increments  for  first
and second  eluted  enantiomers  as well  as  group  contributions  to enantioselectivity.  The results  demon-
strated  that  the  additivity  principle  of group contributions  was  obeyed  for the majority  of  solutes  in the
data  set.  Only  a few  basic  amino  acids  (Arg, His)  needed  to be removed  as they did  not  fit to  such  a  linear
model  leading  to outliers.  The  model  was  carefully  validated  and  then  utilized  to  investigate  retention
and  enantioselectivity  contributions  of  different  protection  groups  and  individual  amino  acid  residues.
It  turned  out that primarily  protection  groups  were  driving  retention  and  enantioselectivity.  In contrast,
the  contribution  of  amino  acid  residues  to enantioselectivity  was  only  significant  for  secondary  amino
acids,  �-methylated  amino  acids,  aspartic  acid  and  a few  sterically  bulky  aliphatic  amino  acid  residues
(Tle,  Ile,  allo-Ile).  Amongst  them  only  the  latter  group  contributed  positively  to  enantioselectivity  while
the  other  residues  mentioned  reduced  enantioselectivity  significantly.  This  type  of QSPR  model  may  be
valuable  to  analyze  retention/selectivity  data  of closely  related  congeneric  compound  series,  is  illustra-
tive  and  straightforward  to implement.  It  is  thus  valuable  for  interpretation  of retention  mechanisms,
while  its utility  for  prediction  of  retention  and enantioselectivity  data  is  limited  to compounds  made  up
of  groups  included  in the solute  set  used  for  deriving  the  increments.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Liquid chromatographic enantiomer separation has become an
indispensable tool in pharmaceutical sciences and drug discovery,
respectively [1,2]. Nowadays it is a well-developed technology with
numerous chiral stationary phases commercially available for sep-
aration of virtually any chiral compound [3,4]. For practical reasons,
pharmaceutical industries have established column screening plat-
forms to find the most suitable chiral stationary phase (CSP) for
a given enantiomer separation problem by automated overnight
screenings of a predefined set of chiral stationary phases. While
this approach is most likely successful in terms of finding a
CSP with satisfactory enantiomer separation factor, information
on which parameters and interactions have led to enantiomer

∗ Corresponding author. Tel.: +49 7071 29 78793; fax: +49 7071 29 4565.
E-mail address: Michael.Laemmerhofer@uni-tuebingen.de (M.  Lämmerhofer).

recognition by the chiral selector immobilized on the supporting
particles is usually not derived. Due to the systematic nature of
such screenings the derived data matrix may  be information-rich
regarding structural effects on enantiorecognition. Chemometric
and chemoinformatic methods [5,6], respectively, might be helpful
to extract valuable information on binding increments and molec-
ular recognition. Amongst those, quantitative structure–property
relationships (QSPR) are one powerful option. They have become of
utmost interest for retention prediction as an additional constraint
in comprehensive analysis of complex mixtures by hyphenated
methods such as GC–MS/MS and HPLC–MS/MS to enhance the con-
fidence for correct compound identification [7–12]. Various QSPR
variants have been utilized for data processing in enantioselec-
tive chromatography comprising linear free energy relationship
(LFER) studies in form of the Hansch analysis [13–24], linear sol-
vation energy relationships (LSER) [25–29], 3D-QSPR employing
comparative molecular field analysis (CoMFA)/comparative molec-
ular similarity analysis (CoMSIA) [5,17,30–35], and neural network

http://dx.doi.org/10.1016/j.chroma.2014.04.077
0021-9673/© 2014 Elsevier B.V. All rights reserved.
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Fig. 1. Structure of (a) data set comprised of amino acid derivatives, (b) chiral stationary phase, (c) X-ray crystal structure of co-crystallized quinine carbamate and
3,5-dinitrobenzoylamino acid leucine [41]. The present aromatic oxycarbonyl-type amino acid derivatives (e.g. DNZ-amino acids) are supposed to reveal a very similar
predominant binding mode with an additional CH2 O moiety inserted between aromatic and carbonyl group. The carbamate type amino acid derivatives tentatively
adopt  a similar binding mode maintaining the primary ionic, hydrogen-bond and �–�-interactions, but arranging itself in a slightly wider turn at the selector due to the
additional CH2 O element.

[23,32,34], or other models [36]. Another straightforward readily
amenable, yet informative method is the additivity model (Free
Wilson analysis), in particular for certain type of solute sets in
which the members of the congeneric series differ in at least two
positions by certain structural features from a basic lead structure.
It is based on the idea that, in absence of cooperative effects, the free
energy for the process of transferring the solute from the mobile
to the stationary phase is additively composed of the free energy
of individual group contribution [3,37,38]. In chromatography, the
group contributions are often termed as binding or retention incre-
ments.

Free Wilson analysis [39] is a proper and efficient means to cal-
culate such retention increments. Unlike above mentioned QSPR
approaches, it is a simple numerical method directly relating struc-
tural features to a dependent variable [39], in chromatography
retention or separation factors. Free Wilson analysis is most often
adopted in the so-called Fujita-Ban modification. It states that the
dependent variable (response y) is made up of the sum of individual
group contributions ai,n and a basic contribution provided by the
unsubstituted reference compound a0 (Eq. (1)).

ln y = a0 +
∑

i

ai,n · Xi,n (1)

In Eq. (1), the independent variables Xi,n are indicator variables
which indicate the presence (indicated by the numerical value 1)
or absence (value 0) of a specific substituent. The coefficients ai,n
represent individual group contributions and can be conveniently
obtained by multiple linear regression analysis.

With the list of derived coefficients in hand, the effect of each
substituent on the dependent variable (response) becomes readily
evident and compounds with substituent combinations not present
in the test set can be straightforwardly predicted. Such an approach
was not yet investigated for calculating retention increments for
chiral separations. Another methodology to calculate group con-
tributions in the context of enantioselective chromatography was
presented by Armstrong [40].

In this study, Free Wilson analysis was utilized to rationalize
individual group contributions to retention and enantiomer sepa-
ration of various N-derivatized amino acids (Z, benzyloxycarbonyl;
BOC, tert-butoxycarbonyl; PNZ, 4-nitrobenzyloxycarbonyl;
DNZ, 3,5-dinitrobenzyloxycarbonyl; FMOC, 9-fluorenylmeth-
oxycarbonyl; NVOC, o-nitroveratryloxycarbonyl, i.e. 4,5-dime-
thoxy-2-nitrobenzyloxycarbonyl) on quinine carbamate chiral

stationary phases (Fig. 1). The group of amino acid derivatives
shows structural variability of the amino acid residue and the
protection group. The results of the Free Wilson analysis can
be employed to predict solutes not present in the test set and
are used herein to compare the effect of distinct residues on the
chromatographic response. The general prediction capability of the
model has been tested by leave-out cross-validation. Feasibilities
and shortcomings of the methodology are discussed.

2. Experimental

2.1. Materials

The chiral stationary phase based on tert-butylcarbamo-
ylquinine immobilized onto 3-mercaptopropyl-modified porous
silica Kromasil 100 Å, 5 �m (from EKA-Nobel, Bohus, Sweden),
a prototype of Chiralpak QN-AX (Chiral Technologies Europe,
Illkirch, France), was synthesized as described elsewhere [42]. The
selector coverage was 0.27 mmol/g CSP corresponding to about
0.8 �mol/m2. The CSP was packed into a stainless-steel column
(150 mm × 4.6 mm ID) by a conventional slurry packing procedure.

Amino acids were provided by Bachem (Bubendorf,
Switzerland) and Sigma–Aldrich (Vienna), respectively, or were
gifts of various colleagues. Amino acids were derivatized following
standard protocols as described for instance in Ref. [43]. Elution
orders were determined with single enantiomers and well-defined
non-racemic mixtures, respectively.

2.2. Chromatography

The utilized chromatographic system was a Hitachi-Merck Liq-
uid Chromatograph and consisted of L-6200 Intelligent Pump,
D-6000 Interface, AS-2000A Autosampler, D-6000 Chromatogra-
phy Data Station Software, HPLC Manager Vers. 2.09 from Merck
(Darmstadt, Germany) and a column thermostat of W.O. Electronics
(Langenzersdorf, Austria).

The pH of the mobile phase was measured with an Orion pH-
meter model 520A (from Orion, Vienna, Austria) and represents the
apparent pH (pHa) value measured in the aqueous–organic mobile
phase mixture.

Mobile phases for chromatography were prepared from ammo-
nium acetate p.a. (Merck, Darmstadt, Germany), HPLC grade water
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Fig. 2. Building blocks of the software. Arrows depict data/command flow.

(purified by a Milli-Q-Plus filtration unit from Millipore, Bedford,
MA,  USA) and methanol of HPLC-grade (from Baker).

A mixture of methanol and 0.1 M ammonium acetate buffer
(80:20; v/v) was used as mobile phase. The pHa of this mixture
was adjusted to 6.0 by adding glacial acetic acid of analytical grade.
Mobile phases were filtered through a Nalgene nylon membrane fil-
ter (0.2 �m)  from Nalge Co. (New York, USA) and degassed before
use by sonication. The flow rate was 1 ml  min−1 and the column
was thermostated at 25 ◦C. The UV signal was monitored at 254 nm.
Some representative chromatograms are given in Supplementary
Material, Fig. S1.

2.3. Statistical procedures

To derive functional group contributions for retention and enan-
tioselectivity, generalized linear models (GLM) have been derived
by a software network. Thus, statistical computations have been
performed by GNU-R using the glm()-function.

The chromatographic data used for computations were reten-
tion factors of first (k1) and second (k2) eluted enantiomer as well
as separation factors  ̨ (enantioselectivities) (see supplementary
material, Table S1). These data were organized in a MySQL database
and served as input values for the dependent variable in the GLMs.
Structural descriptors were organized in a Free-Wilson table, in
which presence of a certain structural feature was indicated by a
value of 1 and its absence by a 0. These independent variables were
correlated with the dependent variable by the glm()-function using
the GNU-R script to derive statistical meaningful correlations and
weights of each structural feature, i.e. individual group contrib-
utions. The Controller is a graphical user interface which allows
the user to select the data set via SQL-query, to define parameters
for the analysis and to control the data flow between the other
programs (Fig. 2).

3. Results and discussion

3.1. Test set and characteristics of general linear model

For the sensitive and stereoselective analysis of amino acids,
they are often derivatized. Such molecular systems are ideally
suited for investigation of molecular recognition contributions of
individual structural features. Structural variation in two  positions
ensures that each substituent can be present more than once in
the data set which is deemed to be a prerequisite for statistical
meaningful data. Yet, the GLM approach generally allows single
point determinations in which a particular residue is present only
once in the data set, if there are not too many of such single point

determinations. In this case, of course the entire experimental error
is contained in this fragment contribution.

In total 142 distinct analytes were contained in the data set, of
which 7 had acidic amino acid residues, 19 basic, 45 aromatic, 23
polar and the remaining 42 apolar aliphatic amino acid side chains.
Protection groups employed were all of the oxycarbonyl type struc-
ture with aromatic (Z, PNZ, DNZ, NVOC, FMOC) or aliphatic (BOC)
residue. Amino acid derivatives with Lys and Orn were deriva-
tized in the side chain leading to neutral derivatives. In total, 62
unique amino acid residues were present in the data set. It might
appear that the data matrix is not sufficiently covered for some of
the amino acid derivatives (ca. 45% coverage of all possible cases).
However, the Free Wilson model can principally deal with such sit-
uations and is actually dedicated for such a scenario. If the model is
intended to be used for predictions, this is only possible with exper-
imentally partly covered data matrix. Extrapolation to compounds
of which the substituents have not been in the original data matrix
for model derivation is not possible.

For the computations, Z-Glycine was  selected herein as refer-
ence compound with basic retention increment a0, for both first
(k1) and second eluted enantiomer (k2) sets, because it is the
structurally simplest compound from viewpoint of both protec-
ting group and amino acid substituent. Retention increments were
then calculated for first and second eluted enantiomer from k1,2 as
dependent variable and group contributions to enantioselectivity
from separation factors  ̨ after transformation to the logarithmic
scale.

GLMs were derived for the whole set as well as subsets for dif-
ferent parameters like polarity, charge, or �-interaction capability.
Resultant estimated coefficients represent the weight (retention
increment) by which each structural feature contributes to the
overall dependent variable in addition to the intercept a0. In other
words, the corresponding ln k of a certain compound can be easily
calculated from the sum of the coefficients of amino acid residue,
protection group and intercept a0. The statistical significance of
the distinct group contributions provides information whether this
substituent adds a statistically significant increment to the basic
contribution constituted by the intercept a0. Non-significant terms
are therefore not eliminated because they provide also useful infor-
mation which would be lost otherwise. The model also tolerates
few single point determinations. If they would be deleted from the
data set, the information about those substituents would be com-
pletely lost. If they are included, information is available and can
be used for prediction of substituent combinations. In fact, if the
intercept is known or fixed and the additivity principle obeyed, a
single point determination is in principle suitable for calculation of
the substituent increment (like single point calibrations in quan-
titative photometric analysis where the calibration line is forced
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Fig. 3. Influence of side chain character on model quality. (a and d) Basic amino acid residues; b) and e) neutral aliphatic, aromatic and polar residues; and (c and f) acidic
amino  acids side chains.

through 0). They give a first idea of its effect on the response, but
without any statistical significance. One has to be aware that all
the experimental error is contained in this increment and not aver-
aged by multiple determinations like for residues which are present
several times.

The big advantage of such a QSPR approach is that the table for
regression analysis can easily be generated without complicated
measurement of physicochemical properties or lengthy computa-
tions of structural parameters. The derived group contributions are
illustrative, much more than models derived by multivariate sta-
tistical methods such as PCA, PCR, and PLS. The derived fragment
contributions can be correlated with physicochemical parameters
or substituent constants to provide further insight into binding
modes. Addition and elimination of compounds is simple and does
not change the values of the other compounds. Any compound can
serve as reference; its exchange just leads to a linear transformation
of coefficients by a certain increment, i.e. it constitutes a linear shift
of the scale. The entire method is easy to apply. The main disadvan-
tage is that the utility for prediction is limited. Only substituents
present in the data set can be employed for predictions of new com-
binations not present in the congeneric series. Thus, the number of
new analogs that can be predicted is usually low. However, it is very
useful for finding factors, i.e. substituent effects which contribute
significantly to the response (dependent variable) of interest.

3.2. Analysis with full set and data set refinement

Initially, all 142 compounds for which experimental chromato-
graphic data were available (see supplementary information, Table

S1) were subjected to statistical analysis using the glm()-function of
GNU-R. For analysis, measured response values were plotted over
calculated ones yielding determination coefficients R2 of 0.86381
for ln k1, 0.89049 for ln k2, and 0.89382 for ln ˛. The variances of
the response values cover roughly two  orders of magnitudes for
retention factors and ca. one order of magnitude for separation fac-
tors, while experimental errors for retention and separation factors
are usually less than 2% RSD. The parity plots between experimen-
tal and calculated responses for the full set clearly documented
that the linearity (additivity) principle of group contributions is
essentially obeyed but there are a few outliers.

Thus, a refinement of the data set was  carried out to remove
outliers. To identify those amino acid residues which give poor fit,
the full set was divided into subsets according to side chain charac-
ter (Fig. 3). The fit for neutral and acidic side chains was fairly good
while for basic amino acid residues agreement between calculated
and experimental values was  significantly worse.

In order to examine which cases and structural features were
responsible for the poor fit and larger scatter of the data in the plot
of the basic amino acid residue subset, a threshold value for outliers
of 0.389 as the maximum absolute deviation tolerated between
measured and calculated ln k-values was defined (note, this was
the maximal deviation in the set with neutral side chain). Table 1
shows the residuals and type of compounds which were found to
be outliers in the basic amino acid set according to above defined
threshold level. It is striking that all of them had either an Arg or
a His residue. On contrary, Orn and Lys with a primary amine in
the side chain seemed to obey the additivity principle. This can be
readily explained by the fact that these two amino acids are deriva-

Table 1
Outliers within subset of compounds with positive side chain charge. Deviation based on ln k2.

Deviation (residuals) Compound Deviation (residuals) Compound Deviation (residuals) Compound

1.412 NVOC-Arg 0.585 PNZ-Arg 0.389 Z-His
0.902  bis-(NVOC)-His 0.446 NVOC-His 0.389 Z-Arg
0.902  bis-(PNZ)-His 0.438 DNZ-Arg

Z, benzyloxycarbonyl; PNZ, 4-nitrobenzyloxycarbonyl; DNZ, 3,5-dinitrobenzyloxycarbonyl; FMOC, 9-fluorenylmethoxycarbonyl; NVOC, o-nitroveratryloxycarbonyl (4,5-
dimethoxy-2-nitrobenzyloxycarbonyl).
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Fig. 4. Effect of polar and charged residues in data set on GLM quality.

tized at the �-amino group as well as the side chain amino group
leading to a doubly protected derivative with a neutral side chain.
In the refined data set, all cases with Arg and His as amino acid
residue were removed.

To further elucidate the effect of polar and charged amino acid
residues on the quality of the model, group contributions were
calculated for a subset with apolar neutral residues and subse-
quently an increasing number of particular compounds with polar,
basic (positively) or acidic (negatively charged) residues have been
added stepwise. The quality of the fit was estimated after each addi-
tion by the determination coefficient R2 of the correlation between
measured and predicted response ln k2. For each number of added
compounds, 10 randomized experiments were done and averaged
R2 values of the model are recorded in Fig. 4.

R2 dropped significantly with each step of addition of a com-
pound with basic amino acid residue from 0.997 to 0.985 when
17 compounds with basic amino acid residues were added to the
data set. On contrary, R2 did not change significantly with addition
of polar or acidic amino acids. This experiment clearly demon-
strated the adverse effect of basic (positively charged) side chains
on model quality and therefore demonstrated the inaptitude of the

GLM to accurately compute retention and enantioselectivity based
on the additivity principle of group contributions for some posi-
tively charged amino acids (Arg, His). The reason may  be disturbing
interactions with the silica support or additional cooperative con-
tributions from the basic side chain in the solute-selector complex.
It makes thus sense to remove these residues from the data set,
while polar and acidic amino acids can be kept in the data set with-
out any negative effect on the model quality. By removing them, the
quality of the model gets better but the applicability is restricted to
amino acids contained in the test set.

3.3. Refined data set

Fig. 5 illustrates the parity plots between measured and calcu-
lated ln k1,2 and ln  ̨ values, respectively, as obtained for the refined
set (full set minus all compounds with the basic side chains Arg and
His). It can be clearly seen that all the observations nicely scatter
around the parity line and no obvious outliers can be detected
after removal of derivatives with Arg and His. Residuals (devia-
tions between experimental and predicted response values) are
randomly distributed along the 0-deviation line confirming that
no systematic deviations exist due to inadequate model (see sup-
plementary material, Fig. S2). The statistical parameters for the
computed models are summarized in Table 2. It can be seen that
the determination coefficient R2 is larger than 0.9 for ln k1 and ln k2
and close to 0.9 for ln  ̨ demonstrating a sufficient model qual-
ity. The prediction performance of the model has been tested by
a leave-one-out (LOO) cross-validation. Q2 (R2

cross-validation) of >0.8
for ln k1 and ln k2 as well as >0.6 for ln  ̨ document a reasonable
performance for predictions of substituent combinations not in the
training set. The refined data set was  then used for further model
validation.

3.4. Validation

3.4.1. Cross-validation by scrambling test
The performance and robustness of the model was then tested

by cross-validation. Various approaches have been considered
for this purpose. Amongst others, the prediction capability of
the model after scrambling the data set has been examined as
cross-validation strategy. For this purpose, ln k1 and ln k2 values
have been mixed and reassigned en bloc to randomly selected

Fig. 5. Parity plots of measured over calculated for the refined set. N = 130.

Table 2
Statistical parameters for refined set.

N = 130 R2 Adj. R2 Q2 Std. err. PRESS F-statistic p-Value

k1 0.973 0.978 0.804 0.099 9.303 44.799 4.036E−39
k2 0.964 0.970 0.817 0.138 12.385 32.403 2.123E−34
˛  0.896 0.915 0.654 0.112 5.448 10.547 4.667E−19

Adj. R2, adjusted R2; Q2, R2 cross-validation; Std. err., standard error; PRESS, prediction residual error sum of squares; F-statistic, Fisher’s F-value; p-Value, statistical probability
measure.
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compounds. Thus, the y-responses of the whole data set were
scrambled. As quality measure we have chosen the determina-
tion coefficient of the linear regression of measured over predicted
response values. As expected, the prediction did not work well with
the scrambled set. R2 of measured over calculated dropped to <0.15,
depending on the number of compounds removed for prediction
(see Figs. 6 and 7).

3.4.2. Leave-out cross-validation
The predictive quality of QSPR models is frequently tested by

leave-one-out (LOO) cross-validation and results have been pro-
vided above (see also Table 2). For the present large data set LOO
cross-validation may  lead to too optimistic results (removal of a sin-
gle compound in a large data set has little effect on the underlying
model and prediction capability). Hence, another way  of cross-
validation was tested as well. We  examined the stability of the
correlation coefficient for predictions, while iteratively increasing
the number of excluded compounds and performing predictions
with the derived group contributions. Determination coefficients
of measured vs predicted response values as well as corresponding
standard deviations are plotted in dependence of the number of
excluded and predicted compounds in Fig. 8a and b demonstrate

Fig. 6. Average R2 of predicted over calculated fit for increasing amount of pre-
dicted compounds. For averaging, each calculation cycle was  repeated 10 times with
randomly chosen predicted compounds.

Fig. 7. Typical scatter plot of (a) unscrambled and (b) scrambled data set. N = 40.

Fig. 8. Left: Average R2 of 10 prediction experiments for each number of excluded. Right: Standard deviation of the 10 random experiments; at least one side chain per
protection group was kept in the model.
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Table 3
Group contributions (retention and enantioselectivity increments) (statistically significant values with p < 0.05 in bold; for abbreviations of protection groups and amino acids see Table S1 of supplementary material; for full
statistics  of model see Table 2 and for detailed statistics of increments see supplementary material Tables S2–S4).

Substituent Retention increment first
eluted enantiomer

Retention increment second
eluted enantiomer

Enantioselectivity
increment

Free energy increments

ln ki,1 ± SE ln ki,2 ± SE ln ˛i ± SE �Gi,1 ± SE �Gi,2 ± SE ��Gi,˛ ± SE

a0 1.428 1.428 0 −4.21 −4.21 0

PG
BOC  0.36 ± 0.15 0.57 ± 0.21 0.2 ± 0.17 −3.13 ± 0.37 −3.63 ± 0.51 −0.5 ± 0.42
Z  0.71 ± 0.13 0.95 ± 0.19 0.24 ± 0.15 −4 ± 0.33 −4.59 ± 0.46 −0.59 ± 0.37
PNZ  0.72 ± 0.14 1.11 ± 0.2 0.38 ± 0.16 −4.02 ± 0.35 −4.97 ± 0.49 −0.95 ± 0.4
NVOC  1.07 ± 0.14 1.95 ± 0.2 0.88 ± 0.16 −4.88 ± 0.36 −7.06 ± 0.49 −2.17 ± 0.4
DNZ  1.09 ± 0.14 1.76 ± 0.2 0.67 ± 0.16 −4.94 ± 0.35 −6.59 ± 0.49 −1.65 ± 0.4
FMOC  1.31 ± 0.17 1.77 ± 0.24 0.46 ± 0.19 −5.46 ± 0.43 −6.61 ± 0.6 −1.14 ± 0.48

R
�-Aminobutyric acid −1.02 ± 0.16 −1.02 ± 0.22 −0.01 ± 0.18 0.3 ± 0.39 0.31 ± 0.54 0.02 ± 0.44
Citrulline  −0.8 ± 0.16 −0.71 ± 0.22 0.09 ± 0.18 −0.24 ± 0.4 −0.47 ± 0.55 −0.23 ± 0.45
Homoserine −0.8 ± 0.19 −0.71 ± 0.27 0.09 ± 0.22 −0.25 ± 0.48 −0.46 ± 0.67 −0.21 ± 0.55
Gln  −0.79 ± 0.17 −0.82 ± 0.24 −0.03 ± 0.19 −0.27 ± 0.42 −0.19 ± 0.59 0.08 ± 0.48
�-Aminoisobutyric acid −0.71 ± 0.17 −0.76 ± 0.24 −0.05 ± 0.19 −0.46 ± 0.42 −0.35 ± 0.59 0.11 ± 0.48
Met-sulfoxide −0.71 ± 0.17 −0.74 ± 0.24 −0.03 ± 0.19 −0.46 ± 0.42 −0.39 ± 0.59 0.07 ± 0.48
Thr  −0.66 ± 0.16 −0.72 ± 0.22 −0.05 ± 0.18 −0.58 ± 0.4 −0.45 ± 0.55 0.13 ± 0.45
Asn  −0.65 ± 0.17 −0.79 ± 0.24 −0.14 ± 0.19 −0.63 ± 0.42 −0.28 ± 0.59 0.35 ± 0.48
N-Me-Val  −0.63 ± 0.19 −1.15 ± 0.27 −0.51 ± 0.22 −0.66 ± 0.48 0.61 ± 0.67 1.27 ± 0.55
Val  −0.59 ± 0.15 −0.29 ± 0.21 0.3 ± 0.17 −0.76 ± 0.37 −1.5 ± 0.52 −0.74 ± 0.42
�-Aminobutyric acid −0.58 ± 0.19 −0.35 ± 0.27 0.23 ± 0.22 −0.78 ± 0.48 −1.36 ± 0.67 −0.57 ± 0.55
Azetidine  carboxylic acid −0.57 ± 0.16 −1.07 ± 0.22 −0.5 ± 0.18 −0.82 ± 0.39 0.42 ± 0.54 1.24 ± 0.44
Pro  −0.56 ± 0.15 −0.97 ± 0.21 −0.41 ± 0.17 −0.84 ± 0.37 0.18 ± 0.52 1.02 ± 0.42
Met-sulfone −0.56 ± 0.17 −0.6 ± 0.24 −0.04 ± 0.19 −0.84 ± 0.42 −0.74 ± 0.59 0.1 ± 0.48
tBu-Gly  (Tle) −0.55 ± 0.16 −0.24 ± 0.22 0.31 ± 0.18 −0.86 ± 0.39 −1.63 ± 0.54 −0.77 ± 0.44
Ser  −0.55 ± 0.15 −0.55 ± 0.21 −0.01 ± 0.17 −0.87 ± 0.38 −0.86 ± 0.53 0.01 ± 0.43
Nval  (Nva) −0.52 ± 0.16 −0.26 ± 0.22 0.25 ± 0.18 −0.95 ± 0.4 −1.58 ± 0.55 −0.63 ± 0.45
Leu  −0.51 ± 0.15 −0.33 ± 0.21 0.18 ± 0.17 −0.97 ± 0.37 −1.41 ± 0.52 −0.44 ± 0.42
Gly  −0.5 ± 0.16 −1 ± 0.41
Ala  −0.5 ± 0.15 −0.54 ± 0.21 −0.04 ± 0.17 −1 ± 0.37 −0.89 ± 0.52 0.1 ± 0.42
Dehydro-Pro −0.5 ± 0.19 −0.99 ± 0.27 −0.5 ± 0.22 −1 ± 0.48 0.24 ± 0.67 1.23 ± 0.55
Ile  −0.49 ± 0.16 −0.05 ± 0.22 0.44 ± 0.18 −1.03 ± 0.4 −2.11 ± 0.55 −1.09 ± 0.45
allo-Ile  −0.46 ± 0.17 0.09 ± 0.24 0.55 ± 0.19 −1.08 ± 0.42 −2.44 ± 0.59 −1.36 ± 0.48
N-Me-Leu  −0.45 ± 0.17 −0.91 ± 0.24 −0.46 ± 0.19 −1.11 ± 0.42 0.04 ± 0.59 1.15 ± 0.48
Nleu  (Nle) −0.44 ± 0.16 −0.2 ± 0.22 0.25 ± 0.18 −1.13 ± 0.4 −1.74 ± 0.55 −0.61 ± 0.45
�-Ala  −0.44 ± 0.17 −1.14 ± 0.42
�-Me-Leu −0.4 ± 0.17 −0.82 ± 0.24 −0.42 ± 0.19 −1.24 ± 0.42 −0.19 ± 0.59 1.04 ± 0.48
Pipecolinic acid −0.36 ± 0.17 −0.79 ± 0.24 −0.43 ± 0.19 −1.34 ± 0.42 −0.27 ± 0.59 1.06 ± 0.48
�-Phe  −0.28 ± 0.16 −0.43 ± 0.22 −0.16 ± 0.18 −1.54 ± 0.39 −1.15 ± 0.54 0.39 ± 0.44
Met  −0.27 ± 0.15 −0.18 ± 0.21 0.09 ± 0.17 −1.56 ± 0.38 −1.78 ± 0.53 −0.22 ± 0.43
p-CF3-Phe −0.22 ± 0.2 −0.1 ± 0.28 0.12 ± 0.23 −1.69 ± 0.49 −1.98 ± 0.69 −0.29 ± 0.56
p-Me-Phe  −0.05 ± 0.2 −0.18 ± 0.28 −0.13 ± 0.23 −2.1 ± 0.49 −1.78 ± 0.69 0.32 ± 0.56
Cys  0.01 ± 0.22 0.03 ± 0.3 0.02 ± 0.25 −2.25 ± 0.54 −2.3 ± 0.75 −0.05 ± 0.61
Tyr  0.02 ± 0.15 0.03 ± 0.21 0.01 ± 0.17 −2.27 ± 0.37 −2.29 ± 0.52 −0.02 ± 0.42
Phe  0.02 ± 0.15 0 ± 0.21  −0.01 ± 0.17 −2.27 ± 0.37 −2.24 ± 0.52 0.03 ± 0.42
Phegly  (Phg) 0.04 ± 0.16 −0.06 ± 0.22 −0.11 ± 0.18 −2.34 ± 0.4 −2.07 ± 0.55 0.27 ± 0.45
p-iPr-Phe  0.06 ± 0.2 −0.07 ± 0.28 −0.13 ± 0.23 −2.38 ± 0.49 −2.06 ± 0.69 0.32 ± 0.56
o-F-Phe  0.07 ± 0.19 0.24 ± 0.26 0.17 ± 0.21 −2.4 ± 0.47 −2.82 ± 0.65 −0.42 ± 0.53
m-F-Phe  0.1 ± 0.19 0.03 ± 0.26 −0.07 ± 0.21 −2.48 ± 0.47 −2.31 ± 0.65 0.16 ± 0.53
p-tBu-Phe  0.1 ± 0.2 −0.01 ± 0.28 −0.11 ± 0.23 −2.48 ± 0.49 −2.2 ± 0.69 0.28 ± 0.56
p-Cl-Phe  0.14 ± 0.16 0.15 ± 0.22 0.01 ± 0.18 −2.58 ± 0.4 −2.6 ± 0.55 −0.03 ± 0.45



86 A. Sievers-Engler et al. / J. Chromatogr. A 1363 (2014) 79–88

Ta
bl

e 

3 

(C
on

ti
nu

ed
)

Su
bs

ti
tu

en
t 

R
et

en
ti

on

 

in
cr

em
en

t 

fi
rs

t
el

u
te

d

 

en
an

ti
om

er
R

et
en

ti
on

 

in
cr

em
en

t 

se
co

n
d

el
u

te
d

 

en
an

ti
om

er
En

an
ti

os
el

ec
ti

vi
ty

in
cr

em
en

t
Fr

ee

 

en
er

gy

 

in
cr

em
en

ts

ln

 

k i
,1

± 

SE

 

ln

 

k i
,2

± 

SE

 

ln

 

˛
i
± 

SE

 

�
G

i,1
± 

SE

 

�
G

i,2
± 

SE

 

�
�

G
i,˛

± 

SE

p
-N

it
ro

-P
h

e 

0.
15

 

± 

0.
16

 

0.
18

 

± 

0.
22

 

0.
03

 

± 

0.
18

 

−2
.6

1 

± 

0.
4 

−2
.6

9 

± 

0.
55

 

−0
.0

8 

± 

0.
45

p
-B

r-
Ph

e 

0.
18

 

± 

0.
17

 

0.
16

 

± 

0.
24

 

−0
.0

2 

± 

0.
19

 

−2
.6

8 

± 

0.
42

 

−2
.6

3 

± 

0.
59

 

0.
05

 

± 

0.
48

Ly
s  

0.
29

 

± 

0.
16

 

0.
4 

± 

0.
22

 

0.
11

 

± 

0.
18

 

−2
.9

5 

± 

0.
4 

−3
.2

2 

± 
0.

55
 

−0
.2

7 

± 

0.
45

O
rn

 

0.
35

 

± 

0.
16

 

0.
29

 

± 

0.
22

 

−0
.0

6 

± 

0.
18

 

−3
.1

 

± 

0.
4 

−2
.9

4 
± 

0.
55

 

0.
15

 

± 

0.
45

Tr
p

 

0.
47

 

± 

0.
16

 

0.
43

 

± 

0.
22

 

−0
.0

4 

± 

0.
18

 

−3
.4

 

± 

0.
4 

−3
.2

9 
± 

0.
55

 

0.
11

 

± 

0.
45

p
-A

m
in

o-
Ph

e  

0.
85

 

± 

0.
19

0.
83

 

± 

0.
27

−0
.0

2 

± 

0.
22

−4
.3

4 

± 

0.
48

−4
.2

9 

± 

0.
67

 

0.
05

 

± 

0.
55

�
-A

m
in

oa
d

ip
ic

 

ac
id

 

1.
19

 

± 

0.
17

 

1.
14

 

± 

0.
24

 

−0
.0

6 

± 

0.
19

 

−5
.1

9 

± 

0.
42

 

−5
.0

5 

± 

0.
59

 

0.
14

 

± 

0.
48

C
ys

-S
-t

ri
ty

l 

1.
29

 

± 

0.
22

 

1.
18

 

± 

0.
3 

−0
.1

1 

± 

0.
25

 

−5
.4

3 

± 

0.
54

 

−5
.1

6 

± 

0.
75

 

0.
27

 

± 

0.
61

G
lu

 

1.
32

 

± 

0.
17

 

1.
25

 

± 

0.
24

 

−0
.0

7 

± 

0.
19

 

−5
.5

1 

± 

0.
42

 

−5
.3

3 

± 

0.
59

 

0.
17

 

± 

0.
48

C
ys

te
ic

 

ac
id

 

1.
39

 

± 

0.
19

 

1.
13

 

± 

0.
27

 

−0
.2

5 

± 

0.
22

 

−5
.6

7 

± 

0.
48

 

−5
.0

4 

± 

0.
67

 

0.
63

 

± 

0.
55

A
sp

 

1.
73

 

± 

0.
17

 

1.
26

 

± 

0.
24

 

−0
.4

7 

± 

0.
19

 

−6
.5

2 

± 

0.
42

 

−5
.3

4 

± 

0.
59

 

1.
17

 

± 

0.
48

SE
, s

ta
n

d
ar

d

 

er
ro

r.

good prediction capability within the range of substituents covered
by the test set and remarkable robustness of the model. It becomes
evident that a large number of residues can be removed from the
set without impairing prediction quality significantly. R2 for pre-
dictions remained nearly constant above 0.8 until 60 compounds
had been excluded (Fig. 8a). At the same time, standard deviations
for predictions remained smaller than 0.2 and only increased sig-
nificantly once about 60 compounds or more have been removed
and predicted (Fig. 8b). All these results confirm the general valid-
ity of the additivity principle of group contributions to retention
and enantioselectivity, and of the general linear model employed
herein, for the given data set.

3.5. Retention increments and group contributions to
enantioselectivity

The refined data set was  utilized to calculate group contributions
for protection groups and amino acid residues (Table 3). Besides
retention increments for first and second eluted enantiomers,
group contributions to enantioselectivity and corresponding
energy increments for retention and enantioselectivity are
reported as well. From these group contributions the correspond-
ing response (y-values) can be readily calculated from the sum of
increments for protection group and amino acid residue and the
respective intercept a0. For instance, the retention factor of the
first eluted enantiomer (ln k1) of Z-Met can be calculated from
a0 + ln ki,1(Z) + ln ki,1(Met) = 1.428 + 0.71 + (−0.27) = 1.868 (experi-
mental value is 1.914). A negative value of the group contribution
means that presence of the substituent reduces the y-value rel-
ative to the offset and a positive value means that it increases
the response. Full statistics of each increment is presented in
the supplementary material (Tables S2–S4). p-Values in Table
S2 and S3 provide information on the statistical significance of
the corresponding group contribution. p-Values <0.05 signify
statistical significance at the 95% level. Table S4 reports calculated
responses and corresponding residuals with regards to experimen-
tal values. Here it should be mentioned that the experimental data
incorporate all kind of variabilities as they have been generated
on different days with different batches of mobile phase, with
different lots of the chiral stationary phase, by different operators,
on different HPLC instruments. If all experiments were performed
by the same operator, on the same column with the same mobile
phase on the same instrument within one batch of analysis,
residuals for predictions were most likely significantly smaller.
Overall, run-to-run repeatabilities of chromatographic data as
well as batch-to-batch reproducibilities of the chiral stationary
phase are good. RSD values <1% for k-values and <0.5% for ˛-values
are typically obtained for run-to-run repeatabilities (e.g. RSD
values of 0.55%, 0.68%, and 0.15% have been measured for k1, k2,
and  ̨ of Z-Phe; n = 5). Further, batch-to-batch reproducibilities
(n = 3) of 1.24, 1.01, and <0.1% RSD for k1, k2, and  ̨ of Z-Phe have
been determined for 3 consecutive batches of CSP. In Table 3,
functional group contributions are divided into two subgroups,
namely those of protection groups and amino acid residues. They
are listed in order of increasing retention increments for first
eluted enantiomers. It can be seen that in any case protection
groups significantly contribute to retention with increase of
ln ki,1 in the order BOC < Z < PNZ < NVOC < DNZ < FMOC. For second
eluted enantiomers this order is essentially obeyed as well, with
exception for NVOC protection group which displayed the highest
retention contribution of all protection groups investigated. In
terms of enantioselectivity increments, this order is perturbed.
The FMOC group shows lower enantioselectivity than DNZ and
NVOC groups and in particular the latter is remarkably favorable
for enantiomer separation of amino acid derivatives on the quinine
carbamate CSP. The increase in enantioselectivity increment from
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Z < PNZ < DNZ clearly indicates the existence and importance of a
stereoselective �–�-interaction between these aromatic groups
and the quinolone of the selector (Fig. 1c).

With regards to retention increments for amino acid residues of
first eluted enantiomers the following findings can be summarized.
Acidic residues (�-aminoadipic acid, Glu, cysteic acid, and Asp)
provide the largest retention increments, followed by aromatic
amino acid residues. Basic amino acids like Lys, Orn are within the
group of aromatic amino acids since the side chain carries a protec-
tion group and the same is valid for S-protected Cys (Cys-S-trityl).
In general, �-amino acids feature lower retention increments than
corresponding �-amino acids (cf. �/�-aminobutyric acid and �/�-
Phe; for �/�-Ala the difference is not significant). For the remaining
amino acids it holds that polar ones contribute a lower retention
increment compared to hydrophobic ones and sterically bulky side
chains display smaller group contributions in comparison to the
corresponding n-alkyl analogs. In many instances, there is no sta-
tistically significant difference between retention increments for
first and second eluted enantiomer which indicates that the amino
acid side chains do not contribute significantly to enantioselectiv-
ity. This can also be explained by the binding model in Fig. 1c which
shows that the amino acid residue is oriented toward the tert-butyl
group of the selector. While bulky alkyl moieties may  be capa-
ble of interacting via van der Waals type interactions, hydrophilic
residues will not undergo any interaction under employed hydro-
organic conditions. It may  be striking for readers that there are
many cases in which the retention increment for the second enan-
tiomer is even lower than for the first eluted enantiomer. A closer
look, however, reveals that in all these cases the difference in
retention increments of amino acid residues between first and sec-
ond eluted enantiomer are not significant and the difference in
retention is essentially due to stereoselective interaction of the pro-
tection group. Corresponding enantioselectivity increments log ˛i
confirm the above findings and interpretations. Besides secondary
amino acids (N-Me-Val, azetidine carboxylic acid, Pro, dehydro-
Pro, N-Me-Leu, and pipecolinic acid), �-methylated amino acids
(�-Me-Leu), Asp and a few aliphatic amino acids (Tle, Ile, and allo-
Ile) all other group contributions to enantioselectivity were not
really significant from the statistical point of view. Amongst all
these group contributions only the bulky aliphatic Tle, Ile, and
allo-Ile provided an increase in enantioselectivity (positive sign)
while the others significantly reduced enantioselectivities (neg-
ative sign of group contributions). Secondary amino acids show
greatly reduced separation factors because the supportive enan-
tioselective H-bond interaction does not exist due to lack of the
N H hydrogen donor (Fig. 1c). A competitive acidic group in the
amino acid side chain turns out to be negative for enantioselectivity
solely if it is located close to the stereogenic center (cysteic acid and
Asp, both with considerable negative enantioselectivity increment
of −0.25 ± 0.22 and −0.47 ± 0.19, respectively). Once the distance
between �-carbon and carboxylic acid moiety increases, the acidic
group of the side chain appears to be no longer competitive to
the �-carboxylic group. No significant negative enantioselectiv-
ity increment is therefore found for �-amino adipic acid and Glu
(−0.06 ± 0.19 and −0.07 ± 0.19, respectively). For the remaining
amino acids the enantiomer separation is dominated by the pro-
tection group with negligible influence of the amino acid residues
(see Table 3).

4. Conclusion

Enantioselective analysis of amino acids is an important topic in
bioanalysis and quality control of educts in peptide synthesis. A tert-
butylcarbamoylated quinine-based chiral stationary phase was
utilized to separate the enantiomers of a large set of proteinogenic

and unusual amino acid enantiomers after derivatization of the
amino functionality with chloroformate type reagents. Obtained
chromatographic retention and separation factors were subjected
to quantitative structure–property relationship studies. A general
linear model based on a Free-Wilson matrix as structural descrip-
tors was utilized to derive retention increments for first and second
eluted enantiomers as well as group contributions to enantiose-
lectivity. The results demonstrated that the additivity principle of
group contributions was largely obeyed for the majority of solutes
in the data set. Only a few basic amino acids (Arg, His) were elim-
inated due to departure from a linear model leading to outliers. If
significant cooperative effects were present, the employed linear
model would not be capable of predicting retention and separation
factors with sufficient accuracy.

Derived binding and enantioselectivity increments gave insights
into contributions dominating retention and enantioselectivity.
Protection groups were largely driving retention and enantiose-
lectivity, particularly in case of aromatic ones. In contrast, the
contribution of amino acid residues to enantioselectivity was
only significant for secondary amino acids, �-methylated amino
acids, aspartic acid and a few sterically bulky aliphatic amino acid
residues (Tle, Ile, allo-Ile). Amongst them only the latter group con-
tributed positively to enantioselectivity while the other residues
mentioned reduced enantioselectivity significantly. With help of
derived group contributions retention and enantioselectivity val-
ues of amino acid derivatives not present in the experimental data
set can be readily estimated by simple calculations. However, this
kind of QSPR has only limited utility for predictions, yet is valuable
for interpretation of retention mechanisms. The presented model
is illustrative and simple to implement. It may be used for opti-
mization of derivatizing agent and guide researchers in selection
of suitable reagents based on a limited set of experimental data.
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Table S1: Experimental retention and separation factors utilized in this study for calculations of 

retention and selectivity increments 

Compound k1 k2  

BOC-Ala 3.328 3.734 1.122 

BOC-Arg 5.836 6.898 1.182 

BOC-p-CF3-Phe 
a
 4.833 6.633 1.372 

BOC-p-Cl-Phe  8.261 10.739 1.300 

BOC-p-iPr-Phe 
a
 6.393 6.867 1.074 

BOC-p-Me-Phe 
a
 5.700 6.120 1.074 

BOC-p-Nitro-Phe 
a
 7.193 10.153 1.411 

BOC-p-tBu-Phe 
a
 6.653 7.260 1.091 

BOC-Leu 
a
 3.719 4.496 1.209 

BOC-Phe 6.682 8.145 1.219 

BOC-Pro 2.486 2.486 1.000 

BOC-Tyr 6.270 7.819 1.247 

BOC-Val 3.551 4.957 1.396 

DNZ-Ala 6.885 13.439 1.952 

DNZ-allo-Ile 7.784 28.872 3.709 

DNZ-α-Aminoadipic acid 41.000 78.980 1.926 

DNZ-α-Aminobutyric acid 6.946 17.054 2.455 

DNZ-α-Me-Leu 8.345 9.264 1.110 

DNZ-Arg 0.899 1.912 2.128 

DNZ-Asn 6.514 10.926 1.677 

DNZ-Asp 84.318 86.439 1.025 

DNZ-Azetidine carboxylic 

acid 
a
 8.450 10.056 1.190 
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Compound k1 k2  

DNZ-β-Ala 9.236 

  DNZ-β-Aminobutyric acid 5.209 11.351 2.179 

DNZ-β-Aminoisobutyric acid 6.318 12.459 1.972 

DNZ-β-Phe 
b
 8.730 15.976 1.830 

DNZ-Citrulline 5.236 11.811 2.255 

DNZ-dehydro-Pro 7.574 8.973 1.185 

DNZ-Gln 5.507 10.757 1.953 

DNZ-Glu 43.345 79.054 1.824 

DNZ-Gly 9.405 

  DNZ-His 2.547 4.662 1.830 

DNZ-Homoserine 5.595 11.885 2.124 

DNZ-Ile 7.784 27.182 3.492 

DNZ-p-Amino-Phe 29.128 55.703 1.912 

DNZ-p-Br-Phe 14.723 28.115 1.910 

DNZ-p-Cl-Phe 12.892 24.784 1.922 

DNZ-p-Nitro-Phe 14.027 26.405 1.882 

DNZ-Leu 7.649 21.412 2.799 

DNZ-Lys 16.892 36.764 2.176 

DNZ-Met 9.155 21.291 2.325 

DNZ-Met-Sulfone 6.595 12.669 1.921 

DNZ-Met-Sulfoxide 5.568 10.622 1.908 

DNZ-N-Me-Leu 7.703 8.709 1.131 

DNZ-N-Me-Val 6.601 7.709 1.168 

DNZ-NLeu (DNZ-Nle) 7.973 21.216 2.661 

DNZ-NVal (DNZ-Nva) 7.378 19.831 2.688 

DNZ-Orn 20.115 36.709 1.825 
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Compound k1 k2  

DNZ-Phe 11.101 21.595 1.945 

DNZ-PheGly (DNZ-Phg) 12.243 22.426 1.832 

DNZ-Pipecolinic acid 8.892 10.196 1.147 

DNZ-Pro 7.520 9.088 1.208 

DNZ-Ser 6.514 13.074 2.007 

DNZ-tBu-Gly (DNZ-Tle) 7.700 23.485 3.050 

DNZ-Thr 6.520 8.412 1.290 

DNZ-Trp 18.736 35.034 1.870 

DNZ-Tyr 10.378 20.966 2.020 

DNZ-Val 7.142 23.270 3.258 

FMOC-Arg 
a
 1.143 1.915 1.675 

FMOC-Cys 
b
 15.514 25.164 1.622 

FMOC-Cys-S-Trityl 
b
 55.893 79.648 1.425 

FMOC-Leu 9.260 17.594 1.900 

FMOC-Phe 
a
 15.650 24.414 1.560 

NVOC-Ala 7.074 18.115 2.561 

NVOC-Arg 7.973 19.162 2.403 

NVOC-Azetidine carboxylic 

acid 6.061 6.761 1.116 

NVOC-β-Phe 9.128 16.318 1.788 

Bis-(NVOC)-His 
a
 6.047 14.439 2.388 

NVOC-Citrulline 5.757 15.615 2.712 

NVOC-His 
a
 2.088 4.568 2.188 

NVOC-Ile 
a
 7.142 24.709 3.460 

NVOC-Leu 
a
 7.162 25.723 3.592 

NVOC-Lys 
a
 16.568 48.169 2.907 

NVOC-Met 9.466 26.331 2.782 
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Compound k1 k2  

NVOC-Met-Sulfone 7.520 16.858 2.242 

NVOC-Met-Sulfoxide 6.547 15.128 2.311 

NVOC-NLeu (NVOC-Nle) 
a
 7.777 25.574 3.288 

NVOC-NVal (NVOC-Nva) 
a
 7.270 24.426 3.360 

NVOC-Orn 18.784 43.412 2.311 

NVOC-Phe 11.919 28.784 2.415 

NVOC-PheGly (NVOC-Phg) 
a
 14.370 28.596 1.990 

NVOC-Pro 6.860 7.409 1.080 

NVOC-Ser 6.858 17.453 2.545 

NVOC-Thr 6.331 18.385 2.904 

NVOC-Trp 
a
 19.034 41.541 2.182 

NVOC-Tyr 11.034 26.872 2.435 

NVOC-Val 
a
 6.838 22.838 3.340 

PNZ-Ala 5.331 7.128 1.337 

PNZ-allo-Ile 5.459 12.568 2.302 

PNZ-α- Aminoadipic acid 28.392 37.669 1.327 

PNZ-α-Me-Leu 5.750 6.378 1.109 

PNZ-Arg 0.662 0.980 1.480 

PNZ-Asn 4.514 5.818 1.289 

PNZ-Asp 40.378 43.703 1.082 

PNZ-α-Aminobutyric acid 4.818 7.568 1.571 

PNZ-β-Aminobutyric acid 3.682 5.088 1.382 

PNZ-β-Aminoisobutyric acid 4.061 5.372 1.323 

Bis-(PNZ)-His 26.336 33.025 1.254 

PNZ-Citrulline 3.885 5.784 1.489 

PNZ-Cysteic acid 34.453 39.189 1.137 
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Compound k1 k2  

PNZ-Gln 4.014 5.507 1.372 

PNZ-Glu 34.730 47.345 1.363 

PNZ-His 1.953 2.764 1.415 

PNZ-Ile 5.459 11.541 2.114 

PNZ-p-Br-Phe 10.439 15.054 1.442 

PNZ-p-Cl-Phe 9.189 13.291 1.446 

PNZ-p-Nitro-Phe 10.061 14.574 1.449 

PNZ-Leu 6.115 10.182 1.665 

PNZ-Lys 11.169 16.764 1.501 

PNZ-Met 6.439 9.736 1.512 

PNZ-N-Me-Leu 5.642 5.642 1.000 

PNZ-NLeu (PNZ-Nle) 5.574 9.169 1.645 

PNZ-NVal (PNZ-Nva) 5.169 8.426 1.630 

PNZ-Orn 9.845 13.351 1.356 

PNZ-Phe 9.216 13.128 1.424 

PNZ-PheGly (PNZ-Phg) 8.439 11.486 1.361 

PNZ-Pipecolinic acid 5.858 6.196 1.058 

PNZ-Pro 5.257 5.466 1.040 

PNZ-Ser 4.574 6.304 1.378 

PNZ-tBu-Gly (PNZ-Tle) 5.324 10.459 1.964 

PNZ-Thr 4.291 6.736 1.570 

PNZ-Trp 15.074 22.223 1.474 

PNZ-Tyr 8.439 12.331 1.461 

PNZ-Val 5.095 10.345 2.031 

Z-Ala 
a
 6.429 7.413 1.153 

Z-Arg 0.622 1.149 1.848 
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Compound k1 k2  

Z-Azetidine caboxylic acid 4.560 4.560 1.000 

Z-β-Aminobutyric acid 2.240 2.643 1.180 

Z-β-Phe 7.070 7.989 1.130 

Z-Gly 4.169 

  Z-His 3.392 3.824 1.127 

Z-o-F-Phe 
a
 9.133 13.687 1.499 

Z-m-F-Phe 
a
 9.420 11.167 1.185 

Z-p-F-Phe 
a
 8.520 10.793 1.267 

Z-Leu 4.196 5.331 1.271 

Z-Met 
a
 6.780 8.633 1.273 

Z-Phe 
a
 8.950 10.919 1.220 

Z-Pro 6.004 6.004 1.000 

Z-Ser 6.099 7.374 1.209 

Z-tBu-Gly (Z-Tle) 4.220 6.499 1.540 

Z-Tyr 11.996 14.875 1.240 

Z-Val 3.919 6.007 1.533 

a
  elution order: R < S; 

b
 S < R 

Abbreviations: Protection groups: Z, benzyloxycarbonyl; BOC, tert-butoxycarbonyl; PNZ, 4-

nitrobenzyloxycarbonyl; DNZ, 3,5-dinitrobenzyloxycarbonyl; FMOC, 9-

fluorenylmethoxycarbonyl; NVOC, o-nitroveratryloxycarbonyl (4,5-dimethoxy-2-

nitrobenzyloxycarbonyl). Amino acids: 3-letter code of proteinogenic amino acids see 

biochemistry text book; special amino acids: p-CF3-Phe, p-trifluoromethylphenylalanine; p-Cl-

Phe, p-chlorophenylalanine; p-iPr-Phe, p-isopropylphenylalanine; p-Me-Phe, p-

methylphenylalanine; p-Nitro-Phe, p-nitrophenylalanine; p-tBu-Phe, p-(tert-butyl)phenylalanine; 

α-Me-Leu, alpha-methyl-leucine; N-Me-Leu, N-methyl-leucine;  N-Me-Val, N-methyl-valine; NLeu/Nle, 

norleucine; NVal/Nva, norvaline; PheGly/Phg, -phenylglycine; tBu-Gly/Tle, -(tert-butyl)glycine/tert-

leucine 
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Figure S1: Representative chromatograms: a) FMOC-Arg, b) NVOC-Trp, c) Z-Phe; conditions 

as described in experimental section of main document. 
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Table S2: Retention increments and statistical parameters for both enantiomers  

Substituent 

retention increment                                                                   

first eluting enantiomer 

retention increment                                          

second eluting enantiomer 

  

Incre-

ment 

95% 

CI t-value p-value Increment 

95% 

CI t-value p-value 

a0 1.428 - - - 1.428 - - - 

PG                 

BOC 0.36 0.29 2.48 1.55E-02 0.57 0.40 2.75 7.55E-03 

Z 0.71 0.26 5.39 8.40E-07 0.95 0.36 5.14 2.29E-06 

PNZ 0.72 0.28 5.12 2.41E-06 1.11 0.39 5.61 3.50E-07 

NVOC 1.07 0.28 7.56 1.03E-10 1.95 0.39 9.83 6.10E-15 

DNZ 1.09 0.28 7.78 3.90E-11 1.76 0.38 8.97 2.38E-13 

FMOC 1.31 0.34 7.63 7.58E-11 1.77 0.47 7.39 2.11E-10 

                  

R                 

β-Aminobutyric acid -1.02 0.31 -6.53 7.98E-09 -1.02 0.43 -4.70 1.20E-05 

Citrulline -0.80 0.31 -5.05 3.26E-06 -0.71 0.44 -3.19 2.12E-03 

Homoserine -0.80 0.38 -4.14 9.31E-05 -0.71 0.53 -2.64 1.01E-02 

Gln -0.79 0.33 -4.68 1.30E-05 -0.82 0.46 -3.49 8.31E-04 

β-Aminoisobutyric acid -0.71 0.33 -4.24 6.55E-05 -0.76 0.46 -3.23 1.87E-03 

Met-Sulfoxide -0.71 0.33 -4.23 6.72E-05 -0.74 0.46 -3.16 2.33E-03 

Thr -0.66 0.31 -4.18 8.09E-05 -0.72 0.44 -3.22 1.90E-03 

Asn -0.65 0.33 -3.84 2.67E-04 -0.79 0.46 -3.34 1.33E-03 

N-Me-Val -0.63 0.38 -3.28 1.59E-03 -1.15 0.53 -4.25 6.36E-05 

Val -0.59 0.29 -3.96 1.73E-04 -0.29 0.41 -1.40 1.64E-01 

α-Aminobutyric acid -0.58 0.38 -3.02 3.50E-03 -0.35 0.53 -1.31 1.96E-01 

Azetidine carboxylic acid -0.57 0.31 -3.66 4.82E-04 -1.07 0.43 -4.91 5.54E-06 

Pro -0.56 0.29 -3.75 3.51E-04 -0.97 0.41 -4.66 1.41E-05 

Met-Sulfone -0.56 0.33 -3.32 1.42E-03 -0.60 0.46 -2.55 1.29E-02 

tBu-Gly (Tle) -0.55 0.31 -3.55 6.78E-04 -0.24 0.43 -1.11 2.70E-01 

Ser -0.55 0.30 -3.60 5.75E-04 -0.55 0.42 -2.60 1.12E-02 
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 Substituent 
Incre-

ment 

95% 

CI t-value p-value Increment 

95% 

CI t-value p-value 

Nval (Nva) -0.52 0.31 -3.24 1.81E-03 -0.26 0.44 -1.18 2.43E-01 

Leu -0.51 0.29 -3.43 9.97E-04 -0.33 0.41 -1.60 1.14E-01 

Gly -0.50 0.32 -3.03 3.36E-03     

Ala -0.50 0.29 -3.33 1.38E-03 -0.54 0.41 -2.58 1.19E-02 

Dehydro-Pro -0.50 0.38 -2.57 1.22E-02 -0.99 0.53 -3.69 4.39E-04 

Ile -0.49 0.31 -3.05 3.19E-03 -0.05 0.44 -0.21 8.31E-01 

allo-Ile -0.46 0.33 -2.74 7.73E-03 0.09 0.46 0.36 7.17E-01 

N-Me-Leu -0.45 0.33 -2.67 9.27E-03 -0.91 0.46 -3.89 2.24E-04 

Nleu (Nle) -0.44 0.31 -2.78 6.95E-03 -0.20 0.44 -0.88 3.82E-01 

β-Ala -0.44 0.33 -2.60 1.12E-02     

α-Me-Leu -0.40 0.33 -2.38 2.00E-02 -0.82 0.46 -3.49 8.17E-04 

Pipecolinic acid -0.36 0.33 -2.14 3.61E-02 -0.79 0.46 -3.35 1.28E-03 

β-Phe -0.28 0.31 -1.77 8.04E-02 -0.43 0.43 -1.99 5.01E-02 

Met -0.27 0.30 -1.77 8.05E-02 -0.18 0.42 -0.85 4.01E-01 

p-CF3-Phe -0.22 0.39 -1.10 2.76E-01 -0.10 0.54 -0.37 7.16E-01 

p-Me-Phe -0.05 0.39 -0.26 7.92E-01 -0.18 0.54 -0.66 5.14E-01 

Cys 0.01 0.42 0.04 9.70E-01 0.03 0.59 0.10 9.20E-01 

Tyr 0.02 0.29 0.12 9.07E-01 0.03 0.41 0.13 9.00E-01 

Phe 0.02 0.29 0.12 9.04E-01 0.00 0.41 0.02 9.84E-01 

Phegly (Phg) 0.04 0.31 0.28 7.84E-01 -0.06 0.44 -0.29 7.72E-01 

p-iPr-Phe 0.06 0.39 0.32 7.53E-01 -0.07 0.54 -0.24 8.11E-01 

o-F-Phe 0.07 0.37 0.37 7.12E-01 0.24 0.51 0.91 3.67E-01 

m-F-Phe 0.10 0.37 0.54 5.94E-01 0.03 0.51 0.13 8.97E-01 

p-tBu-Phe 0.10 0.39 0.52 6.07E-01 -0.01 0.54 -0.04 9.69E-01 

p-Cl-Phe 0.14 0.31 0.88 3.81E-01 0.15 0.44 0.68 4.98E-01 

p-Nitro-Phe 0.15 0.31 0.96 3.42E-01 0.18 0.44 0.83 4.09E-01 

p-Br-Phe 0.18 0.33 1.08 2.85E-01 0.16 0.46 0.69 4.92E-01 

Lys 0.29 0.31 1.84 7.06E-02 0.40 0.44 1.80 7.61E-02 

Orn 0.35 0.31 2.20 3.10E-02 0.29 0.44 1.30 1.98E-01 

Trp 0.47 0.31 2.97 4.03E-03 0.43 0.44 1.93 5.78E-02 

p-Amino-Phe 0.85 0.38 4.41 3.61E-05 0.83 0.53 3.08 2.91E-03 

α-Aminoadipic acid 1.19 0.33 7.09 7.46E-10 1.14 0.46 4.84 7.27E-06 
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 Substituent 
Incre-

ment 

95% 

CI t-value p-value Increment 

95% 

CI t-value p-value 

Cys-S-Trityl 1.29 0.42 5.96 8.55E-08 1.18 0.59 3.91 2.07E-04 

Glu 1.32 0.33 7.86 2.84E-11 1.25 0.46 5.32 1.10E-06 

Cysteic acid 1.39 0.38 7.18 5.23E-10 1.13 0.53 4.19 7.70E-05 

Asp 1.73 0.33 10.28 9.06E-16 1.26 0.46 5.34 1.02E-06 

 

 

 

Table S3: Selectivity increments and statistical parameters. 

  

Enantioselectivity  increment                                     

Substituent Increment 95% CI t-value p-value 

a0 0 - - - 

PG         

BOC 0.20 0.33 1.20 2.36E-01 

Z 0.24 0.30 1.57 1.21E-01 

PNZ 0.38 0.31 2.39 1.96E-02 

FMOC 0.46 0.32 2.37 2.06E-02 

DNZ 0.67 0.31 4.17 8.32E-05 

NVOC 0.88 0.38 5.42 7.41E-07 

          

R         

N-Me-Val -0.51 0.35 -2.33 2.26E-02 

Azetidine carboxylic acid -0.50 0.36 -2.81 6.36E-03 

Dehydro-Pro -0.50 0.43 -2.26 2.66E-02 

Asp -0.47 0.38 -2.47 1.59E-02 

N-Me-Leu -0.46 0.38 -2.42 1.80E-02 

Pipecolinic acid -0.43 0.36 -2.24 2.83E-02 

α-Me-Leu -0.42 0.38 -2.20 3.12E-02 

Pro -0.41 0.43 -2.42 1.80E-02 

Cysteic acid -0.25 0.43 -1.16 2.52E-01 
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Substituent Increment 95% CI t-value p-value 

β-Phe -0.16 0.35 -0.89 3.78E-01 

Asn -0.14 0.33 -0.73 4.68E-01 

p-Me-Phe -0.13 0.38 -0.57 5.68E-01 

p-iPr-Phe -0.13 0.35 -0.57 5.69E-01 

p-tBu-Phe -0.11 0.34 -0.50 6.17E-01 

Phegly (Phg) -0.11 0.36 -0.60 5.52E-01 

Cys-S-Trityl -0.11 0.33 -0.44 6.65E-01 

Glu -0.07 0.37 -0.37 7.16E-01 

m-F-Phe -0.07 0.33 -0.31 7.56E-01 

Orn -0.06 0.43 -0.34 7.38E-01 

α-Aminoadipic acid -0.06 0.36 -0.29 7.70E-01 

Thr -0.05 0.38 -0.28 7.77E-01 

β-Aminoisobutyric acid -0.05 0.38 -0.24 8.11E-01 

Trp -0.04 0.36 -0.24 8.08E-01 

Met-Sulfone -0.04 0.38 -0.22 8.29E-01 

Ala -0.04 0.38 -0.24 8.09E-01 

Gln -0.03 0.38 -0.17 8.66E-01 

Met-Sulfoxide -0.03 0.35 -0.16 8.76E-01 

p-Amino-Phe -0.02 0.34 -0.09 9.31E-01 

p-Br-Phe -0.02 0.44 -0.10 9.22E-01 

Phe -0.01 0.44 -0.08 9.35E-01 

β-Aminobutyric acid -0.01 0.48 -0.04 9.71E-01 

Ser -0.01 0.33 -0.03 9.75E-01 

Tyr 0.01 0.33 0.05 9.58E-01 

p-Cl-Phe 0.01 0.36 0.06 9.51E-01 

Cys 0.02 0.44 0.09 9.29E-01 

p-Nitro-Phe 0.03 0.42 0.18 8.60E-01 

Homoserine 0.09 0.42 0.39 6.96E-01 

Met 0.09 0.44 0.52 6.05E-01 

Citrulline 0.09 0.36 0.52 6.05E-01 

Lys 0.11 0.36 0.60 5.53E-01 

p-CF3-Phe 0.12 0.38 0.52 6.08E-01 
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Substituent Increment 95% CI t-value p-value 

o-F-Phe 0.17 0.36 0.79 4.34E-01 

Leu 0.18 0.36 1.05 2.97E-01 

α-Aminobutyric acid 0.23 0.36 1.05 2.97E-01 

Nleu (Nle) 0.25 0.43 1.36 1.78E-01 

Nval (Nva) 0.25 0.38 1.40 1.65E-01 

Val 0.30 0.48 1.76 8.33E-02 

tBu-Gly (Tle) 0.31 0.38 1.76 8.34E-02 

Ile 0.44 0.43 2.42 1.82E-02 

allo-Ile 0.55 0.38 2.85 5.64E-03 

 

 

Table S4: Calculated (predicted) retention factors (ln k1, ln k2) and separation factors (ln ) as 

well as corresponding residuals (calculations based on increments of refined data set; Table 1 of 

main document) 

Compound ln k1 ± SE 

Residual          

ln k1 ln k2 ± SE 

Residual   

 ln k2 ln  ± SE 

Residual    

 ln  

BOC-Ala 1.3 ± 0.3 0.09 1.45 ± 0.42 0.14 0.16 ± 0.34 0.04 

BOC-p-CF3-Phe 1.58 ± 0.35 0 1.89 ± 0.49 0 0.32 ± 0.39 0 

BOC-p-Cl-Phe 1.93 ± 0.31 -0.18 2.14 ± 0.43 -0.23 0.21 ± 0.35 -0.05 

BOC-p-iPr-Phe 1.86 ± 0.35 0 1.93 ± 0.49 0 0.07 ± 0.39 0 

BOC-p-Me-Phe 1.74 ± 0.35 0 1.81 ± 0.49 0 0.07 ± 0.39 0 

BOC-p-Nitro-Phe 1.95 ± 0.31 -0.03 2.18 ± 0.43 -0.14 0.23 ± 0.35 -0.11 

BOC-p-tBu-Phe 1.9 ± 0.35 0 1.98 ± 0.49 0 0.09 ± 0.39 0 

BOC-Leu 1.28 ± 0.3 -0.03 1.66 ± 0.42 0.16 0.38 ± 0.34 0.19 

BOC-Phe 1.81 ± 0.3 -0.09 2 ± 0.42 -0.1 0.19 ± 0.34 -0.01 

BOC-Pro 1.23 ± 0.3 0.32 1.02 ± 0.42 0.11 -0.21 ± 0.34 -0.21 

BOC-Tyr 1.81 ± 0.3 -0.03 2.02 ± 0.42 -0.04 0.21 ± 0.34 -0.01 

BOC-Val 1.2 ± 0.3 -0.07 1.7 ± 0.42 0.1 0.5 ± 0.34 0.17 

DNZ-Ala 2.02 ± 0.29 0.09 2.65 ± 0.41 0.05 0.63 ± 0.33 -0.04 

DNZ-allo-Ile 2.06 ± 0.31 0.01 3.27 ± 0.44 -0.09 1.21 ± 0.35 -0.1 
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Compound ln k1 ± SE 

Residual          

ln k1 ln k2 ± SE 

Residual   

 ln k2 ln  ± SE 

Residual    

 ln  

DNZ-α-Aminobutyric acid 1.94 ± 0.33 0 2.84 ± 0.47 0 0.9 ± 0.38 0 

DNZ-α-Me-Leu 2.12 ± 0.31 0 2.37 ± 0.44 0.14 0.25 ± 0.35 0.14 

DNZ-Asn 1.88 ± 0.31 0 2.4 ± 0.44 0.01 0.53 ± 0.35 0.01 

DNZ-Asp 4.25 ± 0.31 -0.18 4.45 ± 0.44 -0.01 0.19 ± 0.35 0.17 

DNZ-Azetidine carboxylic 
acid 1.95 ± 0.3 -0.18 2.12 ± 0.42 -0.19 0.17 ± 0.34 -0.01 

DNZ-β-Ala 2.08 ± 0.31 -0.14     

DNZ-β-Aminobutyric acid 1.5 ± 0.3 -0.15 2.16 ± 0.42 -0.27 0.66 ± 0.34 -0.12 

DNZ-β-Aminoisobutyric 

acid 1.81 ± 0.31 -0.04 2.43 ± 0.44 -0.09 0.62 ± 0.35 -0.06 

DNZ-β-Phe 2.24 ± 0.3 0.08 2.75 ± 0.42 -0.02 0.51 ± 0.34 -0.09 

DNZ-Citrulline 1.72 ± 0.3 0.06 2.48 ± 0.42 0.01 0.76 ± 0.34 -0.05 

DNZ-dehydro-Pro 2.02 ± 0.14 0 2.19 ± 0.2 0 0.17 ± 0.16 0 

DNZ-Gln 1.73 ± 0.31 0.03 2.37 ± 0.44 -0.01 0.63 ± 0.35 -0.03 

DNZ-Glu 3.84 ± 0.31 0.07 4.44 ± 0.44 0.07 0.6 ± 0.35 0 

DNZ-Gly 2.02 ± 0.3 -0.22     

DNZ-Homoserine 1.72 ± 0.33 0 2.48 ± 0.47 0 0.75 ± 0.38 0 

DNZ-Ile 2.04 ± 0.3 -0.02 3.14 ± 0.42 -0.16 1.11 ± 0.34 -0.15 

DNZ-p-Amino-Phe 3.37 ± 0.33 0 4.02 ± 0.47 0 0.65 ± 0.38 0 

DNZ-p-Br-Phe 2.7 ± 0.31 0.01 3.35 ± 0.44 0.01 0.65 ± 0.35 0 

DNZ-p-Cl-Phe 2.66 ± 0.3 0.1 3.34 ± 0.42 0.13 0.68 ± 0.34 0.03 

DNZ-p-Nitro-Phe 2.67 ± 0.3 0.03 3.37 ± 0.42 0.1 0.7 ± 0.34 0.07 

DNZ-Leu 2.01 ± 0.29 -0.02 2.86 ± 0.41 -0.21 0.84 ± 0.33 -0.18 

DNZ-Lys 2.81 ± 0.3 -0.01 3.59 ± 0.42 -0.02 0.78 ± 0.34 0 

DNZ-Met 2.25 ± 0.29 0.04 3.01 ± 0.41 -0.05 0.76 ± 0.33 -0.09 

DNZ-Met-Sulfone 1.96 ± 0.31 0.08 2.59 ± 0.44 0.05 0.63 ± 0.35 -0.03 

DNZ-Met-Sulfoxide 1.81 ± 0.31 0.09 2.45 ± 0.44 0.08 0.64 ± 0.35 -0.01 

DNZ-N-Me-Leu 2.07 ± 0.31 0.03 2.27 ± 0.44 0.11 0.2 ± 0.35 0.08 

DNZ-N-Me-Val 1.89 ± 0.33 0 2.04 ± 0.47 0 0.16 ± 0.38 0 

DNZ-NLeu (DNZ-Nle) 2.08 ± 0.3 0 2.99 ± 0.42 -0.06 0.91 ± 0.34 -0.06 

DNZ-NVal (DNZ-Nva) 2.01 ± 0.3 0.01 2.93 ± 0.42 -0.06 0.92 ± 0.34 -0.07 
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Compound ln k1 ± SE 

Residual          

ln k1 ln k2 ± SE 

Residual   

 ln k2 ln  ± SE 

Residual    

 ln  

DNZ-Orn 2.87 ± 0.3 -0.13 3.48 ± 0.42 -0.13 0.61 ± 0.34 0 

DNZ-Phe 2.54 ± 0.29 0.13 3.19 ± 0.41 0.12 0.65 ± 0.33 -0.01 

DNZ-PheGly (DNZ-Phg) 2.56 ± 0.3 0.06 3.12 ± 0.42 0.01 0.56 ± 0.34 -0.05 

DNZ-Pipecolinic acid 2.16 ± 0.31 -0.02 2.4 ± 0.44 0.08 0.24 ± 0.35 0.1 

DNZ-Pro 1.96 ± 0.29 -0.06 2.22 ± 0.41 0.01 0.26 ± 0.33 0.07 

DNZ-Ser 1.97 ± 0.29 0.1 2.64 ± 0.41 0.07 0.66 ± 0.33 -0.03 

DNZ-tBu-Gly (DNZ-Tle) 1.97 ± 0.3 -0.07 2.95 ± 0.42 -0.21 0.98 ± 0.34 -0.14 

DNZ-Thr 1.86 ± 0.3 -0.02 2.47 ± 0.42 0.34 0.62 ± 0.34 0.36 

DNZ-Trp 2.99 ± 0.3 0.06 3.62 ± 0.42 0.06 0.62 ± 0.34 0 

DNZ-Tyr 2.54 ± 0.29 0.2 3.21 ± 0.41 0.17 0.68 ± 0.33 -0.03 

DNZ-Val 1.93 ± 0.29 -0.04 2.9 ± 0.41 -0.25 0.97 ± 0.33 -0.22 

FMOC-Cys 2.74 ± 0.39 0 3.23 ± 0.54 0 0.48 ± 0.44 0 

FMOC-Cys-S-Trityl 4.02 ± 0.39 0 4.38 ± 0.54 0 0.35 ± 0.44 0 

FMOC-Leu 2.22 ± 0.32 0 2.86 ± 0.45 0 0.64 ± 0.36 0 

FMOC-Phe 2.75 ± 0.32 0 3.2 ± 0.45 0 0.45 ± 0.36 0 

NVOC-Ala 2 ± 0.29 0.05 2.84 ± 0.41 -0.06 0.83 ± 0.33 -0.11 

NVOC-Azetidine 

carboxylic acid 1.93 ± 0.3 0.13 2.31 ± 0.42 0.4 0.38 ± 0.34 0.27 

NVOC-β-Phe 2.22 ± 0.3 0.01 2.94 ± 0.42 0.15 0.72 ± 0.34 0.14 

NVOC-Citrulline 1.7 ± 0.3 -0.05 2.67 ± 0.42 -0.08 0.97 ± 0.34 -0.03 

NVOC-Ile 2.01 ± 0.3 0.05 3.33 ± 0.42 0.12 1.31 ± 0.34 0.07 

NVOC-Leu 1.99 ± 0.29 0.02 3.04 ± 0.41 -0.2 1.05 ± 0.33 -0.23 

NVOC-Lys 2.79 ± 0.3 -0.02 3.78 ± 0.42 -0.1 0.98 ± 0.34 -0.08 

NVOC-Met 2.23 ± 0.29 -0.02 3.2 ± 0.41 -0.07 0.97 ± 0.33 -0.06 

NVOC-Met-Sulfone 1.94 ± 0.31 -0.08 2.78 ± 0.44 -0.05 0.83 ± 0.35 0.03 

NVOC-Met-Sulfoxide 1.79 ± 0.31 -0.09 2.63 ± 0.44 -0.08 0.85 ± 0.35 0.01 

NVOC-NLeu (NVOC-Nle) 2.06 ± 0.3 0.01 3.18 ± 0.42 -0.06 1.12 ± 0.34 -0.07 

NVOC-NVal (NVOC-Nva) 1.98 ± 0.3 0 3.11 ± 0.42 -0.08 1.13 ± 0.34 -0.08 

NVOC-Orn 2.85 ± 0.3 -0.08 3.66 ± 0.42 -0.11 0.82 ± 0.34 -0.02 

NVOC-Phe 2.52 ± 0.29 0.04 3.38 ± 0.41 0.02 0.86 ± 0.33 -0.02 
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Compound ln k1 ± SE 

Residual          

ln k1 ln k2 ± SE 

Residual   

 ln k2 ln  ± SE 

Residual    

 ln  

NVOC-PheGly (NVOC-
Phg) 2.54 ± 0.3 -0.12 3.31 ± 0.42 -0.04 0.77 ± 0.34 0.08 

NVOC-Pro 1.94 ± 0.29 0.01 2.4 ± 0.41 0.4 0.46 ± 0.33 0.39 

NVOC-Ser 1.95 ± 0.29 0.03 2.82 ± 0.41 -0.04 0.87 ± 0.33 -0.06 

NVOC-Thr 1.83 ± 0.3 -0.01 2.66 ± 0.42 -0.25 0.82 ± 0.34 -0.24 

NVOC-Trp 2.97 ± 0.3 0.03 3.8 ± 0.42 0.08 0.83 ± 0.34 0.05 

NVOC-Tyr 2.52 ± 0.29 0.12 3.4 ± 0.41 0.11 0.88 ± 0.33 -0.01 

NVOC-Val 1.91 ± 0.29 -0.01 3.08 ± 0.41 -0.05 1.17 ± 0.33 -0.03 

PNZ-Ala 1.65 ± 0.29 -0.02 2 ± 0.41 0.03 0.34 ± 0.33 0.05 

PNZ-allo-Ile 1.69 ± 0.31 -0.01 2.62 ± 0.44 0.09 0.93 ± 0.35 0.1 

PNZ-α-Aminoadipic acid 3.34 ± 0.31 0 3.67 ± 0.44 0.04 0.33 ± 0.35 0.04 

PNZ-α-Me-Leu 1.75 ± 0.31 0 1.71 ± 0.44 -0.14 -0.04 ± 0.35 -0.14 

PNZ-Asn 1.51 ± 0.31 0 1.75 ± 0.44 -0.01 0.24 ± 0.35 -0.01 

PNZ-Asp 3.88 ± 0.31 0.18 3.79 ± 0.44 0.01 -0.09 ± 0.35 -0.17 

PNZ-α-Aminobutyric acid 1.71 ± 0.33 0.14 1.8 ± 0.47 -0.23 0.08 ± 0.38 -0.37 

PNZ-β-Aminobutyric acid 1.13 ± 0.3 -0.17 1.51 ± 0.42 -0.12 0.38 ± 0.34 0.05 

PNZ-β-Aminoisobutyric 

acid 1.44 ± 0.31 0.04 1.77 ± 0.44 0.09 0.34 ± 0.35 0.06 

PNZ-Citrulline 1.35 ± 0.3 -0.01 1.83 ± 0.42 0.07 0.48 ± 0.34 0.08 

PNZ-Cysteic acid 3.54 ± 0.33 0 3.67 ± 0.47 0 0.13 ± 0.38 0 

PNZ-Gln 1.36 ± 0.31 -0.03 1.71 ± 0.44 0.01 0.35 ± 0.35 0.03 

PNZ-Glu 3.47 ± 0.31 -0.07 3.79 ± 0.44 -0.07 0.31 ± 0.35 0 

PNZ-Ile 1.67 ± 0.3 -0.03 2.49 ± 0.42 0.04 0.82 ± 0.34 0.07 

PNZ-p-Br-Phe 2.33 ± 0.31 -0.01 2.7 ± 0.44 -0.01 0.36 ± 0.35 0 

PNZ-p-Cl-Phe 2.29 ± 0.3 0.07 2.69 ± 0.42 0.1 0.39 ± 0.34 0.03 

PNZ-p-Nitro-Phe 2.3 ± 0.3 -0.01 2.72 ± 0.42 0.04 0.42 ± 0.34 0.05 

PNZ-Leu 1.64 ± 0.29 -0.17 2.2 ± 0.41 -0.12 0.56 ± 0.33 0.05 

PNZ-Lys 2.44 ± 0.3 0.03 2.93 ± 0.42 0.12 0.49 ± 0.34 0.09 

PNZ-Met 1.88 ± 0.29 0.02 2.36 ± 0.41 0.08 0.47 ± 0.33 0.06 

PNZ-N-Me-Leu 1.7 ± 0.31 -0.03 1.62 ± 0.44 -0.11 -0.08 ± 0.35 -0.08 

PNZ-NLeu (PNZ-Nle) 1.71 ± 0.3 -0.01 2.34 ± 0.42 0.12 0.63 ± 0.34 0.13 
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Compound ln k1 ± SE 

Residual          

ln k1 ln k2 ± SE 

Residual   

 ln k2 ln  ± SE 

Residual    

 ln  

PNZ-NVal (PNZ-Nva) 1.64 ± 0.3 -0.01 2.27 ± 0.42 0.14 0.64 ± 0.34 0.15 

PNZ-Orn 2.5 ± 0.3 0.21 2.82 ± 0.42 0.23 0.32 ± 0.34 0.02 

PNZ-Phe 2.17 ± 0.29 -0.05 2.54 ± 0.41 -0.04 0.37 ± 0.33 0.02 

PNZ-PheGly (PNZ-Phg) 2.19 ± 0.3 0.06 2.47 ± 0.42 0.03 0.28 ± 0.34 -0.03 

PNZ-Pipecolinic acid 1.79 ± 0.31 0.02 1.75 ± 0.44 -0.08 -0.05 ± 0.35 -0.1 

PNZ-Pro 1.59 ± 0.29 -0.07 1.56 ± 0.41 -0.14 -0.03 ± 0.33 -0.07 

PNZ-Ser 1.6 ± 0.29 0.08 1.98 ± 0.41 0.14 0.38 ± 0.33 0.06 

PNZ-tBu-Gly (PNZ-Tle) 1.6 ± 0.3 -0.08 2.29 ± 0.42 -0.06 0.7 ± 0.34 0.02 

PNZ-Thr 1.49 ± 0.3 0.03 1.82 ± 0.42 -0.09 0.33 ± 0.34 -0.12 

PNZ-Trp 2.62 ± 0.3 -0.09 2.96 ± 0.42 -0.14 0.34 ± 0.34 -0.05 

PNZ-Tyr 2.17 ± 0.29 0.04 2.56 ± 0.41 0.05 0.39 ± 0.33 0.01 

PNZ-Val 1.56 ± 0.29 -0.07 2.24 ± 0.41 -0.1 0.68 ± 0.33 -0.03 

Z-Ala 1.65 ± 0.28 -0.22 1.84 ± 0.4 -0.16 0.2 ± 0.32 0.05 

Z-Azetidine carboxylic 

acid 1.57 ± 0.29 0.06 1.31 ± 0.41 -0.21 -0.26 ± 0.33 -0.26 

Z-β-Aminobutyric acid 1.12 ± 0.29 0.32 1.35 ± 0.41 0.38 0.23 ± 0.33 0.06 

Z-β-Phe 1.87 ± 0.29 -0.09 1.95 ± 0.41 -0.13 0.08 ± 0.33 -0.04 

Z-Gly 1.65 ± 0.29 0.22     

Z-o-F-Phe 2.21 ± 0.32 0 2.62 ± 0.45 0 0.4 ± 0.36 0 

Z-m-F-Phe 2.24 ± 0.32 0 2.41 ± 0.45 0 0.17 ± 0.36 0 

Z-p-F-Phe 2.14 ± 0.13 0 2.38 ± 0.19 0 0.24 ± 0.15 0 

Z-Leu 1.63 ± 0.28 0.2 2.05 ± 0.4 0.37 0.41 ± 0.32 0.17 

Z-Met 1.87 ± 0.28 -0.04 2.2 ± 0.4 0.04 0.33 ± 0.32 0.08 

Z-Phe 2.16 ± 0.28 -0.03 2.38 ± 0.4 -0.01 0.22 ± 0.32 0.02 

Z-Pro 1.58 ± 0.28 -0.21 1.41 ± 0.4 -0.39 -0.18 ± 0.32 -0.18 

Z-Ser 1.6 ± 0.28 -0.21 1.83 ± 0.4 -0.17 0.23 ± 0.32 0.04 

Z-tBu-Gly (Z-Tle) 1.59 ± 0.29 0.15 2.14 ± 0.41 0.27 0.55 ± 0.33 0.12 

Z-Tyr 2.16 ± 0.28 -0.32 2.41 ± 0.4 -0.29 0.25 ± 0.32 0.03 

Z-Val 1.55 ± 0.28 0.19 2.09 ± 0.4 0.29 0.54 ± 0.32 0.11 
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Figure S2: Residual plots indicate good explanation of the data by the linear model and random 

distribution of the residuals 
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a  b  s  t  r  a  c  t

A  panel  of  methods  of  general  suitability  for complete  structural  elucidation  of the  stereochemistry  of
cyclopeptides,  depsipeptides  and  lipopeptides  is  presented  and  described  in detail.  The  suitability  of  the
proposed  methods  was  exemplified  on  the lipopeptide  poaeamide  from  Pseudomonas  poae.  Amino  acid
configurations  have  been  assigned  by  direct LC enantiomer  separation  with  Chiralpak  ZWIX(+)  and  were
confirmed  by  GC  enantiomer  separation  on  Chirasil  L-Val.  3-Hydroxydecanoic  acid  absolute  configura-
tion  was  analyzed  on  Chiralpak  ZWIX(+)  and  confirmed  by  injection  on  ZWIX(−)  which  showed  opposite
elution  order.  Plenty  of  d-amino  acids  have  been  found  in  this  lipopeptide.  It contained  in  total  5 Leu
residues  of which  one  had d-configuration.  The  position  of  the  d-Leu  in  the  peptide  sequence  was  deter-
mined  by  pepsin  and chemical  digestions  in  combination  with  isolation  of  diagnostic  peptide-fragments
and  subsequent  identification  of  absolute  configurations  of  the Leu  residues.  This allowed  pinpointing  the
position  of  the d-amino  acid.  The  complementarity  of the  peptide  retention  profiles  on  Chiralpak  ZWIX
column  as compared  to both  RPLC  and  HILIC  suggests  its  great  utility  as an  alternative  peptide  separation
tool.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Lipopeptides are amphiphilic natural compounds constituted
by an oligopeptide backbone and a fatty acid tail [1–3]. They
often exist in macrocyclic form due to lactone-type ring closure
between hydroxyl side chains and carboxylic functionalities, thus
also termed depsipeptides. Lipopeptides are biosurfactants [4] and
there is great interest in these biomolecules due to their poten-
tial bioactivities in particular antimicrobial and antitumor activities
[1,5,6], usually by exerting their activity via specific interactions
with the plasma membrane [7]. Interestingly, d-amino acids are
commonly found in these biomolecules which make them more
resistant against endopeptidase enzymes and proteolytic degrada-
tion, respectively [8].

∗ Corresponding author. Tel.: +49 7071 29 78793; fax: +49 7071 29 4565.
E-mail address: michael.laemmerhofer@uni-tuebingen.de (M.  Lämmerhofer).

1 These authors contributed equally.

Complete structure elucidation consequently requires the
determination of the absolute configurations of the chiral build-
ing blocks. For this purpose, the peptide is hydrolyzed and the
configurations of the residues are determined by enantioselective
analysis [9]. For amino acid enantiomer separation and absolute
configuration assignment, gas chromatography with pre-column
derivatization has become a state-of-art methodology [10,11]. On
the other hand, in liquid chromatography indirect methods [12,13]
using either ortho-phthaldialdehyde (OPA)/chiral thiol as chiral
derivatizating agent [14,15] or Marfey’s reagent (1-fluoro-2,4-
dinitrophenyl-5-l-alanine amide) [16–19] and subsequent achiral
RPLC are commonly used. There are only a few methods which
allow direct enantiomer separation of amino acids on chiral station-
ary phases in underivatized form, namely chiral ligand exchange
chromatography [20], LC with macrocyclic antibiotics such as
teicoplanin or teicoplanin aglycon based CSPs [21–24], LC with
chiral crown ether CSPs [25–27], and LC on zwitterionic chiral
ion exchangers [28–33] (for recent reviews on this topic cf. ref.
[34]). Two-dimensional HPLC assays are sometimes implemented

http://dx.doi.org/10.1016/j.chroma.2015.05.065
0021-9673/© 2015 Elsevier B.V. All rights reserved.
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for the purpose of comprehensive enantioselective amino acid
enantiomer analysis, also to overcome limited chemoselectivity of
chiral stationary phases [35,36]. Since CLEC is incompatible with
MS detection and chiral crown ethers typically require strongly
acidic conditions (often perchloric acid in the mobile phase), the
two MS  compatible CSP classes, namely macrocyclic glycopeptide
CSPs and zwitterionic cinchona alkaloid derived CSPs, were consid-
ered as first choice. Since the zwitterionic ion-exchangers based on
cinchona alkaloids appear in two versions, Chiralpak ZWIX(+) and
ZWIX(−) (see Fig. 1), with opposite elution orders [28,31], allowing
validation of results by reversal of elution order, they were selected
for our study and hyphenated with QTOF MS.  Only few reports
exist in the literature in which LC–MS in combination with chiral
stationary phases was used for direct enantiomer analysis with-
out pre-column derivatization [22] [37]. However, matrix effects,
insufficient sensitivities, peak distortions and inadequate chemical
selectivity for isobaric amino acids remained some of the unsolved
problems complicating this endeavor [20–22,25,28–31,35–37].

Elucidation of the stereochemistry in a lipopeptide is straight-
forward if individual building blocks are present only once in the
biomolecule or only in one configuration. The situation gets more
complicated if chiral synthons of one sort are present more than
once and both configurations are detected by enantioselective anal-
ysis of those constituents. In such cases, not only the sequence
of the building blocks but also the position of the particular ste-
reochemistry of the synthons has to be pinpointed for complete
structural characterization. Analytically, this is more challenging
because upon hydrolysis of the lipopeptide for enantioselective
analysis of the building blocks the sequence information is lost.
Different strategies have then to be adopted to solve the problem.

In this article, we suggest analytical strategies, methods and
complementary stationary phases for the comprehensive struc-
tural elucidation of the constitution and stereochemistry of
lipopeptides, depsipeptides and therapeutic peptides. Particular
focus is given on the elucidation of the potential of a new chi-
ral stationary phase, Chiralpak ZWIX (see Fig. 1), which is a chiral
zwitterionic ion-exchanger, for its capability to resolve the enan-
tiomers of the building blocks (amino acids, hydroxy acid) and
serve as complementary stationary phase to RPLC and HILIC in
separations of linearized and cyclic lipopeptide as well as of pep-
tide fragments generated by enzymatic and chemical digestion.
New selectivity profiles in such peptide separations and the stere-
oselectivity of this separation material for peptide enantiomers,
epimers and diastereomers [30,38,39] might facilitate and support
the structural elucidation.

It is documented for the comprehensive structural elucidation
of a lipopeptide isolated from the endophytic Pseudomonas poae
strain RE*1-1-14 (Fig. 2). Briefly, the target lipopeptide (LP) with a
10-amino acid peptide moiety was originally isolated from inter-
nal root tissue of sugar beet plants and shown to suppress growth

of the fungal pathogen Rhizoctonia solani.  The amino acid sequence
and fatty acid side chains by which this LP was constituted could be
readily confirmed by MS-based sequencing and NMR [40]. Uncer-
tainty existed for the stereochemistry which has been clarified in
this study by the use of Chiralpak ZWIX and a reference GC–MS
method using Chirasil L-Val. Furthermore, a combination of enzy-
matic, chemical and chromatographic methods were utilized for
unequivocally pinpointing which one of 5 Leu residues had d-
configuration.

2. Materials and methods

2.1. Materials

Amino acid standards, 1-fluoro-2,4-dinitrobenzene (Sanger’s
reagent) as well as reagents and solvents for GC–MS analysis
comprising trifluoroacetic anhydride (TFAA), ethyl trifluoroac-
etate (TFAEE), acetyl chloride, deuterium oxide, dichloromethane,
deuterated ethanol (EtOD) were all purchased from Sigma-Aldrich
(Munich, Germany).

Organic solvents, such as methanol and acetonitrile for LC–MS
were of Ultra-MS grade and supplied by Carl Roth (Karlsruhe,
Germany). Solvent additives (formic acid, ammonium formate)
were purchased in trace metal analysis or UPLC-MS grade from
Sigma-Aldrich. Ultra-MS-grade water was  obtained from Water
Purelab Analytics Purification System (from ELGA, Celle, Germany).
The lipopeptide poae RE*1-1-14 was  prepared and isolated as
described previously [40].

2.2. Instrumentation

2.2.1. GC–MS instrumentation
GC–MS analysis was performed as described previously [11]

using an Agilent 7890 A GC-system coupled to a single quadrupole
mass spectrometer 5975C inert MSD  with Triple-Axis (Agilent
Technologies, Waldbronn, Germany). A Chirasil L-Val column
(20 m × 0.3 mm i.d.; 0.28 �m film thickness; C.A.T., Tübingen,
Germany) was  used for separation of the amino acid enantiomers
after double derivatization as described below. The temperature of
the split/splitless injector was  set to 220 ◦C and the injector was
operated in the splitless mode. Hydrogen was used as a carrier
gas at constant pressure of 0.45 bar. The GC oven temperature was
programmed as follows: 50 ◦C for 0.5 min, 50 ◦C/min to 77 ◦C, then
4 ◦C/min to 110 ◦C, then 10 ◦C/min to 140 ◦C, then 6 ◦C/min to 195 ◦C
followed by a final hold for 7 min.

EI spectra were recorded in SIM mode determining the ions with
a mass to charge ratio of 126, 138, 140, 152, 166, 168, 176, 180,
199, 182, 214, 228, 290, 315 and 421. All measurements were per-
formed with an MS  source temperature of 230 ◦C and a quadrupole
temperature of 150 ◦C at 70 eV.

Fig. 1. Structure of utilized chiral stationary phases: (a) zwitterionic chiral ion-exchanger Chiralpak ZWIX(+) and ZWIX(−).
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Fig. 2. Structure of lipopeptide poaeamide. Numbering system refers to amino acid residue counted from the N-terminus.

2.2.2. HPLC-MS instrumentation
For absolute configuration determination of the 3-hydroxy-

decanoic acid an Agilent 1100 series LC system (Agilent Tech-
nologies, Waldbronn, Germany) equipped with a binary gradient
pump, autosampler, vacuum degasser, temperature-controlled col-
umn  compartment, UV-detector coupled to a mass-spectrometer
Agilent 1100 series LC MSD-SL ion-trap was used. The data were
processed with Bruker Daltonics Esquire data analysis software
version 2.2.

Other LC–MS experiments were conducted on a TripleTOF 5600+
(Sciex, Ontario, Canada) QTOF MS  instrument coupled via Duospray
Ion Source operated in ESI mode to an Agilent 1290 series UHPLC
pump and column thermostat equipped with a CTC-PAL HTS
autosampler (CTC Analytics, Zwingen, Switzerland).

2.3. Methods

2.3.1. Enantioselective analysis of amino acids by GC–MS with
Chirasil L-Val

The general procedure for the assignment of absolute con-
figurations of amino acids in peptides by GC–MS is described
elsewhere [11]. Briefly, the peptide sample was first hydrolyzed
by 6N deuterated hydrochloric acid (DCl/D2O) for 24 h at 110 ◦C.
The hydrochloric acid was evaporated in a Thermo Savant ISS110
SpeedVac (Thermo Scientific, Holbrook, USA) at 43 ◦C for 1–1.5 h.
The residue was dissolved in 350 �L of 3 N EtOD/DCl (prepared
from deuterated ethanol and acetyl chloride) and heated for 20 min
at 110 ◦C. The reagent was removed by a gentle stream of nitro-
gen at 110 ◦C. For the derivatization of the amino groups 350 �L of
a mixture of TFAA/TFAEE (1:2; v/v) were added and the reaction
allowed to proceed for 10 min  at 130 ◦C. Afterwards, the reagent
was removed at room temperature by a gentle stream of nitrogen.
For injection, the residue was dissolved in 100 �L dichloromethane.

2.3.2. Enantioselective analysis of amino acids by LC–MS with
Chiralpak ZWIX(+)

The assignment of absolute configurations of amino acid con-
stituents in peptides by LC–MS was performed on a Chiralpak
ZWIX(+) (3 �m;  150 mm × 4 mm i.d.) column (Chiral Technologies
Europe, Illkirch, France). A mixture of MeOH/H2O (98:2; v/v) con-
taining 9.4 mM ammonium formate and 9.4 mM formic acid was
used as mobile phase and the flow rate was 0.7 mL/min.

MS  parameters were as follows: the Duospray ion source was
operated in ESI(−) mode and the source voltage was −4500 V. The
source temperature was  400 ◦C, declustering potential −100 V, cur-
tain gas at 30 psi, nebulizer and drying gas at 60 psi. For targeted
acquisition and enhanced sensitivity, product ion high sensitiv-
ity mode was  used employing −20 V as collision energy. Analyses
of amino acids were performed after hydrolysis of lipopep-
tide as described above in underivatized and derivatized form.
Thus, amino acid standards, single enantiomers and racemates,
were injected. For derivatization, Sanger’s reagent (1-fluoro-2,4-
dinitrobenzene in acetonitrile; 2.5%, v/v) was used. Thus, 200 �L
of a solution of amino acids in 0.1 M sodium bicarbonate buffer
(pH 9.4) (0.2 mg/mL) were mixed with 100 �L Sanger’s reagent and
incubated at RT for 2 h. Then, the reaction was  quenched by addi-
tion of 10 �L concentrated ammonia, pH adjusted for extraction by
addition of 100 �L concentrated hydrochloric acid. DNP-derivatives
of amino acids were then extracted with 100 �L chloroform. The
organic extract was subsequently diluted with MeOH (1:100) for
LC–MS analysis.

2.3.3. Enantioselective analysis of 3-hydroxy carboxylic acid by
LC–MS with Chiralpak ZWIX(+) and ZWIX(−)

The lipopeptide was hydrolyzed as described for GC–MS anal-
ysis. For decreasing ion suppression, the 3-hydroxy fatty acid was
extracted using 200 �L of a mixture containing water and chloro-
form in a ratio of 1:1 (v/v). The chloroform layer was used for the
determination of the configuration of the 3-hydroxy decanoic acid.
Thus, the chloroform was  removed in the SpeedVac and the residue
was reconstituted in methanol.

In order to establish the enantiomeric elution order on Chiral-
pak ZWIX(+) and ZWIX(−), a standard mixture of enantiomerically
enriched (R)-3-hydroxydecanoic acid was prepared from a com-
mercial rhamnolipid (R-95 Rhamnolipid, Sigma-Aldrich) by acid
hydrolysis according to ref. [41], due to the commercial unavail-
ability of the enantiopure compound of 3-hydroxydecanoic acid.
Thus, 10 mg  of rhamnolipid were suspended in 0.5 mL  15% (v/v)
H2SO4 in a screw-capped glass tube. Then a volume of 0.5 mL
of chloroform was  added and the obtained biphasic system was
heated at 110 ◦C for 140 min. The chloroform layer containing
the fatty acid was  collected and evaporated to dryness and, suc-
cessively, solubilized in MeOH for subsequent chromatographic
runs.
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Enantioselective analysis was performed using a Chiralpak
ZWIX(+) and ZWIX(−)  (3 �m;  150 × 4 mm i.d.) column from Chi-
ral Technologies Europe. The column thermostat was set to 10 ◦C
and an isocratic run of 30 min  was performed using a mixture of
acetonitrile/methanol/acetic acid (95/5/0.025; v/v/v) at a mobile
phase flow rate of 0.3 mL/min. The injection volume was  10 �L.

The ESI source of the ion-trap mass spectrometer was oper-
ated in the negative ionization mode at 350 ◦C, 40 psi with a dry
gas flow of 7.5 L/min. Analysis was performed in a scan range of
m/z = 180–200.

2.3.4. Hydrolysis of cyclic ester and analysis of linearized
lipopeptide

For enzymatic digestion (see below) the cyclic ester (macro-
cyclic lactone ring) needed to be hydrolyzed to obtain the
linear form of the lipopeptide. Thus, the lipopeptide (2 mg)  was
hydrolyzed with 1N NaOH (400 �L) at 45 ◦C for 90 min, the reac-
tion mixture neutralized with 2N HCl and purified by RP-HPLC as
described previously [40].

The reaction product was monitored by (U)HPLC-QTOF-MS. For
all separations the MS  parameters were as follows: curtain gas
30 psi, nebulizer and drying gas 60 psi, ion source floating volt-
age 5500 V, source temperature 400 ◦C, and declustering potential
100 V. Acquisition was performed as scheduled targeted product
ion scans with collision energy of −25 V, for generating confirma-
tion fragment spectra.

Separation of cyclic and linear form was performed using
(i) RPLC, (ii) HILIC and (iii) zwitterionic ion-exchanger Chiral-
pak ZWIX(+) in polar organic mode under isocratic conditions.
Two different RP columns were tested for RPLC: ODS-Hypersil
(5 �m;  100 × 2.1 mm i.d.) from Agilent (Palo Alto, USA) and Kinetex
C18 (2.6 �m;  100 × 3 mm i.d.) from Phenomenex (Aschaffenburg,
Germany). The eluent consisted of water/acetonitrile (40/60; v/v)
with 0.1% (v/v) formic acid as modifier. The flow rate was
300 �L/min.

For HILIC separations, a SeQuant ZIC-HILIC column (3.5 �m;
150 × 2 mm i.d.) from MerckMillipore (Darmstadt, Germany) was
utilized. The eluent consisted of water/acetonitrile (5/95; v/v) with
0.1% (v/v) formic acid and the flow rate was 300 �L/min.

For polar organic mode separations, the Chiralpak ZWIX(+)
column was run with an eluent composed of water/acetonitrile
(65/35; v/v) with 0.1% (v/v) formic acid and a flow rate of
700 �L/min. Column temperature was maintained at 25 ◦C in all
experiments.

2.3.5. Location of d-leucine in peptide chain
For the determination of the position of the d-leucine residue in

the peptide chain the lipopeptide was digested to smaller peptide
fragments which were analyzed by (i) RPLC, (ii) HILIC and (iii) zwit-
terionic ion-exchange LC. Digests of the lipopeptide were prepared
both by enzymatic and chemical digestion.

Enzymatic digestion was performed as follows: 0.5 mg  of puri-
fied peptide were dissolved in 200 �L of 0.4% (w/v) solution of
pepsin in 10 mM  HCl and digested for 90 min  at 37 ◦C. Hydrochloric
acid was then removed by SpeedVac and the residue reconstituted
in 200 �L water/acetonitrile (50/50; v/v).

Chemical digestion was first optimized using 6N HCl at 110 ◦C
monitoring selected peptide intensities every 20 min. Finally,
chemical digestion was performed with 6N HCl at 110 ◦C for 20 min,
followed by evaporation of the hydrochloric acid in a SpeedVac and
reconstitution of the residue in acetonitrile/water (50/50, v/v).

Both enzymatic and chemical digests were analyzed by RPLC-
MS  on a Kinetex C18 column with gradient elution using water with
0.1% (v/v) formic acid as eluent A and acetonitrile with 0.1% (v/v)
formic acid as eluent B. The following gradient profile was adopted:
20% B from 0 to 2.5 min, 20–64% B from 2.5 to 12.5 min, 64% B from

12.5 to 15 min, 64–80% B from 12.5 to 17 min, 80% B from 17 to
20 min, 20% B from 20.1 to 23 min. Retention times of generated
peptides were elucidated mass spectrometrically in information
dependent acquisition (IDA) mode yielding retention time, peak
width and spectral confirmation. Fractions of target peptides were
collected by using a Waters fraction collector II. After hydrolysis
of the isolated peptides with DCl/D2O (as described above), their
amino acid enantiomer composition was  analyzed by GC–MS as
described above.

Chemical digests were additionally analyzed by HILIC with a
MerckSeQuant ZIC-HILIC column. Channel A (water with 0.1% (v/v)
formic acid) and B (acetonitrile with 0.1% (v/v) formic acid) sol-
vents were the same as specified above for RPLC on Kinetex C18
but the gradient profile was inverted: 80% B from 0 to 2.5 min,
20–64% B from 2.5 to 12.5 min, 64% B from 12.5 to 15 min, 64–80%
B from 12.5 to 17 min, 80% B from 17 to 20 min, 20% B from 20.1
to 23 min. Analysis in polar organic mode with Chiralpak ZWIX(+)
was conducted in isocratic mode with methanol/acetonitrile/water
(49/49/2; v/v/v) containing 25 mM ammonium formate and 25 mM
formic acid. MS  parameters were as follows: ESI(−) mode, curtain
gas 30 psi, nebulizer and drying gas 60 psi, ion source floating volt-
age −4500 V, source temperature 400 ◦C, and declustering potential
-100 V. Acquisition was performed as product ion-high sensitiv-
ity mode with −20 V collision energy, for enhanced sensitivity and
generating confirmation fragment spectra.

3. Results and discussion

3.1. Amino acid configurations in peptides

Racemates and single enantiomers of amino acids being con-
stituents of the lipopeptide along with its hydrolysate were injected
into a Chiralpak ZWIX(+) column employing conditions as speci-
fied in Section 2 [16,17,21,24,28–33]. All amino acids except for Ser
could be resolved under adopted conditions without derivatization
(Suppl. Material, Figure S1, left panel as well as Table S1). Except
for Glu and allo-threonine (a-Thr), the L-enantiomers eluted first
on Chiralpak ZWIX(+). The racemates of the amino acids present in
the lipopeptide along with allo-forms of Thr and Ile were analyzed
as a mixture as well and the results are shown for the individual
amino acid traces in Fig. 3. In spite of good enantiomeric separation
for Leu, Ile, and allo-isoleucine (a-Ile), it was not possible to distin-
guish between Ile and a-Ile when they were present in the same
mixture due to coelution of these isomeric compounds (Fig. 3c).
The problem could be solved by a two-dimensional LC-method,
but was  beyond the scope of the present study [35,36,42,43].
Instead, achiral derivatization with Sanger’s reagent was examined.
Sanger’s derivatives of all amino acids (N-2,4-dinitrophenyl-amino
acids) could be resolved (Suppl. Material, Figure S1, right panel
as well as Table S1) with consistent elution order of L before D
on Chiralpak ZWIX(+). The current zwitterionic cinchona alkaloid
derived chiral ion-exchangers have the advantage over correspond-
ing anion-exchanger based CSPs (Chiralpak QN-AX and QD-AX)
[44] that lower buffer concentrations, thus milder elution condi-
tions which is favorable for ESI-MS hyphenation, can be used for
analysis of acidic analytes such as N-derivatized amino acids, and
that run times are much shorter (here always less than 10 min, see
Fig. 3). While Ser was fully baseline resolved and also all 4 isomers
of the Thr/a-Thr family could be separated, a-Ile was  only partially
resolved from Ile and no resolution was observed between the 3
d-leucine isomers (d-Leu, d-Ile, and d-a-Ile) (Fig. 3g). While Chiral-
pak ZWIX exhibits good enantiomer separation capability for both
underivatized and derivatized amino acids, chemoselectivity lim-
itations for the group of leucine isomers requires other strategies
such as column coupling.
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Thus, as confirmatory method GC–MS using Chirasil L-Val as
chiral capillary column was utilized for determination of the abso-
lute configurations in the lipopeptide hydrolysate [10,11]. Amino
acids are polar and require double derivatization at both amino
and carboxylic acid terminus for GC. Thus, after hydrolysis of the
lipopeptide the carboxylic acid group of amino acids was  deriva-
tized to the ethyl ester in a first step and the amino group to
the N-trifluoroacetyl-derivative in a second derivatization step.
Although the analysis time is much longer in the GC–MS method
than in the HPLC-MS runs, GC–MS with Chirasil L-Val enabled the
simultaneous enantiomer separation of all amino acids including
isomeric leucines (Leu, Ile, a-Ile) and isomeric threonines (Thr, a-
Thr) (Fig. 4a). Fig. 4a shows the extracted ion chromatograms of
characteristic diagnostic ions of racemic mixtures of the amino
acids which were part of the lipopeptide. It can be seen that all
compounds of interest were well resolved and that without any
exemption d-amino acids eluted before the corresponding L-amino

acid enantiomers. Analysis of the hydrolyzed lipopeptide by GC–MS
finally revealed that the lipopeptide poaeamide is constituted of d-
Ser, d-a-Thr, d-Glu, L-Ile. For Leu on the other hand an enantiomer
ratio of 4:1 was  determined, i.e. 1 of the 5 leucine residues had d-
configuration. It becomes evident that a significant portion (50%)
of the amino acids in the lipopeptide has d-configuration which is
not uncommon for this class of natural compounds.

3.2. Determination of absolute configurations of 3-hydroxy fatty
acids

A characteristic feature of lipopeptides is a fatty acid side
chain which can be linked via ester or amide bonds to a linear
or cyclic peptide structure. Prior MS  and NMR  structure elucida-
tion showed that a 3-hydroxydecanoic acid side chain is attached
to the exocyclic portion of the peptide moiety of poaeamide.
Absolute configurations of 3-hydroxy acids in lipopeptides have
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been frequently assumed to be R-configured in the literature or
have not been specified at all. 3-Hydroxy fatty acids are formed
enzymatically in the course of �–oxidation of fatty acids. After
dehydrogenation in �/�-position of the carboxylic acid, enoyl-CoA
hydratases (ECHs) catalyze the syn hydration of trans-enoyl-CoA
to produce 3-hydroxyacyl-CoA in the second step of �-oxidation
[41]. Interestingly, two classes of ECHs are known, of which
one (ECH-1) is S-specific while the other (ECH-2) is R-specific.
In order to provide a method for experimental confirmation of
the absolute configuration in 3-hydroxy fatty acids and in par-
ticular 3-hydroxydecanoic acid, the fatty acid building block of
poaeamide, an enantioselective HPLC-ESI-MS assay for experi-
mental determination and verification of absolute configurations
of 3-hydroxy acids was established. It is a challenging task and
only few methods were reported. An HPLC method incorporating
pre-column derivatization and subsequent HPLC analysis employ-
ing a polysaccharide CSP has been described recently [41]. Ianni
et al. reported that 3-hydroxy alkanoic acids can be resolved
into enantiomers on Chiralpak ZWIX without derivatization [45].
This method was adopted herein and chromatographic conditions
adapted to be compatible with MS  detection. In this part of the
study, an ion-trap mass spectrometer was used and coupled to
the HPLC instrument with the Chiralpak ZWIX columns by an ESI
interface.

Since no authentic enantiomerically pure standards were avail-
able, enantiomerically enriched (R)-3-hydroxydecanoic acid was
isolated from a commercially available rhamnolipid known to have
largely R-configured 3-hydroxy decanoic acid as part of the fatty
acid ester moiety attached to the sugar residue, in order to estab-
lish enantiomer elution orders on Chiralpak ZWIX(+) and ZWIX(−).
This allowed to establish elution orders to be R before S on Chiralpak
ZWIX(+) and S before R on Chiralpak ZWIX(−).

At this point it must be emphasized that it was of utmost
importance to extract the 3-hydroxy decanoic acid into an organic
phase after hydrolysis. This is valid for both the acid hydrolysate
of the rhamnolipid standard as well as the acid hydrolysate of
the lipopeptide sample. Direct injection of hydrolyzed rhamno-
lipid standard and hydrolyzed lipopeptide sample gave severe
retention time shifts on the Chiralpak ZWIX columns which are
disturbing when the goal is to pinpoint the stereochemical iden-
tity. (Zwitterionic) chiral ion-exchangers such as Chiralpak ZWIX
do not well tolerate high salt loads in the sample matrix as such
conditions represent strong elution conditions leading to reten-
tion time shifts. To avoid wrong assignments, the sample was
injected additionally after spiking to the racemate. As can be seen
from Fig. 5a, the 3-hydroxy carboxylic acid was determined on
Chiralpak ZWIX(+) to have R-configuration. In order to validate
the assignment, sample and spiked racemate were also injected
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onto the Chiralpak ZWIX(−)  column which showed reversed elu-
tion order confirming the R-configuration of 3-hydroxydecanoic
acid side chain of poaeamide (data summarized in Table S2 of
Suppl. Material). Such reversal of elution orders are commonly not
possible with CSPs derived from natural chiral pool but is often
possible with quinine and quinidine derived ion-exchange type
CSPs, such as Chiralpak ZWIX(+) and ZWIX(−)  due to their pseudo-
enantiomeric character, i.e. opposite configurations in positions
C8/C9 of the cinchonan moiety and the cyclohexane moiety as well.
Since these are the stereoconfigurations within the active chiral
recognition site, enantiomeric behavior is often observed in spite
of their actually diastereomeric nature (both chiral selectors have
1S,3R,4S-configurations).

3.3. Hydrolysis of cyclic ester (lactone)

A strategy implementing enzymatic and chemical digestion was
utilized for the identification of the position of the d-Leu residue
in the peptide sequence (vide infra). Enzymatic digestion, however,
is only possible on a linear peptide chain and therefore a hydrol-
ysis step of the cyclic ester and lactone group, respectively, was
developed. Its success was monitored chromatographically.

Treatment of the cyclic lipopeptide with aqueous 1N NaOH for
90 min  at 45 ◦C gave the hydrolyzed linear peptide with opened
lactone ring in good yields. Amide bonds were not cleaved under
such conditions, yet a minor side product with m/z 1253.7967
was formed. MS  spectra confirmed that this impurity originates
from water cleavage in the a-Thr residue of the linear peptide
(see Suppl. Mat., Figure S2). It may  be regarded as an indication
for the position of ring closure. While MS  spectra in RPLC-MS
runs of hydrolyzed poaeamide (Fig. 6a, middle trace) indicated the
product formation, RPLC provided insufficient selectivity between
hydrolyzed and cyclic lipopeptide which actually coeluted on the
ODS Hypersil 5 �m column (Fig. 6a, bottom trace). UHPLC with a
Kinetex C18 2.6 �m core–shell particle column provided enough
efficiency to furnish baseline separation, at modest selectivity
yet (Fig. 6b). Attempts to improve the separation by use of a
zwitterionic HILIC column completely failed and only a slight shoul-
der of the linearized peptide was visible in front of the educt
(poaeamide) (Fig. 6c, bottom trace). In contrast, Chiralpak ZWIX
exhibited greatly enhanced chromatographic selectivities between
the cyclic educt and the linear hydrolysis product (see Fig. 6d, bot-
tom trace).

It seems that retention is dominated by the lipophilic fatty acid
moiety both in RPLC and HILIC leading to poor retentivity in HILIC

and (very) similar retention thus poor or lack of resolution in RPLC.
Due to specific molecular adsorption and binding to the quinine
carbamate selector of the Chiralpak ZWIX stationary phase driven
by specific binding domains, this selector appears to be highly
sensitive to minor structural changes in the polar domains of the
peptide when it is run in polar organic mode elution conditions.
The additional C-terminal carboxylic acid in the linear peptide
strongly drives retention and leads to recognition of minute charge
differences in cyclic and linear peptide forms. The fact that the
zwitterionic HILIC phase is not sensitive for these charge differ-
ences indicates that the Chiralpak ZWIX column may  involve other
binding increments for selective recognition as well. In any case, it
becomes evident that the Chiralpak ZWIX column may  be a valuable
complementary tool for studies on synthetic and natural peptide
analysis, not least due to its stereoisomer (enantiomers, epimers,
diastereomers) recognition capabilities demonstrated for peptides
recently [29,30,38,39,46].

3.4. Position of d-Leu residue in the peptide chain

Amino acid configuration analysis showed that 1 out of 5 Leu
residues has d-configuration. Since sequence information was lost
due to hydrolysis of the sample, the position of the d-Leu amino acid
residue in the peptide chain was unclear and had to be determined.
Chiralpak ZWIX has proven capability for peptide stereoisomer sep-
aration but authentic standards of each possible stereoisomer of
this peptide comprised of non-natural amino acids with lipid mod-
ification were too expensive. To locate the position of the d-Leu
residue, enzymatic and chemical digestion to produce smaller frag-
ments followed by subsequent hydrolysis of isolated fractions and
enantioselective analysis at the amino acid level was  envisioned as
a strategy to solve the stereochemistry of poaeamide.

3.4.1. Pepsin digestion
Pepsin is an endopeptidase which cleaves amide bonds pref-

erentially at the carboxyl side of Phe, Leu and partly Glu, thus
showing to some extent sequence selectivity. d-configurations at
such residues preclude cleavage and hence it was  expected that
d-Leu should be present in the interior of a peptide fragment
while C-terminal Leu would indicate an L-configuration in pepsin
digested peptides.

Along this line, the linearized peptide was subjected to pepsin
digestion at 37 ◦C for 90 min  and the RPLC chromatogram of the
digest showed several peptide fragments. Identified peptides and
their retention times as well as accurate masses are summarized



H. Gerhardt et al. / J. Chromatogr. A 1428 (2016) 280–291 287

0

2000

4000

6000

0 5 10 15 20Time [min]

0

300

600

900

0 5 10 15 20Time [min]

0

40000

80000

120000

0 5 10 15 20
Time [min]

Abundan ce

Abundan ce

Abundance

Cycli c

Linear

Mix

a) C

L

*

C,L

*
0

100000

200000

300000

0 2 4 6 8 10
Time [min]

0

50000

100000

150000

0 2 4 6 8 10
Time [min]

0

200000

400000

600000

0 2 4 6 8 10
Time [min]

Abundan ce

Abundan ce

Abundance

Cycli c

Linear

Mix

b) C

L

*

*

C

L

0

2000

4000

6000

0 1 2 3 4 5Time [min]

0

3000

6000

9000

0 1 2 3 4 5Time [min]

0

3000

6000

9000

0 1 2 3 4 5
Time [min]

Mix

Abundan ce

Cycli c

Abundan ce

Abundan ce

Linear

c) C

L

C

L

0

3000

6000

9000

5 10 15 20
Time [min]

0

60000

120000

180000

5 10 15 20
Time [min]

Cyclic

Linear

0

30000

60000

90000

5 10 15 20
Time [min]

Abundance

Abundan ce

Abundan ce

d)

Mix

C

L

C

L

*

Fig. 6. (U)HPLC-ESI-QTOF-MS Analysis of linearized poaeamide (cyclopeptide hydrolyzed with 1N NaOH). (a) RP-HPLC on ODS-Hypersil 5 �m,  (b) RP-UHPLC on Kinetex C18
2.6  �m,  (c) HILIC run on ZIC-HILIC 3.5 �m,  and (d) HPLC in polar organic mode on Chiralpak ZWIX(+). C, Cyclic poaeamide; L, linear poaeamide; * indicates side product of
hydrolysis (allo-threonine with water cleavage, i.e. linear peptide minus H2O; see supplementary information for further support; it may  be regarded as an indication for
the  position of ring closure) (Note, new standard mix  used in c), therefore different intensity ratios of linear and cyclic peptide compared to other chromatograms).

in Table 1 and XICs of relevant peptides used for clarification
of the stereochemistry are shown in Fig. 7. Since the digestion
was incomplete, linear peptide with m/z 1271.8072 in positive ion
mode was found in the digest eluting at 12.283 min  on the Kinetex
C18 core–shell column with employed gradient elution conditions
(Fig. 7a). The peak with m/z 1253.7967 eluting shortly after the
linear peptide corresponds to the impurity formed during alka-
line ester cleavage due to water loss at the a-Thr residue (see
above and Suppl. Mat., Figure S2). Several small peptides, which
were hardly retained, amongst them a peak corresponding to LSL,
SLL and/or LSI tripeptides with m/z  331.2107, were detected at
0.408 min  (the XIC for m/z  331.2107 in Fig. 7b provided also a
peak at the retention time of the undigested linear peptide which
can be assigned to any of those tripeptides formed by in-source
fragmentation). Fig. 7c shows the XIC generated for the peptide
fragment 3-hydroxydecanoyl-(3-HDA)-LETLL. Several peaks were
detected, many of them originating from in-source fragmentation
of larger peptide fragments as indicated. All major peaks were iso-
lated with a fraction collector in a subsequent semi-preparative
run. The isolated peptides were then subjected to acid hydrolysis
with DCl/D2O followed by double derivatization and enantioselec-
tive GC–MS analysis on Chirasil L-Val. No d-Leu was  found in the
tripeptides eluting at 4.1 min  and thus Leu-residues 7 and 8 were
L-configurated. In contrast, d-Leu was detected in the peptide frag-
ment 3-HDA-LETLL which was eluted and isolated at ca. 8.6 min.
Assuming that the C-terminal Leu residue bears L-configuration

Table 1
Pepsin digest of linearized poaeamide analyzed by RP-UHPLC on Kinetex C18 2.6 �m
core–shell column indicating also d-Leu presence/absence in different isolated
fractions.

Identified fragments Extraction mass
(Da) ±0.5 mDa

RT (min) Comment d-Leu

LSL, LSI, SLL 331.2107 0.41 Could be each
of these

No

3HDA-LETLL 757.4837 9.06 Yes
3HDA-LETLLSL 957.5998 9.37 Yes
3HDA-LETLLSLL 1070.6838 10.54 Yes

ETLLSLLSI 987.5852 12.28 In source decay
intact peptide

-
LSLLSI 644.4109 12.28 -
SL  218.1266 12.29 -
SI  218.1266 12.29 -
3HDA-LETL 644.3996 12.29 -
SLLSI 531.3268 12.29 -
LSLL  444.2948 12.29 -

because otherwise cleavage by pepsin would have been blocked,
it can be concluded that either Leu residue 1 or 4 carry the d-amino
acid.

3.4.2. Chemical digestion
Pepsin digestion did not yield smaller peptide fragments of the

N-terminus of linear poeamide. In order to get smaller fragments
of the N-terminus in which only one Leu residue was present, a
chemical digestion approach was devised. Thus, first the extent
of digestion in dependence of reaction time using acidic hydrol-
ysis with 6N HCl at 110 ◦C was explored to produce sufficiently
small peptide fragments, but avoid complete digestion to amino
acid level. Thus, the digestion kinetics was studied. It is evident that
a large diversity of peptides is generated by chemical digestion in
contrast to enzymatic digestion by pepsin. The relevant peptides
being of help for locating the d-Leu residue in the peptide chain are
those containing either the Leu-1 or Leu-4 residue. Fig. S3 (Suppl.
Material) reveals the decline of the peak area of 3 diagnostic peptide
ions containing either Leu-1 or Leu 4 in dependence of the digestion
time. The kinetic data (rate constant for degradation k and half-time
t1/2) are summarized in Table 2. It turns out that maximal peak area
is observed soon after start of the chemical reaction and fragments
completely disappear after ca. 150 min. Hence, a digestion time of
20 min  was finally selected. The peptide fragments formed under
such conditions are summarized in Table 3. Fractions were collected
for specific peptides as indicated in Table 3. Fig. 8 depicts XICs of
RPLC runs on Kinetex C18 of collected fractions. Their amino acid
enantiomer analysis by GC–MS on Chirasil L-Val revealed that the
Leu residue of 3-HDA-L and 3-HDA-LE had L-configuration. In con-
trast, d-Leu residue was  found in the isolated peptides LETL and
TLL. Consequently, the d-Leu residue was  confirmed to be present
in position 4 of the peptide providing the complete stereochemis-
try of the lipopeptide poeamide as follows: d-Leu in residue 4 and
d-amino acids in position 2, 3, 6 and 9.

Table 2
Kinetic data of chemical digestion for 3 different peptide fragments.

Linear equationa R2 k [min−1] t1/2 [min]

3HDA-L y = −0.0264x + 9.0933 0.9892 0.026 26.26
TLL y = −0.0180x + 8.9011 0.9480 0.018 38.51
LETL/ETLL y = −0.0393x + 9.1352 0.9520 0.039 17.64

a ln y = ln y0 − kt.
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3.5. Potential of Chiralpak ZWIX for complementary peptide
separations

RPLC and HILIC showed some deficiencies in above peptide sep-
arations in particular for small peptides. The last goal of this study
was therefore to elucidate whether Chiralpak ZWIX can generate
complementary retention profiles to RPLC and HILIC in peptide sep-
arations. To demonstrate this, the chemical digest of poaeamide
was analyzed by RPLC (on Kinetex C18), HILIC (on ZIC-HILIC) and
polar organic mode (on Chiralpak ZWIX). Orthogonality plots can
be utilized to display the complementarity of the respective chro-
matographic modes (Fig. 9; the corresponding orthogonality plot
between RPLC and HILIC is given in Figure S4 of Suppl. Material).

Fig. 9a shows the corresponding orthogonality plot between
RPLC on Kinetex C18 core-shell column and zwitterionic chiral
ion-exchanger Chiralpak ZWIX in polar organic elution mode. It
is striking that the data points are relatively evenly distributed in
the parity plot indicating good orthogonality. It can be seen that the
peaks eluting < 2 min  in RPLC are well retained and evenly spread in
the Chiralpak ZWIX separation dimension. This chiral zwitterionic
ion-exchanger may  therefore be regarded as strongly complemen-
tary to RPLC. Therefore, it is supposed to be valuable for peptide
separations in which selectivity problems of RPLC are observed and
highly suitable for 2D-LC peptide separations.

The data points are even more uniformly distributed in the
orthogonality plot spanned by the retention times on the ZIC-HILIC
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Fig. 8. UHPLC-ESI-QTOF-MS analysis of chemically digested poaeamide. The chromatograms show the collected fractions for the verification of presence of d-Leu in peptide
fragments. (a) XIC of m/z  430.2679 (trace in blue) and of m/z 301.2253 (trace in red). b) EIC of m/z 345.2264 (trace in blue) and of m/z 474.2689 (trace in red). Column: Kinetex
C18,  2.6 �m.  Extraction window, 5 mDa  (±2.5 mDa) (For interpretation of the color information in this figure legend, the reader is referred to the web version of the article.).

column and the polar organic mode separation on the Chiralpak
ZWIX column (Fig. 9b). It seems that these two chromatographic
methods are a perfect combination for two-dimensional peptide
separations. Elution conditions of these two complementary modes

(HILIC and polar organic mode) are better compatible and their
combination in a 2D-method appears more straightforward than of
RPLC and HILIC. It should also be emphasized again that Chiralpak
ZWIX has capability to separate stereoisomers of (small) peptides

(a) (b)

Fig. 9. Orthogonality plots measuring complementarity of retention profiles of distinct chromatographic modes. (a) RPLC (Kinetex C18, 2.6 �m) vs HPLC in polar organic
mode on chiral zwitterionic ion-exchanger (Chiralpak ZWIX(+), 3 �m),  (b) HPLC in polar organic mode on chiral zwitterionic ion-exchanger (Chiralpak ZWIX(+), 3 �m)  vs
HILIC  (ZIC-HILIC, 3.5 �m).  Amino acids or peptides which cannot be distinguished by fragmentation spectra are surrounded by a blue dotted line and could be each of these.
Coeluting amino acids or peptides are surrounded by an orange solid line. Amino acids and dipeptides: 1 I; 2 L; 3 LE; 4 LL; 5 LS; 6 SI; 7 SL; 8 TL; tri- to pentapeptides: 9 ETL;
10  SLL; 11 TLL; 12 ETLL; 13 ETLLS; 14 LETL; 15 LETLL; 16 LSLL; 17 LLSLL; 18 SLLS; 19 SLLSI; 20 TLLS; 21 TLLSL; hepta- to nonapeptides: 22 ETLLSL; 23 ETLLSLL; 24; ETLLSLLSI;
25  LETLLS; 26; LETLLSL; 27 LETLLSLLS; 28 LLSLLSI; 29 LSLLSI; 30 TLLSLL; 31 TLLSLLS; 32 TLLSLLSI; 3-HDA-peptides: 33 3-HDA-LETLL; 34 3-HDA-LETLLS; 35 3-HDA-LETLLSL;
36  3-HDA-LETLLSLL; 37 3-HDA-LETLLSLLSI (For interpretation of the color information in this figure legend, the reader is referred to the web version of the article.).
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Table 3
Chemical digest of poaeamide analyzed by RP-UHPLC on Kinetex C18 2.6 �m core–shell column indicating also d-Leu presence/absence in different isolated fractions.

Identified fragments Extraction mass
±0.5 mDa

RT (min) Comment d-Leu

SI 218.1266 1.55 Co-elution Not collected
SL  218.1266 1.55
LS  218.1266 1.55
L  131.0946 1.55
I  131.0946 1.55
TLLS  432.2584 1.55
TL  232.1423 1.57
LET  361.1849 1.58
ETL 361.1849 1.58
ETLLS 561.301 1.63
LLS/LSL/SLL/LSI 331.2107 2.47 Could be each of these Not collected
LL  244.1787 2.51
ETLL  474.2689 3.64 Could be each of these Yes
LETL 474.2689 3.64
TLL  345.2264 3.95 Yes
LETLLS 674.385 5.17 Could be each of these Not collected
ETLLSL 674.385 5.17
3-HDA-LE 430.2679 9.42 No
3-HDA-L 301.2253 10.55 No

(enantiomers, epimers, and diastereomers) as shown recently on
some examples [29,30,38,39]. It is without doubt that the Chi-
ralpak ZWIX column could be a valuable tool for complementary
peptide separations, worth to be tested as secondary retention
principle.

4. Conclusions

A set of complementary and confirmative methods has been
suggested to support complete structural elucidation of the stereo-
chemistry of lipopeptides. Chiralpak ZWIX allows LC enantiomer
and stereoisomer separations of amino acids, hydroxy alkanoic
acids and peptides and was of central importance. Its ESI compat-
ible elution conditions enabled straightforward coupling to MS  a
sine qua non in structure elucidations. Chirasil L-Val turned out
to be invaluable for confirmation of amino acid configurations.
The determination of the position of absolute configurations in the
peptide sequence in case of multiple amino acids of one type and
detection of both configurations in the peptide is more challenging.
Fragmentation of the peptide into smaller fragments by enzymatic
and chemical digestion provided diagnostic peptides which could
be used to solve this issue. For the entire study, highly pure start-
ing peptides are needed for this purpose otherwise the results
may  get confusing, e.g. if peptide or protein impurities are present.
The proposed methods can be analogously applied to solve similar
stereochemical problems in other peptides, cyclopeptides, lipopep-
tides, depsipeptides and impurity profiling of therapeutic peptides
as well.
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Figure S1. Amino acid enantiomer separations on Chiralpak ZWIX(+): a) underivatized, b) as N-

2,4-dinitrophenyl (Sanger’s) derivatives. Individual racemates and single enantiomers have been 

injected. Conditions see main document. 
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Table S1. Liquid chromatographic enantiomer separation data for underivatized and N-2,4-

dinitrophenyl-derivatized amino acids obtained on the zwitterionic chiral ion-exchanger Chiralpak 

ZWIX (t0=2.1 min, 5µl Acetone as t0 marker). 

Amino acid Free amino acids 
a
 DNP-derivatized amino acid 

b
 

 D amino acid L amino acid  D amino acid L amino acid  

 RT [min] k RT [min] k α RT [min] k RT [min] k α 

Serine (Ser) 
5.33 1.54 5.33 1.54 1.0 8.72 3.15 6.26 1.98 1.6 

Glutamic acid 

(Glu) 

7.42 2.53 8.20 2.90 1.1 8.34 2.97 7.54 2.59 1.1 

Leucine (Leu) 
4.38 1.09 3.81 0.81 1.3 4.74 1.26 4.13 0.97 1.3 

Isoleucine (Ile) 
4.26 1.03 3.65 0.74 1.4 4.81 1.29 3.90 0.86 1.5 

Allo-isoleucine (a-

Ile) 

4.32 1.06 3.70 0.76 1.4 4.88 1.32 3.80 0.81 1.6 

Threonine (Thr) 
5.25 1.50 4.56 1.17 1.3 6.97 2.32 4.77 1.27 1.8 

Allo-threonine (a-

Thr) 

4.19 1.00 4.34 1.07 1.1 6.21 1.96 4.93 1.35 1.5 

a elution order for underivatized amino acids: L before D, except for Glu and a-Thr (D < L) 
b elution order for DNP-derivatives of amino acids: always L before D 
 

 

 

Table S2. Chromatographic results for the enantiomer separation of the N-terminally attached fatty 

acid (FA) moiety of the lipopeptide poaeamide on the zwitterionic chiral ion-exchanger Chiralpak 

ZWIX. 

 Chiralpak ZWIX (+) Chiralpak ZWIX (-) 

Parameter Retention time [min] Elution order Retention time [min] Elution order 
FA of poaeamide 13.118 - R - 16.944 R 
Standard + R 13.477 14.669 R < S 15.458 16.764 S < R 
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Figure S2: Verification of the structure of the impurity in the sample of the linearized peptide 

(impurity not detected in the cyclic peptide). a) Chromatogram of the linearized peptide measured 

on ZWIX (+). b) Fragment mass spectra of the linear peptide (m/z 1270.8072). c) Mass spectra of 

linear peptide with one water cleaved. The spectra show that the water cleavage is on the allo-

threonine side chain  
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Figure S3. Kinetics of chemical digestion as measured on 3 different peptide fragments. 

 

 

 

Figure S4 depicts the orthogonality plot of retention times between HILIC on ZIC-HILIC column and 

RPLC on Kinetex C18 core-shell column. From this plot a few general patterns become readily 

evident. The group of amino acids and dipeptides, which elute in a single peak in RPLC 

(compounds lying on a vertical line and eluting little earlier than 2 min) are reasonably well retained 

and are better spread in HILIC mode, although still many peptides coelute. The peptides still 

carrying the 3-hydroxy fatty acid moiety at the N-terminus (3-HDA-peptides) are strongest retained 

in RPLC, yet still sufficiently retained in HILIC mode. Taking the cluster of compounds early eluted 

in RPLC (< 2 min; except for 18 and 28) aside, the lipopeptide fragments are lying on a negative 

trend line being indicative for negative correlation of RPLC and HILIC with little complementarity in 

the two modes. In fact, overall the data points are not widely spread over the two dimensions but 

essentially clustered into 4 groups. 

 

  

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

0 20 40 60 80 100

ln
 p

e
a
k
 a

re
a
 

Time of chemical digestion [min] 

3-HDA-L

TLL

LETL /ETLL



6 
 

 

 

 

 

Figure S4. Orthogonality plots measuring complementarity of retention between RPLC (Kinetex 

C18, 2.6 µm) and HILIC (ZIC-HILIC, 3.5 µm). Amino acids or peptides which cannot be 

distinguished by fragmentation spectra are surrounded by a blue dotted line and could be each of 

these. Coeluting amino acids or peptides are surrounded by an orange solid line. 

Amino acids and dipeptides: 1 I; 2 L; 3 LE; 4 LL; 5 LS; 6 SI; 7 SL; 8 TL; tri- to pentapeptides: 9 

ETL; 10 SLL; 11 TLL; 12 ETLL; 13 ETLLS; 14 LETL; 15 LETLL; 16 LSLL; 17 LLSLL; 18 SLLS; 19 

SLLSI; 20 TLLS; 21 TLLSL; hepta- to nonapeptides: 22 ETLLSL; 23 ETLLSLL; 24; ETLLSLLSI; 

25 LETLLS; 26; LETLLSL; 27 LETLLSLLS;; 28 LLSLLSI; 29 LSLLSI; 30 TLLSLL; 31 TLLSLLS; 32 

TLLSLLSI; 3-HDA-peptides: 33 3-HDA-LETLL; 34 3-HDA-LETLLS; 35 3-HDA-LETLLSL; 36 3-

HDA-LETLLSLL; 37 3-HDA-LETLLSLLSI. 
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Therapeutic peptides represent one of the fastest growing segments in the
pharmaceutical market. To bring these products to the market in a consistent
manner, high quality is a major concern and requires stringent quality control
(QC) methods. The quality of peptide therapeutics cannot be comprehensively
tested by a single method. Hence, a number of tools are necessary to meet the
goals of QC in therapeutic peptides. This article discusses the potential of
zwitterionic chiral ion-exchangers to support peptide analysis and quality
control as a flexible complementary tool to monitor the stereochemical integrity
and chemical modifications.

Peptides occupy important positions in therapeutic research and in healthcare, food,
and cosmetic industries, as well as in many other fields. Appropriate analytical
methods are required to check the purities in peptide synthesis and meet the
regulatory challenges in R&D, manufacturing, and QC of therapeutic peptides.

In practice, multiple analytical aspects have to be considered, such as the chemical
and enantiomeric/stereoisomeric purities of starting amino acid and small peptide
building blocks, the monitoring and control of stereochemistry and impurities of
intermediate molecules from synthetic process, as well as the assessment of the
structural integrity (amino acid composition, sequence, chirality) of final peptide
products (1–3).

To determine the enantiomeric or stereoisomeric purities of raw materials or for the
assignment of the absolute configuration of constituent entities of peptides or other
related biopharmaceutical preparations, pre‑column derivatization of the hydrolysates,
followed by gas chromatography–mass spectrometry (GC–MS) or liquid
chromatography (LC) coupled to MS analysis using capillaries or particulate packed
columns has been the standard practice for decades.

Nevertheless, direct chiral analysis of amino acid or peptide fragments with no pre-
column derivatization represents a more convenient and straightforward approach in
terms of sample treatment, method simplicity, and speed of analysis cycle. High
performance liquid chromatography (HPLC), often combined to MS detection, is
undoubtedly the most attractive technique for this purpose.

A series of chiral selectors or stationary phases have been proven to be valuable for
direct enantiomer or stereoisomer analysis of amino acids and small peptides by
chromatography. The most important chromatographic supports to be cited in this
regard include the chiral ligand exchangers (4–6), chiral crown ethers (7–11),
macrocyclic antibiotics (12–15), and zwitterionic chiral ion‑exchangers (16–17). These
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chiral supports run analysis by chromatography on the basis of various enantio-
selective or stereo-selective retention mechanisms.

Cinchona alkaloid-derived zwitterionic chiral ion‑exchangers with cyclohexane
sulphonic acid moiety (Figure 1[a]) have proved to be effective for the direct analysis
of enantiomers and stereoisomers of a wide range of ampholytes such as amino acids
(18–21) and peptides (22–24,37). The chiral-recognition ability of these zwitterionic
chiral ion-exchanger columns to a great variety of amino acids (18–21, 24–32) and
other racemic ionic compounds (33–35) has been investigated and demonstrated.

[9]

Mechanistically, three distinct application modes can be distinguished: (i) For chiral
acidic analytes the zwitterionic chiral ion-exchanger CSPs (chiral stationary phases)
act like an enantioselective anion-exchanger. Thereby, the zwitterionic chiral ion-
exchanger columns are typically operated under weakly acidic (polar organic or
hydro‑organic) mobile phase conditions. Under such conditions the quinuclidine
moiety is positively charged and attracts electrostatically acidic analytes
(anion‑exchange mode). H-bond mediated ionic interaction combined with additional
H-bonds (at carbamate moiety), π-π-interactions (with quinoline), dipole–dipole, and
van der Waals forces or steric interactions support enantioselective complexation of a
wide variety of chiral acids covering essentially the same application spectrum as the
corresponding chiral anion-exchangers (with tert‑butyl moiety instead of the
cyclohexane sulphonic acid residue at the carbamate group). Moreover, the sulphonic
acid moiety of the chiral selector plays the role of an intramolecular counterion, which
is present in equimolar concentrations with respect to the fixed ion-exchanger moiety.
It leads to faster elution and allows the counterion concentration in the mobile phase to
be reduced significantly, which is favourable for electrospray ionization (ESI) in LC–
MS(–MS) applications; (ii) Vice versa, chiral basic compounds primarily interact at the
chiral sulphonic acid moiety following the principles of cation-exchange (cation-
exchange mode). In this case, the positively charged quinuclidinium represents the
intramolecular counterion, which leads to accelerated separations compared to
corresponding chiral cation-exchangers; (iii) For zwitterionic solutes, double ion-pairing
at both cation- and anion-exchange sites may occur simultaneously (zwitterionic ion-
exchange mode), giving zwitterionic‑type CSPs their unique character (see Figure
1[b]). Depending on which of the two domains provides higher affinity the analyte will
primarily bind to this site with high strength while the other site may contribute by long-
range electrostatic interactions. In any case, increased ionic strength (that is, higher
acid/base additive concentrations) of the eluent leads to ionic shielding of charged
groups and stronger analyte displacement from the ion-exchanger site, respectively,
consequently decreasing retention.

In the current study, their performance in direct stereo‑selective separation of small
peptides is further explored using LC–MS-compatible mobile phases. The second part
of the report focuses on a case study where the zwitterionic chiral ion-exchanger
columns investigated are deeply involved in the elucidation of the structural
constitution and the stereochemistry of a lipopeptide, as well as to separate the
peptide fragments generated from the linearized and the digested lipopeptide. In this
case, the application of the zwitterionic chiral ion-exchanger columns is extended from
analysis of enantiomers and stereoisomers of the hydrolysate amino acids, over
determination of absolute configuration of the hydrolyzed fatty acid side chain, to the
orthogonal properties of the zwitterionic chiral selectors with regard to other
chromatographic modes such as hydrophilic interaction liquid chromatography (HILIC)
and reversed-phase chromatography.

http://files.alfresco.mjh.group/alfresco_images/pharma//2016/03/09/04b1313d-02a5-4345-aa0c-7fa9fbc3e21a/figure%201%20L.jpg
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Experimental

Chemicals: Mobile phases for chromatography were prepared from HPLC-grade
solvents. Methanol, acetonitrile, tetrahydrofuran (THF), and water were purchased
from Carlo Erba Reagents. Formic acid (FA), diethylamine (DEA), ammonium
hydroxide (NH4OH, 27–28%), and di- and tri-peptide samples were supplied by
Sigma-Aldrich Chimie S.a.r.l. The compressed nitrogen (5.0, Messer France SAS) was
used as the nebulizing gas for the evaporative light scattering detector (ELSD).

For Enantio- and Stereo-Selective Separation of the Peptides: The HPLC system
used was an Agilent 1100 series apparatus optimized in terms of system void by using
micro-flow cell (1.7 µL) and flow capillaries of 0.12‑mm i.d. An evaporative light
scattering detector (ELSD 2000ES, Alltech) was hyphenated to a diode-array detector
(Agilent) via an interface 35900E. The generic parameters of ELSD were: gas flow, 1.7
L/min; drift tube temperature, 70 °C; gain, 1; impactor, OFF.

The zwitterionic chiral ion-exchanger columns used for the study were 150 × 3 mm, 3-
µm Chiralpak ZWIX(+) (based on trans-(1’’S,2’’S)-N-[[[(8S,9R)-6’-methoxycinchonan-
9-yl]oxy]carbonyl]-2’’-aminocyclohexanesulphonic acid; quinine-derived) and 150 × 3
mm, 3-µm Chiralpak ZWIX(-) (based on trans-(1’’R,2’’R)-N-[[[(8R,9S)-6’-
methoxycinchonan-9-yl]oxy]carbonyl]-2’’-aminocyclohexanesulphonic acid;
quinidine‑derived) (Chiral Technologies Europe) (Figure 1[a]). The chemistries of these
zwitterionic chiral ion-exchange columns will be referrred to genericaly as ZWIX(+) and
ZWIX(–)] in this article. (The typical mobile phases used in the study were 50 mM FA +
25 mM DEA as additives in methanol/acetonitrile/H2O 49:49:2 v/v/v (MP‑I),
methanol/THF/H2O 49:49:2 v/v/v (MP-II), methanol/H2O 98:2 v/v (MP-III), and
methanol/H2O 90:10 v/v (MP-IV). The flow rate was set at 0.5 mL/min.

For Lipopeptide Analysis: Absolute configurations of amino acid constituents of the
lipopeptide (after hydrolysis by 6N DCl in D2O for 24 h at 110 °C and evaporation)
were assigned by enantioselective HPLC with a 150 × 4 mm, 3-µm ZWIX(+) column,
methanol/H2O (98:2 v/v) containing 9.4 mM ammonium formate and 9.4 mM formic
acid as mobile phase, flow rate of 0.7 mL/min and ESI with quadrupole time-of-flight
(QTOF)-MS detection. For absolute configuration determination of the 3-hydroxy fatty
acid side chain, this lipid was extracted by liquid–liquid extraction (LLE) with
chloroform–water (1:1 v/v). The chloroform layer was evaporated and analyzed by
150 × 4 mm, 3-µm ZWIX(+) and 150 × 4 mm, 3-µm ZWIX(-) columns at 10 °C column
temperature, acetonitrile/methanol/acetic acid (95/5/0.025 v/v/v) as mobile phase, flow
rate of 0.3 mL/min, and MS detection.

Separations of cyclic and linear lipopeptide forms were performed using i) reversed-
phase LC using octadecylsilica with a 100 × 2.1 mm, 5-µm ODS-Hypersil (Agilent)
column using water/acetonitrile (40:60 v/v) with 0.1% (v/v) formic acid, ii) HILIC on a
sulphobetaine stationary phase with a 150 × 2 mm, 3.5-µm SeQuant ZIC‑HILIC
(Merck Millipore) column using water/acetonitrile (5:95 v/v) with 0.1% (v/v) formic acid,
and iii) a 150 × 4 mm, 3-μm ZWIX(+) column with water/acetonitrile (65:35 v/v)
containing 0.1% (v/v) formic acid. ESI-QTOF-MS was used as detector.

Complementarity plots were generated on chemical digests of the lipopeptide using
reversed-phase LC–MS on a 100 × 3 mm, 2.6-µm core–shell octadecylsilica Kinetex
C18 column (Phenomenex) with gradient elution using water (A) and acetonitrile (B)
with 0.1% (v/v) formic acid and the following gradient profile: 20% B from 0–2.5 min,
20–64% B from 2.5–12.5 min, 64% B from 12.5–15 min, 64–80% B from 15–17 min,
80% B from 17–20 min, and 20% B from 20.1–23 min. Furthermore, the HILIC method
made use of the sulphoalkylbetaine ZIC-HILIC column and the same eluents but
inverted gradient: 80% B from 0–2.5 min, 80–36% B from 2.5–12.5 min, 36% B from
12.5–15 min, 36–20% B from 15–17 min, 20% B from 17–20 min, and 80% B from
20.1–23 min. Analysis for complementarity assessment in polar organic mode with the
ZWIX(+) column was conducted in isocratic mode with methanol/acetonitrile/water
(49:49:2 v/v/v) containing 25 mM ammonium formate and 25 mM formic acid.

Detection in LC–MS experiments was performed on a TripleTOF 5600+ (Sciex) QTOF
MS instrument coupled via Duospray Ion Source (Sciex) and operated in ESI mode
(curtain gas 30 psi, nebulizer and drying gas 60 psi, source temperature 400 °C) to an
1290 series UHPLC pump (Agilent) and column thermostat equipped with a CTC-PAL
HTS autosampler (CTC Analytics). For amino acid analysis (free and derivatized with
Sanger’s reagent) as well as peptide separations to elucidate complementarity profiles
on a ZWIX(+) column in ESI(-) mode was used with an ion-source floating voltage of
-4500 V, and declustering potential -100 V. Acquisition was performed in product ion-
high sensitivity mode with -20 V collision energy for enhanced sensitivity and to
generate confirmation fragment spectra. Peptide separations by reversed-phase LC
and HILIC were performed in positive ESI(+) mode, ion-source floating voltage 5500 V,
and declustering potential 100 V. Acquisition was performed as scheduled targeted
product ion scans with collision energy of 25 V for generating confirmation fragment
spectra.

Further details on experimental conditions can be found in reference (36).

Results and Discussion

Two zwitterionic chiral ion-exchange CSPs were investigated for this study.
Chemically, they consist of cinchona alkaloid-derived quinine carbamate with
sulphonic acid moiety (S,S)-trans-2-aminocyclohexanesulphonic acid, ZWIX(+), and
cinchona alkaloid-derived quinidine carbamate with (R,R)-trans-2-
aminocyclohexanesulphonic acid, ZWIX(-), (18) (see Figure 1[a]). Stereochemically,
these two chiral selectors are diastereoisomers but behave most frequently as
pseudo-enantiomers. Such an idiosyncrasy affords the possibility and convenience of
reversing elution order of enantiomers by switching the ZWIX column from one to the
other (24). The chiral recognition and stereo‑selective separation of ampholytic
analytes such as free amino acids and peptides is primarily based on the synergistic
double ion-pairing between the zwitterionic chiral ion-exchange selector and the
zwitterionic analytes (zwitterionic ion‑exchange mode) (Figure 1[b]) and assisted by
other weaker interactions such as hydrogen bonding, π-π stacking, and van der Waals
forces, as outlined above. On account of the zwitterionic ion‑exchange mechanism,
the co-presence of acidic and basic additives in an appropriate ratio is necessary to
regulate the ionic interactions via displacement effects (16–17). The methanol-based
mobile phase is recommended as the first choice for separations on the zwitterionic
chiral ion-exchangers. The most useful mobile phase modifiers include water,
acetonitrile, or tetrahydrofuran (THF). Among these solvents, methanol and water offer
the most suitable solvation ability to all the ionized species involved in the ion-
exchange equilibria. Exhibiting the strongest elution power, water is normally used at a
low percentage (≤20% in volume). In contrast, the aprotic solvents acetonitrile and
THF are weak eluting mobile phase components and are usually used up to 50%.
Their presence in the mobile phase can efficiently contribute to the retention
adjustment of fast-eluting analytes (21).

Stereo-Selective Separation of Di- and Tri-peptides: The experimental scheme or
approach is essentially the same for amino acids and peptides on the zwitterionic
chiral ion-exchanger columns investigated. For both a zwitterionic ion pairing/ion-
exchange mode drives the retention and separation. Both the length of peptide, that is,
the number of amino acid residues in the peptide chain, and the side chains modulate
enantioselectivity. The first trials of separating enantiomers and stereoisomers of small



1.9.2019 Peptide Analysis: Zwitterionic Chiral Ion-Exchangers as Complementary Option to HILIC and to Reversed-Phase Chromatography

www.chromatographyonline.com/print/310341?page=full 4/10

peptides were attempted with easily accessible commercial small peptide standard
samples. In total, 13 common di-peptides and six typical tri-peptides are involved in
the first part of this study.

[10]

The experimental results are summarized in Table 1 for enantiomers of di- or tri-
peptides bearing a single stereogenic centre. As indicated by the selectivity data (�),
each pair of enantiomers could be recognized on the ZWIX(+) column, with the highest
resolution degree for Gly-dl-Trp and Gly-dl-Ser. It was observed that, even with
extensive optimization of the chromatographic conditions, the achievement of full
enantiomer resolution of dl-Ser proved to be challenging on these CSPs. With a
glycine component attached to the N-terminus of serine (Gly‑dl‑Ser), however, a large
and effortless separation of the enantiomers could be obtained. It should be noted that
this does not represent a generic scenario and the enantio- or stereo-selectivity is
highly structure-dependent.

When it comes to the peptides containing more than one stereogenic centre, the peak
configuration in a single analysis becomes more complex. In this case, it would be of
high importance to monitor the peak elution order while optimizing the enantio- and
stereo-selectivities as well as the resolution degrees between the peaks. Unfortunately
no information on elution order could be collected in our study because of the
unavailability of enantiomer or diastereoisomer standards.

http://files.alfresco.mjh.group/alfresco_images/pharma//2016/03/09/04b1313d-02a5-4345-aa0c-7fa9fbc3e21a/table%20L.jpg
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Again, the challenging configuration of multi-peaks in a single and short
chromatographic analysis would require enhanced performance of the column. For the
given chiral selector bonded on to the spherical silica matrix with well‑defined particle
size, pore, and surface properties, the most viable options would be the variation in
composition of bulk mobile phase, the reduction of column temperature, and the use of
a longer column. While the first two approaches could be adopted in attempts to
enlarge the selectivities (therefore the resolution degree), the third alternative would
normally be more forthright by offering higher column efficiency without changing the
capacity factors.

[11]

For separation of diastereoisomers of the di- or tri‑peptides containing two stereogenic
centres (see Table 2), most of the data were acquired at 10 °C and represented an
effective improvement in resolution degree of the adjacent peaks in regard to the
conventional temperature at 25 °C. The effect of mobile phase on the resolution of dl-
Leu-dl-Val is shown in Figure 2(e). Peak co-elution occurred while
methanol/acetonitrile/H2O 49:49:2 (MP-I in [e-1]) or methanol/H2O 98:2 (MP-III in [e-
3]) was in use as the bulk mobile phase. A full separation of the four stereoisomers
could be achieved by simple replacement of acetonitrile in MP-I with THF (MP-II in [e-
2]). The performance of the zwitterionic chiral ion-exchanger columns investigated can
be further demonstrated with successful stereoisomeric separations under optimized
conditions. For instance, the combination of low temperature and longer columns led
to satisfactory separation of four stereoisomers for (a) dl-Leu-dl-Tyr, (b) dl-Ala-dl-Leu,
and (d) Gly-dl-Leu-dl-Ala (Figure 2). As far as dl-Ala-dl-Leu-Gly is concerned, the
complete resolution of the four stereoisomers could hardly be achieved on the
ZWIX(+) column even with extensive optimization of the chromatographic conditions.

[12]

However, complete resolutions could be obtained with a ZWIX(-) column of the same
column size (Figure 2[c]). This specifies the complementarity properties between
ZWIX(+) and ZWIX(-) columns in terms of stereoselective recognition performance
and resolution power.

Lipopeptide Analysis: The great utility of the cinchonan‑based zwitterionic chiral ion-
exchanger columns investigated as complementary tools for peptide separation and
characterization in quality control and drug discovery, taking benefit from its distinct
selectivity profiles ranging from free and derivatized amino acid enantiomers, peptide
enantiomer, epimers, diastereomers, and (minor) chemical modifications in peptides
and peptide therapeutics, is illustrated in the following practical example from
pharmaceutical biology (36). In this study ZWIX(+) was used as a basic tool for
comprehensive structural elucidation of a lipopeptide (Figure 3[a]) isolated from the
endophytic Pseudomonas poae strain RE*1-1-14, being supported by reversed-phase
LC and HILIC. The cyclic lipopeptide poaeamide A constituted by 10 amino acids
showed some bioactivity in terms of growth inhibition of the fungal pathogen
Rhizoctonia solani. For comprehensive structural elucidation the lipopeptide was
analyzed on three structural levels: in intact form, in fully hydrolyzed form, and at
intermediate level in digested form (obtained by enzymatic and/or chemical digestion).
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[13]

Amino acid sequence and constitution of fatty acid side chain were readily determined
on the intact peptide by nuclear magnetic resonance (NMR) and MS after purification
by reversed-phase LC. However, several structural features related to stereochemistry
required careful elucidation by stereoselective methods. In a first step, the peptide was
fully hydrolyzed by DCl/D2O to obtain free amino acid and 3-hydroxydecanoic acid
constituents.
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Absolute configurations of amino acids were determined by enantioselective
chromatography on ZWIX(+) with mobile phases as specified in the experimental
section (36). A hydrolyzed lipopeptide sample was analyzed without derivatization
(free amino acids) in zwitterionic ion-exchange mode and after derivatization with
Sanger’s reagent, which yielded 2,4-dinitrophenyl (DNP) derivatives of amino acids in
anion-exchange mode. This was necessary because the current lipopeptide contained
all the most challenging amino acids from a stereoisomer separation point of view (as
a result of side chain chirality) (Ile/Leu/a-Ile as well as Thr/a-Thr). Chromatographic
results for amino acids present in the lipopeptide sample are summarized in Table 3.
Comparison of retention factors of amino acid standards and amino acids from the
peptide sample revealed that the lipopeptide was constituted by d-Ser (determined as
DNP-derivative), d-Glu (free, DNP), d-a-Thr (DNP), l-Leu (DNP), d-Leu (free), and l-Ile
(free). Several options for verification and validation of the results exist: Analysis on
ZWIX(-) is first choice because elution orders of enantiomers are reversed.
Furthermore, other N-derivatives may be used and give distinct elution orders,
retention factors, and separation factors allowing the unequivocal identification of the
stereochemistry (34), or analysis of N-derivatized forms on tert-butylcarbamoylquinine
or quinidine-based chiral anion exchangers might be considered as an appropriate
choice for confirmation of results. In our example, we have also used GC–MS with a
polysiloxane modified with N-(2-methylpropanoyl)-valyl-tert-butylamide column as the
complementary analysis method, revealing that the stereochemistry was correctly
identified (36).

[14]

A significant advantage of the zwitterionic chiral ion-exchanger columns investigated in
this study was their broad applicability profile for various classes of compounds,
ranging from free amino acids and derivatized amino acids over peptide
stereoisomers, to chiral carboxylic acids. It is a peculiar feature of Pseudomonas
lipopeptides that they contain a fatty acid side chain with at least one stereogenic
centre. In the investigated lipopeptide it was identified as 3-hydroxydecanoic acid (36).
Prior studies with racemic mixture showed that the enantiomers of 3-hydroxydecanoic
acids can be resolved on ZWIX(+) in the anion-exchange mode when a mobile phase
consisting of acetonitrile/methanol/acetic acid (95/5/0.025; v/v/v) was used and column
temperature was 10 °C (36). Retention times on ZWIX(+) were 13.48 min for the first
eluted enantiomer and 14.67 min for second eluted enantiomer, as well as 15.46 and
16.76 min on ZWIX(-). An R-enantiomer standard of 3-hydroxydecanoic acid isolated
from rhamnolipid allowed the elution order to be pinpointed (R before S on ZWIX[+]
and S before R on ZWIX[-]). Consequently, this enantioselective HPLC method was a
suitable means to identify the stereochemistry in the fatty acid side chain that normally
remains undetermined in research on lipopeptides. The chloroform extract was
injected with and without a spike of racemic mixture, and it turned out that the absolute
configuration of 3-hydroxydecanoic acid in poaeamide has R-configuration (36).

Absolute configurations of all constituents were determined at this point, however, the
full structure was not yet identified. Positions of ring closure and the location of d-Leu
in the peptide sequence were still unclear. A carboxylic acid derivatization procedure
(using EDC and an amine label) gave rise to the conclusion that the C-terminus must
be involved in the ring closure because the carboxylic acid moiety of the d-Glu residue
was found by MS to be chemically modified by this derivatization step. On the other
hand, a side product in the alkaline hydrolysis of the cyclic ester indicated that the a-
Thr residue represented the alcoholic component for ester formation and ring closure,
respectively (36).

A bit more challenging was to pinpoint the position of the d-Leu residue in the peptide
sequence. One out of five Leu residues had d-configuration. Unfortunately, sequence
information is lost as a result of hydrolysis of the lipopeptide sample prior to amino
acid configuration analysis. Therefore, the determination of the position of the d-Leu
amino acid residue in the peptide chain needs other strategies to fix this problem. If
authentic standards of each possible stereoisomer were available, their analysis on
the investigated zwitterionic chiral ion-exchanger columns had a great opportunity to
reveal distinct retention times as a result of the good diastereomer selectivity of this
column, as proven with several peptides. Unfortunately, authentic standards of each
possible stereoisomer of this lipopeptide comprised of non-natural amino acids with
lipid modification were too expensive and therefore a strategy to digest the lipopetide
(enzymatic and chemical digestion) to produce smaller fragments followed by
subsequent hydrolysis of isolated fractions and enantioselective analysis at the amino
acid level was envisioned to solve the stereochemistry of poaeamide.

For enzymatic digestion with pepsin the cyclic lipopeptide was first hydrolyzed with 1N
NaOH to ensure better digestion efficiency of the enzyme (36). Control of the reaction
product of hydrolysis revealed another interesting feature of the zwitterionic chiral ion-
exchanger columns studied. It appears to be sensitive for minor molecular changes
(small structural modifications) in peptides, which are accompanied with changes in
ionization state and effective charge, respectively. While the intact cyclic lipopeptide
carries a single negatively charged functionality (in the form of a Glu side chain close
to the N-terminal end) featuring an anion-exchange mode on zwitterionic chiral ion-
exchanger column, it becomes two-fold negatively charged after hydrolysis in the
linear form. Since the Gibbs free energy of binding is proportionally decreasing and
the log k-values are directly proportionally increasing with the effective charge number
of the ionic analyte, retention of the hydrolyzed linear form is significantly different in
the prevailing anion-exchange mode on the zwitterionic chiral ion-exchanger column. It
becomes evident from the chromatograms in Figure 3 that the zwitterionic chiral ion-
exchanger column investigated exhibits better selectivity for distinction between the
cyclic and linearized forms of the lipopeptide. While cyclic and linear forms essentially
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co-eluted both in reversed-phase LC (Figure 3[b]) and HILIC (Figure 3[c]), the
zwitterionic quinine carbamate selector selectively recognized the hydrolyzed form. It
was more strongly retained by additional interaction of the carboxylic acid C-terminus,
which was available in free form only in the linear lipopeptide (Figure 3[d]). Similar
situations may often exist in therapeutic peptides and their impurities in which such
chemical modifications may occur because of degradation. Zwitterionic chiral ion-
exchanger columns might therefore be valuable complementary tools for impurity
profiling studies of therapeutic peptides.

For locating d-Leu within the peptide chain, the lipopeptide was digested under
controlled conditions to small peptide fragments that contain only one or a few Leu
residue(s). The peptide fragments were then separated by reversed-phase LC and
individual peptide fragments containing a Leu residue were isolated micro-
preparatively. Hydrolysis and subsequent amino acid enantiomer analysis of
chromatographically isolated single peptide fragments allowed the stereochemistry of
the peptide to be put together like a puzzle (36).

Pepsin is an endopeptidase that cleaves amide bonds preferentially at the carboxylic
side of Phe, Leu, and partly Glu. D-configuration would block enzyme action. The
linearized peptide was digested with pepsin at 37 °C for 90 min and subsequently Leu-
containing peptides isolated by reversed-phase LC. An early eluted peak
corresponding to LSL, SLL, or LSI tripeptides contained only l-Leu-, but no d-Leu-
configurated peptides. Only 3 peaks, all with the peptide fragment 3-hydroxydecanoyl-
(3-HDA)-LETLL (HDA-LETLL, HDA-LETLLSL, HDA-LETLLSLL), contained d-Leu.
This allowed the possibilities for d-Leu positions to be narrowed down to the two Leu
residues from the amino terminal side. Controlled chemical digestion (hydrolysis with
6N HCl at 110 °C for 20 min) produced several smaller peptides. Some potentially
diagnostic peptides in terms of Leu stereochemistry were again collected by reversed-
phase LC. Their amino acid enantiomer analysis revealed that the Leu residue of 3-
HDA-L and 3-HDA-LE had L-configuration. In contrast, d-Leu was detected in the
isolated peptides LETL and TLL. Consequently, the d-Leu residue was confirmed to be
located in residue 4 from the N-terminus of the peptide.

[15]

Reversed-phase LC and HILIC showed some shortcomings in the above peptide
separations, in particular for small peptides. Figure 3 has already demonstrated that
ZWIX columns can generate complementary retention profiles to reversed-phase LC
and HILIC in peptide separations. To demonstrate this more systematically on a wider
scope, chemically digested poaeamide was analyzed by reversed-phase LC (on
octadecylsilica core–shell column), HILIC (on silica-based sulphobetaine column), and
chiral HPLC in polar organic mode (on ZWIX[+]) (36). Orthogonality plots in Figure 4
convincingly document evenly distributed data points in the two-dimensional design
space (tR of peptide fragments on ZWIX[+] vs. reversed phase in Figure 4[a] and
silica-based sulphobetaine column vs. the ZWIX[+] column in Figure 4[b]) and thus
prove excellent complementarity of these chromatographic modes. A number of small
peptides are well retained and resolved on the zwitterionic chiral ion-exchanger
columns but co-eluted close to t0 in reversed-phase LC (Figure 4[a], indicated by
dotted line). On top of this complementary retention profile of the zwitterionic chiral
ion-exchanger, it provides additional selectivity for peptide stereoisomers
(enantiomers, epimers, and diastereomers), which either do not exist for achiral
columns, may be greatly enhanced, or be complementary and confirmatory on the
zwitterionic chiral ion-exchanger phase. Furthermore, degradation and side product
formation in therapeutic peptides may come along with alterations in the charge state
of the peptide; for example, as a result of side chain deamidation (Asn�Asp,
Gln�Glu), C-terminal deamidation, C-term amidation (COOH�CONH2), isomerization
(Asp�IsoAsp), and succinimide formation (Asn/Asp�Suc), which may be readily
resolved by a zwitterionic chiral ion-exchanger column while it may be more
challenging to resolve such structural modifications with common reversed-phase LC.
Zwitterionic chiral ion-exchangers may therefore be regarded as a valuable tool for
peptide separations and complement state-of-the-art reversed-phase LC and HILIC.
Furthermore, its integration as one orthogonal dimension in 2D LC peptide separations
could be another application of great interest and future potential.
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Conclusions

Therapeutic peptides are a growing segment in pharmaceutical markets. In order to
ensure the quality of such products, a large number of critical quality attributes have to
be tested and controlled during production and release. Besides chemical integrity,
stereochemical integrity is of central importance and its analytical quality assurance
testing is challenging and not a trivial task. A common strategy for stereochemical
impurity testing of peptides is to fully hydrolyze the sample and perform
enantioselective amino acid analysis. GC–MS on a polysiloxane modified with N-(2-
methylpropanoyl)-valyl-tert-butylamide column is one of the established and well
accepted protocols for this purpose. Yet, this strategy also has some shortcomings.
There are some critical proteinogenic-type amino acids like Cys, His, Asn, and Gln.
Asn/Gln are hydrolyzed in the side chain and cannot be distinguished from
corresponding acids Asp/Glu if they co-exist in the peptide. Cys and His (partly also
Arg) are problematic in GC–MS amino acid analysis. Unfortunately, cysteine, histidine,
and aspartic acid were reported to be susceptible to racemization in peptide synthesis
and important amino acids to be controlled.

Furthermore, if individual amino acids are present more than once and are found to be
present in d- and l-configuration, the correct stereochemistry of the peptide, be it the
therapeutic peptide or an impurity, cannot be determined on the amino acid level.
Hence, alternative support methods are required. We suggest performing peptide
analysis systematically on three levels of structural integrity, namely the intact
molecule, its fully hydrolyzed form (amino acid level), and on the intermediate level
(partially digested form). On all levels, three complementary LC methods — reversed-
phase LC, HILIC, and enantioselective or stereoselective HPLC with a zwitterionic
chiral ion-exchanger column — should be used for a comprehensive structural
elucidation, ideally in combination with complementary detection such as UV and MS.
This would provide the maximum amount of information, allowing the chemical and
stereochemical structure of the analyzed peptides to be pieced together. Although the
zwitterionic chiral ion-exchanger columns studied were initially designed for
enantiomer separation of very diversely structured natural and unnatural �-amino acid
but also for �-and �-amino acids, it represents a valuable tool in many other
applications as well, in particular peptide separations. Zwitterionic chiral ion‑exchanger
columns can provide enantioselectivity, epimer selectivity, diastereomer selectivity for
peptides, enhanced selectivity for chemical modifications that are accompanied by
changes in charge state, and last but not least it can be utilized for raw materials
quality control (usually FMOC amino acids but also free �-, �-, �-amino acids, and
other amino acid derivatives).
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& Energy Transfer

Molecular Recognition and Visual Detection of G-Quadruplexes by
a Dicarbocyanine Dye

Beatrice Karg,[a] Andrea Funke,[a] Anna Ficht,[a] Adrian Sievers-Engler,[b]

Michael L�mmerhofer,[b] and Klaus Weisz*[a]

Abstract: The interactions of a dicarbocyanine dye 3,3’-di-

ethylthiadicarbocyanine, DiSC2(5), with DNA G-quadruplexes
were studied by means of a combination of various spectro-
scopic techniques. Aggregation of excess dye as a result of

its positive charge is promoted by the presence of the poly-
anionic quadruplex structure. Specific high-affinity binding

to the parallel quadruplex of the MYC promoter sequence in-
volves stacking of DiSC2(5) on the external G-tetrads; the 5’-

terminal tetrad is the favored binding site. Significant energy

transfer between DNA and the dye in the UV spectral region
is observed upon DiSC2(5) binding. The transfer efficiency
strongly depends on the DNA secondary structure as well as

on the G-quadruplex topology. These photophysical features
enable the selective detection of DNA quadruplexes through

sensitized DiSC2(5) fluorescence in the visible region.

Introduction

Motivated by their demonstrated existence in vivo[1] and their
potential biological role, including transcriptional regulation,[2]

the molecular recognition and detection of G-quadruplex
structures has been the subject of many studies in recent
years. The G-quadruplexes are formed from guanine-rich se-

quences through Hoogsteen hydrogen bonding among
a cyclic array of four guanine bases.[3] In general, the quadru-

plex core consists of two to four of such planar G-tetrads that
exhibit a helical stacked arrangement and are additionally sta-
bilized through monovalent cations, such as sodium or potassi-
um, positioned within a central channel of negative electro-

static potential. The stacked tetrads present four grooves of
the same or different geometry, depending on relative G-tract
orientations and guanine glycosidic torsion angles. The physio-
logically most relevant monomolecular quadruplexes are fur-
ther characterized through intervening sequences that form

different types of loops upon folding into a quadruplex struc-
ture. Because G-rich sequences with quadruplex-forming ability

are not only found in the human telomeric sequence at the
chromosomal ends, but also in various promoter regions of on-
cogenes such as MYC or BCL2, they have become attractive tar-

gets in anticancer strategies.[4] Alternatively, they have also

been explored for use as aptamers, DNAzymes, or sensors of
metal ions and small molecules.[5]

The specific interactions of many cyanine dyes with nucleic
acids combined with their excellent photophysical properties

have resulted in various applications, such as cancer imaging[6]

or nucleic acid staining.[7] More recently, the favorable charac-
teristics of cyanines have increasingly triggered efforts aimed

at their use as specific G-quadruplex-targeting agents.[8] Stud-
ies on the binding of cyanine dyes to quadruplexes that em-

ployed UV/Vis, circular dichroism (CD), and fluorescence spec-
troscopy have suggested various modes of binding, depending
on the dye structure and quadruplex topology.[9] Unfortunately,
information on binding, as extracted from these low-resolution

methods, remains vague in most cases. On the other hand,
a detailed characterization of geometries and specific binding
modes by solution NMR spectroscopy for small ligands associ-
ated with G-quadruplexes has proven notoriously difficult. This
is especially true for cyanine dyes, with their strong propensity

to self-aggregate, depending on the particular solution condi-
tions, and high-resolution structures of corresponding associ-

ates have not been reported to date.

Clearly, the development of quadruplex-specific fluorescent
dyes that discriminate against double-helical DNA and also

other quadruplex conformers would significantly extend their
use as powerful detection and recognition tools not only for in

vitro but also for in vivo applications. Thus, cyanine dyes
based on the benzothiazole heterocyclic moiety have been
shown to inhibit telomerase through their putative G-quadru-

plex-stabilizing properties.[10] A cyanine dye has also been em-
ployed for the visual detection of potassium ions through its

differential binding to two telomeric quadruplex motifs.[11] Pre-
viously, the interaction of the symmetrical cationic cyanine dye

3,3’-diethylthiadicarbocyanine (DiSC2(5)) with duplex DNA was
studied by spectroscopic methods.[12] An increase of its blue-
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shifted H-aggregate absorption band in the UV/Vis spectra has
been attributed to its dimerization within the minor groove of

alternating adenine/thymine (A/T) or inosine/cytosine (I/C) se-
quences, but not guanine/cytosine (G/C) sequences. Duplex-

templated dye aggregation was reported to extend in an end-
to-end fashion on longer sequences in the duplex minor

groove, giving rise to strong biphasic Cotton effects from exci-
ton coupling between neighboring chromophores in CD spec-

tra and to result in a significant quenching of the dye fluores-

cence. Later, as part of a test series of carbocyanine dyes, its
ability to bind a telomeric G-quadruplex structure was also ex-

amined by using a Taq polymerase stop assay.[10] However, due
to Taq polymerase inhibition through nonspecific effects, no

binding data have been reported and G-quadruplex binding
by DiSC2(5) has not been further explored.

Herein, we report on a detailed characterization of the

DiSC2(5) cyanine dye binding to the MYC quadruplex by a com-
bination of various spectroscopic techniques. Additional bind-

ing studies with other quadruplex and duplex structures reveal
significant differences in the photophysical properties of com-

plexes, with energy-transfer processes from DNA to the dye
enabling a straightforward and selective visual detection of

particular quadruplex topologies.

Results and Discussion

Dicarbocyanine DiSC2(5)

The structure of DiSC2(5) is shown in Figure 1 together with

the DNA oligonucleotide sequences used in the present stud-

ies. The UV/Vis spectrum of a 2 mm solution of DiSC2(5) in
aqueous buffer shows a major absorption at l= 646 nm fol-

lowed by a blueshifted absorption at l�582 nm and an addi-
tional shoulder of low intensity at shorter wavelengths (Fig-

ure S1 in the Supporting Information). Depending on the solu-
tion conditions, the latter exhibits some absorbance changes

with time and we tentatively assign this band to higher-order

H-aggregates that are slowly formed in the aqueous buffer, as
recently reported for other cyanine dyes.[13] Absorbances at l=

646 and 582 nm have previously been shown to result from
monomeric dye and H-type dimers, respectively.[12] In line with
these assignments, the major absorbance at l= 646 nm in-
creases with increasing temperature and decreasing solvent

polarity through the stepwise addition of methanol (Figure S1
in the Supporting Information). This is associated with an in-
creasing ratio of absorbances A646/A582, as expected for an equi-

librium between monomers and dye aggregates.

Steady-state fluorescence measurements

To follow changes in its fluorescence, the cyanine dye was ti-

trated with the MYC quadruplex and corresponding emission
spectra were recorded at 20 8C (Figure 2 A). Apparently, dye

fluorescence exhibits discontinuous behavior. Initial quenching
with the dye in excess (process 1) is followed by a gradual fluo-

rescence enhancement and a significant bathochromic shift at
a dye/MYC molar ratio of �2 (process 2). The presence of at

least two different binding equilibria with competing interac-
tions have opposing effects on the fluorescence quantum

yield. When increasing the temperature in the fluorescence ti-
tration experiments, the course of dye fluorescence changes

noticeably. With increased DNA-free fluorescence of DiSC2(5)
at higher temperature, as expected for dye deaggregation, the

extent of initial quenching for the dye in excess is gradually re-

duced and fully eliminated at 60 8C (Figure 2 B). At this temper-
ature, only a continuous fluorescence increase together with

a bathochromic shift is observed during stepwise titration.
To test any unspecific binding of the cationic cyanine dye to

polyanionic DNA, we titrated a single-stranded (ss) oligonu-
cleotide dT10 to the dye solution at 20 8C and followed the

DiSC2(5) fluorescence (Figure S2 in the Supporting Informa-

tion). Interactions of the dye with ssDNA is indicated by a no-
ticeable decrease in the dye fluorescence. Although fluores-
cence is quenched by 50 % at a 2:1 molar ratio of dT10/
DiSC2(5), saturation is not achieved, even with the ssDNA in
large excess, as expected for a nonspecific and rather weak
electrostatically driven binding process.

Because DiSC2(5) has been reported to interact with double-
helical [poly(dA¢dT)]2, but not with GC-rich duplexes, through
the formation of extended aggregates along the duplex minor

groove,[12a] we also titrated short AT- and GC-rich duplexes
against the cyanine and examined changes in its fluorescence

intensity (Figure S2 in the Supporting Information). As expect-
ed for exclusively nonspecific binding, titrating the GC duplex

against the dye solution again resulted in a progressive

quenching of the DiSC2(5) fluorescence with a rather steep de-
crease at the beginning of titration. In contrast, when titrated

with the AT duplex, a discontinuous development of fluores-
cence is again observed with quenching effects at the begin-

ning of titration followed by fluorescence enhancements with
DNA in excess. However, the latter are clearly smaller than that

Figure 1. Structure of DiSC2(5) and oligonucleotide sequences of quadru-
plexes and double-stranded DNA species; for quadruplexes, guanine bases
of the G-tetrads are underlined. Also shown are the topologies of quadru-
plexes MYC, TBA, and ODN.
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observed for the MYC quadruplex and result in fluorescence in-
tensities that barely surpass the free DiSC2(5) fluorescence,

even at a 4.5-fold excess of duplex.
UV/Vis titrations with the MYC quadruplex at 20 8C closely

parallel the fluorescence titrations. Thus, titrating MYC against
the dye results in an initial decrease in the monomeric

DiSC2(5) absorbance followed by an increase and bathochro-

mic shift by up to 15 nm at dye/quadruplex molar ratios of <2
(Figure S3 in the Supporting Information). Also, the monomer
concentration decreases in favor of H-aggregates at low quad-
ruplex concentrations, but increases for the quadruplex in

excess, as determined from the relative monomer and aggre-
gate absorbances. Such more complex spectral changes are

not without precedent for quadruplex–cyanine dye interac-

tions.[14, 15] Very similar behavior has recently been reported
with the cyanine dye 2,2’-diethyl-9-methylselenacarbocyanine

upon its interaction with G-quadruplexes and discussed in
terms of assembly–disassembly processes of the dye at the

DNA template.[14]

In the following, we describe characterizing initial process 1

at the start of the titration as being nonspecific and of low af-

finity because 1) fluorescence changes parallel quenching ef-
fects, as observed upon titration with ssDNA, and 2) these

quenching effects are largely eliminated at higher tempera-
tures. Cyanine dyes are known to form either H- or J-aggre-

gates, depending on their structural features and on the partic-
ular solvent conditions. Compared with the monomeric spe-

cies, J-aggregates exhibit bathochromic shifts in their absorp-
tion band and significant fluorescence emission, whereas H-ag-

gregates show a blueshifted absorption band and decreased
fluorescence intensity. Consequently, the results presented

above for the fluorescence and UV/Vis titrations suggest bind-
ing events that initially involve enhanced aggregation of the
dye at the polyanionic nucleic acid to form H-aggregates asso-
ciated with fluorescence quenching. At higher quadruplex/dye
molar ratios, a gradual deaggregation and enhanced specific

high-affinity binding of monomeric dye is expected to occur.
The latter, which is characterized by an increase and batho-

chromic shift of the dye emission, starts to dominate the over-
all impact on the dye fluorescence at a dye/quadruplex molar
ratio of <2. Because enthalpy-driven exothermic dye aggrega-
tion at the negatively charged quadruplex surface should be

considerably weakened with temperature, only specific high-af-
finity binding may be effective at higher temperature; this is in
agreement with experimental data (Figure 2).

Because titration of the cyanine dye with quadruplex DNA
yields a complex titration curve due to various competing

binding modes with contributions that depend on the dye/
quadruplex molar ratio, changes in DiSC2(5) fluorescence upon

quadruplex binding barely allow for a reliable determination of

association constants for the dye-specific binding. In contrast,
when titrating dye against DNA, there is an excess of quadru-

plex at the beginning of such a reverse titration and this situa-
tion should favor specific high-affinity binding interactions. In

addition, any quadruplex signal used for a direct readout is ex-
pected to be less sensitive to unspecific, compared with specif-

ic, ligand binding.

Unfortunately, the intrinsic fluorescence of the natural pyri-
midine and purine bases in nucleic acids is too low to be effec-

tively used for analytical methods. However, guanine residues
in G-quadruplexes were shown to have enhanced photoexcit-

ed lifetimes and fluorescence quantum yields that often consti-
tuted a unique feature of these DNA structures.[16] Indeed, MYC
in K+ buffer exhibits noticeable guanine fluorescence, with

a wavelength of l= 387 nm at maximum emission, that is sig-
nificantly quenched when interacting with the cyanine dye
(Figure 3 A). Plotting the G fluorescence in a reverse titration
experiment as a function of added DiSC2(5) gives a simple hy-
perbolic binding isotherm. With binding sites of different affini-
ty and likely also of different impact on the quadruplex fluores-

cence (see below), fitting of this isotherm would require
a model with inequivalent binding sites. However, with too
many free-floating parameters such curve fittings become in-
creasingly error-prone and random. We therefore resorted to
a simplified model based on independent and equivalent bind-

ing sites, yielding 2.6 binding sites per quadruplex and an as-
sociation constant per site of Ka = 4.8 Õ 105 m¢1 at 20 8C. As seen

from Figure 3 B and expected from the above considerations,

some deviations between calculated and experimental data
are clearly noticeable. However, given such a simple analysis,

fitting results should nevertheless give a reasonably good idea
of affinity and number of specific binding sites for the ligand.

Figure 2. Fluorescence titrations (lexc = 600 nm) of 3 mm DiSC2(5) in potassi-
um buffer with the MYC quadruplex added in 0.75 mm aliquots at: A) 20, and
B) 60 8C; the arrows indicate changes to the emission band during titration.
Emission spectra were corrected for absorbance changes at l= 600 nm.
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NMR spectroscopy

Adding DiSC2(5) in small increments to a solution of MYC re-

sults in considerable signal
broadening of quadruplex reso-
nances. As shown in Figure 4 A,

guanine imino signals broaden
to a variable extent at the initial
steps of titration, but sharpen
up again at a dye/quadruplex

molar ratio of �2. Conspicuous-
ly, imino protons of G13, G4, and

G17 of the 5’-terminal G-tetrad

and G6 within the 3’-terminal
tetrad broaden out almost com-

pletely after the addition of 0.5
dye equivalents, which indicates

their significant perturbation
upon ligand binding. Unfortu-

nately, as a result of ligands oc-

cupying different binding sites
with fast to intermediate ex-

change rates on the NMR chemi-
cal shift timescale, resonances

are considerably broadened and
overlapped, even with the dye

in excess. With only a partial assignment of resonances, a more
detailed NMR structural characterization of the complex was

rendered impossible.
Nevertheless, to gain information on possible interaction

sites, we inspected the differential line-broadening effects not
only for the guanine imino protons, but also for 2D NOE con-

tacts observed in the base to sugar proton spectral regions
(see the Experimental Section and Figure S4 in the Supporting

Information). Signal broadening depends on the population of

exchanging species and on chemical shift differences of indi-
vidual protons in the free and complexed MYC. The average

extent of broadening for individual nucleotides was therefore
used as an indicator for perturbations caused by DiSC2(5) bind-

ing; this is mapped on the schematic quadruplex structure in
Figure 4 B. Clearly, such footprints, involving varying numbers

of different protons, only provide rather poor resolution, but

nevertheless give some valuable hints on DiSC2(5) binding.
Thus, loops seem to be barely affected by the dye, whereas 5’-
and 3’-overhang sequences, as well as external G-tetrads, ex-
hibit more significant perturbations. It is the 5’-terminal tetrad

that experiences the largest effects. Consequently, the cyanine
may preferentially bind through outer stacking on top of the

5’-terminal tetrad, with additional stacking on the 3’-terminal

tetrad, albeit with lower affinity (Figure 5). Such a situation is
not without precedent and has also been reported for the in-

teraction of a quindoline drug with the MYC quadruplex.[17]

Here, stacking of the ligand on the 5’- and 3’-terminal G-tet-

rads showed different features, but was promoted in both
cases by the flanking bases that formed a binding pocket, as

also indicated for cyanine binding. Whereas interactions of the

cyanine dye with propeller loops can largely be excluded, low-
affinity binding to the available groove cannot be completely

dismissed based on these data.

Figure 4. A) Imino proton spectral region of 0.66 mm MYC quadruplex with increasing amounts of DiSC2(5) at
40 8C; imino assignments are indicated for the free quadruplex with guanine resonances that exhibit considerable
line broadening highlighted. B) Schematic structure of the MYC quadruplex with darker residues that experience
more significant line-broadening effects upon dye addition; overhang and loop nucleosides are represented by
circles.

Figure 3. A) Fluorescence emission (lexc = 260 nm) of 6 mm MYC quadruplex
in potassium buffer upon titrating DiSC2(5) up to a final 5.4:1 dye/quadru-
plex molar ratio at 20 8C. B) Binding isotherm based on the fluorescence in-
tensity at l= 387 nm together with the fitted curve.
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ESI mass spectrometry

To reduce counterion condensa-
tion on the nucleic acid upon

evaporation in the presence of

sodium or potassium ions, DNA
and cyanine dye were dissolved

for mass spectral analysis in
150 mm ammonium acetate

buffer.[18] Addition of 10 % meth-
anol had a favorable effect on
the electrospray and signal sta-

bility without altering the buffer
conditions to a more significant
extent. Initial CD measurements
on MYC–DiSC2(5) mixtures in the
ammonium acetate/MeOH buffer
confirmed the formation of a par-

allel quadruplex (not shown).
Also, binding of the dye is ap-
parent by induced Cotton effects
that closely match those measured in a potassium phosphate
buffer (see below). The ESI mass spectrum of the free oligonu-

cleotide indicate three charge states of z =¢4, ¢5, and ¢6 of
which z =¢5 is the dominant species. In agreement with

cation coordination between G-tetrads, m/z 1403.4 represents
the free quadruplex with two tightly bound ammonium ions
(Figure 6). In the presence of the cyanine dye, new signals at

higher m/z ratios appear, in addition to free quadruplex sig-
nals, and can be assigned to ¢5 charged complexes with one

and two dye molecules bound to the quadruplex·2 NH4
+ (m/z

1481.4 and 1559.5, respectively). The 1:1 and 2:1 complexes in-

crease in intensity with increasing dye/quadruplex molar ratios.
Neglecting minute amounts of a possible 3:1 complex only ob-
served at closer inspection at a 4:1 molar ratio, stable com-
plexes with a 1:1 and 2:1 stoichiometry seem to be the major
species transferred to the gas phase. Signal intensities are in
agreement with uncooperative binding of the dye molecules

to two binding sites with differential affinity and corroborate
the NMR spectroscopy results that suggest stacking interac-

tions of different strengths on the 5’- and 3’-terminal tetrads.

Circular dichroism

The achiral cyanine dye exhibits no CD signal in the absence

of quadruplex DNA. However, upon titrating DiSC2(5) into a so-
lution of MYC in potassium buffer, induced Cotton effects in
the absorption region of the dye emerge in addition to the
typical CD signature of the parallel MYC quadruplex below l=

300 nm (Figure 7). The latter involves positive and negative
amplitudes at l= 265 and 245 nm and is barely changed upon

addition of the dye; this confirms the conservation of the
quadruplex structure in the presence of the ligand. Cotton ef-
fects in the long-wavelength absorption region of the bound

dye at a 1:1 quadruplex/dye molar ratio include a negative

high-amplitude signal at l= 672 nm and two other positive
bands of decreasing intensity centered at l= 645 and 592 nm.
Clearly, the various Cotton effects indicate a more complex
pattern of binding for the cyanine dye. Only in rare cases do
induced CD effects allow for a straightforward interpretation in

terms of drug-binding modes. However, a closer inspection of
the CD effects of the dye induced upon quadruplex binding
gives some clues on dye interactions.

Conspicuously, the large negative amplitude of the long-
wavelength band seems to be barely compatible with simple
groove binding and, in particular, with external stacking. The

Figure 6. Mass spectra of solutions of MYC quadruplex with different MYC/DiSC2(5) molar ratios.

Figure 5. Proposed DiSC2(5)–MYC complex structures with populations that
depend on concentrations.
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latter is expected to only induce very small CD effects on the

stacked ligand. Rather, the long-wavelength Cotton effects
may constitute a nonconservative CD couplet centered at the

absorption of monomeric dye, with a smaller positive band at

l= 645 nm and a larger negative band at l= 672 nm (see also
Figure S5 in the Supporting Information). In general, exciton

coupling between electronic transitions on neighboring dyes
gives rise to a conservative CD signal with two bands of equal

intensity and opposite sign located at the wavelength of maxi-
mum UV absorbance. In this case, the reduced intensity of the

positive band may partially be attributed to other Cotton ef-

fects overlapping with the exciton couplet at shorter wave-
lengths. Clearly, such an interpretation requires at least two ex-

citon-coupled dye molecules bound to the quadruplex. Sup-
port comes from CD titration experiments with MYC titrated in

excess against DiSC2(5) (Figure S5 in the Supporting Informa-
tion). Starting with a 1:1 molar ratio, the addition of excess
quadruplex results in a gradual decrease of all induced circular

dichroism (ICD) amplitudes, even with a fixed dye concentra-
tion. Because excess DNA should increase the population of
bound dye, these results are only compatible with Cotton ef-
fects that arise from interacting dyes simultaneously bound to

MYC. The question arises whether the suggested exciton-split
CD is due to short- or long-range exciton couplings. End-stack-

ing of an H-type DiSC2(5) dimer may be discarded because of
its more blueshifted absorption. Likewise, a possible side-by-
side stacking of two dyes on the outer G-tetrads places the

two transition dipoles within the same plane, which prevents
exciton coupling.[19] However, it is conceivable that two exter-

nally stacked dye molecules are sandwiched between two
quadruplexes to form a dimer by the interaction of their outer

faces, in analogy to the structural arrangement found for a telo-

meric G-quadruplex complexed with acridine derivative
BRACO-19 (see Figure 5).[20] Indeed, such dimerization can be

reconciled with results obtained from nondenaturing gel elec-
trophoresis of MYC–dye mixtures (Figure S6 in the Supporting

Information). Alternatively, with its large molar absorptivity of
e660 = 266 000 m¢1 cm¢1 for the monomer absorption measured

at a dye/quadruplex molar ratio of 1:2, intense bisignate CD
curves with exciton split bands can even be expected for fa-
vorably aligned 5’- and 3’-end-stacked dyes with interchromo-
phoric distances of about 14 æ.[21]

We also performed a CD competition experiment by titrating
a high-affinity N5-methylated indoloquinoline analogue (11-

phenyl-indolo[3,2-b]quinoline (PIQ)) to a 2:1 mixture of
DiSC2(5) and MYC. Indoloquinoline derivatives have been

shown to preferably interact with quadruplexes through stack-
ing on their outer G-tetrads and a corresponding solution NMR
spectroscopy structure has been reported for a 2:1 complex of
an indoloquinoline derivative end-stacked on the MYC quadru-
plex.[17, 22] Upon titrating the indoloquinoline, Cotton effects of

DiSC2(5) are immediately attenuated and only small ampli-
tudes are left after the addition of one dye equivalent of PIQ

(Figure S7 in the Supporting Information). The bound cyanine

dye is effectively displaced by the competing ligand. A closer
look reveals, however, that the negative band at l= 672 nm

shows a faster decline when compared with induced CD ef-
fects centered at l�570 nm; this again indicates the former as

being exclusively derived from DiSC2(5) outer stacking.
To independently check for possible groove binding, we also

examined the CD spectra of the dye when bound to an 8-

bromo-monosubstituted MYC quadruplex. With the dG ana-
logue incorporated at position 5 of the central G-tetrad, the 8-

bromo substituent projects into the available quadruplex
groove and partially blocks groove access. Resulting in only

a small decrease of both negative and positive CD amplitudes
for the modified MYC quadruplex, the bromo substituent does

not alter the overall quadruplex conformation (Figure 7). Like-

wise, Cotton effects in the dye absorption region for a 1:1 dye/
quadruplex mixture show only subtle changes relative to the

unmodified complex. Whereas the amplitude of the negative
long-wavelength band remains completely unaffected in

agreement with end-stacked dye molecules, small but noticea-
ble amplitude changes are observed for the positive bands at

shorter wavelengths. We tentatively assign these positive

Cotton effects in the absorption range of H-aggregates to
bound dimers. Their binding is expected to be of lower affinity,

if their attenuated CD amplitude in mixtures with MYC in
excess (Figure S5 in the Supporting Information) is attributed
to their deaggregation followed by their transfer to sites of
higher affinity, which are likely to be on top of the terminal G-

tetrads. Whereas tight groove binding can largely be excluded
based on the experimental data, the mode of binding for
these dimers at or close to the groove and possibly also
through partial stacking on the outer tetrads remains unre-
solved. Taken together, the overall signature of ICD effects is

consistent with the partial superposition of two CD couplets of
the same sign: a less intense bisignate signal of a dimer at

shorter wavelengths and a stronger couplet at lower energy
for end-stacked monomers.

Dye binding to other G-quadruplex structures

To study binding interactions of the cyanine dye with other
quadruplexes of different topology, additional fluorescence ti-

Figure 7. CD spectra of DiSC2(5) (gray, broken line), the MYC quadruplex
(gray, solid line), and equimolar mixtures of DiSC2(5) with MYC (black, solid
line) and 8-bromo-G monosubstituted BrMYC (black, broken line) in potassi-
um buffer; T = 20 8C, c(quadruplex) = 3 mm.
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trations of DiSC2(5) with the ODN quadruplex and thrombin-
binding aptamer TBA were performed. The ODN quadruplex

forms a hybrid-type structure with one propeller, one diagonal,
and one lateral loop, whereas TBA with its core of only two G-

tetrads forms an antiparallel quadruplex that features three lat-
eral loops (see also Figure 1). Titrating DiSC2(5) with ODN at
20 8C results in a biphasic change of the dye fluorescence that
is reminiscent of the corresponding MYC titrations (Figure 8).
Following the initial decrease in fluorescence, moderate en-

hancements and bathochromic shifts are observed at later
stages of the titration. Similar to MYC addition (Figure 2), the

transition between processes 1 and 2 occurs at a quadruplex/
dye molar ratio of about 0.5:1. Likewise, after correcting for ab-
sorbance changes at the excitation wavelength, as obtained by
corresponding UV/Vis titration experiments, a fluorescence en-

hancement of about 1.5 can be determined after adding a sev-
enfold excess of ODN. In contrast, titrating TBA against
DiSC2(5) only shows a gradual quenching of the dye fluores-

cence and no fluorescence recovery up to a final threefold
excess of quadruplex.

Based on the interpretation that nonspecific and specific in-
teractions are responsible for the initial quenching and final

enhancement of the dye fluorescence (see above), the course

of the titration curves may be correlated with relative binding
affinities. Thus, weak binding requires more quadruplex to

overcome the quenching effect of electrostatically driven dye
aggregation, and thus, identifies the TBA quadruplex as

a rather poor dye receptor with low affinity. On the other
hand, fluorescence changes upon addition of the parallel MYC

and hybrid-type ODN quadruplex suggest much stronger cya-

nine binding. Strictly speaking, such a direct relationship re-
quires a similar impact of binding on the DiSC2(5) fluores-

cence, irrespective of the quadruplex type. However, the latter
seems reasonable, especially in the case of similar modes of

binding, and is also supported by results obtained from
energy-transfer experiments (see below).

Energy transfer from DNA to DiSC2(5)

Clearly, the intrinsic photophysical characteristics make
DiSC2(5) a very poor probe for the optical detection of G-
quadruplex structures, even in case of the preferred MYC
target. However, in addition to its strong absorbance in the

visible spectral region, dye DiSC2(5) shows low-intensity ab-
sorption bands at short wavelengths below l= 400 nm due to
higher electronic transitions with corresponding small transi-

tion dipole moments (Figure S1 in the Supporting Information).
To probe possible energy-transfer processes between the DNA

bases and bound dye, we recorded fluorescence excitation
spectra from l= 230 to 450 nm with observation of the dye

fluorescence at l= 680 nm in the presence of DNA (Figure 9).

Whereas the excitation spectrum of the free dye corresponds
to its absorption spectrum and shows barely any intensity in

the UV region below l= 300 nm, an intense and broad excita-
tion band covering a spectral range from l= 240 to 300 nm

appears after the addition of MYC in a twofold excess. This
new band with maxima at l= 280 and 250 nm matches the

DNA absorbance and must be attributed to energy transfer

from the G-quadruplex to the dye. A corresponding transfer

has also been reported in the past for a 3,3’-diethyloxadicarbo-
cyanine interacting with a dimeric hairpin quadruplex.[23] How-

ever, compared with these previous studies, a much higher
fluorescence enhancement through energy transfer is ob-

served here for DiSC2(5) when excited in the range l= 250–
280 nm. As a consequence, there is a much higher enhance-

ment of dye emission upon MYC binding when excited at l=

254 nm, compared with a direct excitation at l= 600 nm (Fig-
ure S8 in the Supporting Information).

Energy transfer to DiSC2(5) should depend on the binding
affinity of the dye for the DNA target. Also, given a Fçrster

mechanism of transfer, transfer is expected to be strongly pro-
moted by the enhanced guanine fluorescence of the quadru-

plex above l= 300 nm (Figure 3) and on the orientation be-

tween donor and acceptor associated with the binding mode
and favored for a stacked dye with parallel transition moments.

These geometric criteria have been used in the past to infer an
intercalative mode of binding to double-helical DNA from the

observation of a fluorescence resonance energy transfer from
DNA bases to a fluorescent ligand.[24] In agreement with the

Figure 8. Fluorescence titrations (lexc = 600 nm) of: A) 2 mm DiSC2(5) in K+

buffer with the ODN quadruplex added in 0.4 mm aliquots, and B) 3 mm
DiSC2(5) in K+ buffer with the TBA quadruplex added in 0.75 mm aliquots;
T = 20 8C. The arrows indicate changes to the emission band during titration.
Emission spectra were corrected for absorbance changes at l= 600 nm.
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absence of specific binding, no energy transfer was observed
upon the addition of ssDNA or GC-rich duplex DNA to the cya-

nine dye. In fact, the very small excitation of free dye in the
DNA absorbance region completely vanishes in the presence

of these DNA species due to an inner filter effect caused by

the nucleic acid.
We also tested the visible-light emission of the dye in the

presence of the AT-rich duplex known to bind DiSC2(5) in its
minor groove, as well as of the TBA quadruplex expected to

bind DiSC2(5) with low affinity (see above). As shown in
Figure 9, the excitation spectra in the presence of both DNA

structures exhibit enhanced intensity in the UV region below

l= 300 nm relative to the free dye. These observations also
suggest some energy transfer to the dye, albeit with signifi-

cantly lower efficiency than in case of the MYC quadruplex.
To evaluate the potential of DiSC2(5) to serve as a simple

probe for the visual detection of specific DNA structures based
on these energy-transfer processes, we prepared buffer solu-
tions of 3 mm DiSC2(5) with various DNA species in a twofold

excess and irradiated the solutions with a UV lamp at l=

254 nm (Figure 10). Whereas the MYC quadruplex is easily
identified through its bright-red emission, as a result of sensi-
tized DiSC2(5) fluorescence, the TBA quadruplex is barely visi-
ble to the naked eye, and tubes with the other double- and
single-stranded DNA species escape direct visual detection.

Consequently, sensitized DiSC2(5) fluorescence may provide an
efficient tool to detect specific quadruplex structures down to
sub-micromolar concentrations and to discriminate not only

between quadruplexes and other DNA secondary structures,
but also between quadruplex topologies.

Various cyanine derivatives have more recently been devel-
oped and tested for their ability to serve as light-up probes for

G-quadruplexes.[25] Despite their sometimes significant fluores-

cence enhancements upon binding, their use as quadruplex-
specific diagnostic tools is often hampered by their poor quad-

ruplex selectivity, as exemplified by thiazole orange. On the
other hand, energy transfer from DNA bases of the quadruplex

has not been reported for these dyes. In a recent study, several
[2.2.2]heptamethinecyanine derivatives were shown to bind

a telomeric quadruplex and a quadruplex composed of parallel
and antiparallel topologies with rather high binding constants

in the range of 0.2–0.9 Õ 106 and 0.2–17 Õ 106 m¢1, respective-
ly.[15] Notably, with a 1:1 binding stoichiometry in a proposed

terminal p-stacking mode, these cyanine dyes did not show in-

duced CD signals in CD spectra of the complexes, despite their
high quadruplex affinities. This again corroborates direct dye–

dye interactions in the MYC–DiSC2(5) complexes, giving rise to
strong Cotton effects, as seen in the absorption region of the

bound cyanine dye (Figure 7).

Conclusion

Results from optical spectroscopy on the association of the cy-

anine dye DiSC2(5) with the MYC quadruplex indicated multi-
ple binding modes with linked binding equilibria. Complexity

arose in part from the pronounced propensity of the dye to

form aggregates and aggregation was further promoted by
the polyanionic G-quadruplex template. The present data indi-

cated a scenario in which nonspecific outer binding associated
with enhanced H-aggregate formation dominated with the

dye in excess. Upon the addition of more quadruplex, individu-
al dye molecules increasingly occupied specific high-affinity
binding sites. Although the fast dynamics of association and
dissociation processes prevented high-resolution structure de-

termination of complexes, NMR spectroscopy results suggested
that two dye molecules were tightly bound to the MYC quad-
ruplex through end-stacking, albeit with stronger interactions
at the 5’-terminal G-tetrad. Such a binding mode was corrobo-
rated by independent spectral data, as obtained from CD and

ESI-MS.
A typical fluorescence light-up probe for optical G-quadru-

plex detection relies on its strongly increased fluorescence
quantum yield when binding DNA.[25] In contrast, significant
resonance energy transfer between the MYC quadruplex and

the cyanine dye allows for the visual detection of the
DiSC2(5)–MYC complexes after UV irradiation through sensi-

tized dye fluorescence in the long-wavelength region above
l= 640 nm. Given no or only small transfer efficiencies in the

Figure 9. Fluorescence excitation spectra (lem = 680 nm) of 3 mm DiSC2(5) in
the absence and presence of 6 mm MYC quadruplex, TBA quadruplex, AT
duplex, GC duplex, or single-stranded dT10 at 20 8C.

Figure 10. Photograph of 3 mm solutions of DiSC2(5) mixed with different
DNA structures in a twofold excess (in quadruplex, duplex, or single-strand-
ed) and irradiated with a UV lamp at l= 254 nm.
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case of single- and double-stranded DNA, as well as of low-af-
finity quadruplex topologies, the dye exhibits considerable

structural selectivity. Conceivably, the quadruplex versus
duplex discrimination could be further improved by estab-

lished structural modifications of the dye incompatible with
duplex minor groove binding. It should also be noted that

DNA species lacking efficient energy transfer will even sup-
press any remaining background signal as a result of the inner

filter effect from the DNA UV absorbance. These distinctive op-

tical properties may be exploited in various potential applica-
tions. Thus, the use of DiSC2(5) as a staining reagent for elec-
trophoresis gels can reveal a quadruplex structure by direct
visual inspection of the bands under UV irradiation (see also

Figure S6 in the Supporting Information). Also, competition ex-
periments of ligands might benefit from a visual readout of

their relative ability to displace DiSC2(5) from the quadruplex

receptor. Additional studies on this sensing system are present-
ly being carried out to further explore the sensitivity and, in

particular, the discriminatory potential for various quadruplex
sequences and topologies.

Experimental Section

Materials

All DNA oligonucleotides were purchased from TIB MOLBIOL
(Berlin, Germany). Before use, oligonucleotides were precipitated in
ethanol and the concentrations were determined spectrophoto-
metrically by measuring the absorbance at l= 260 nm. The cya-
nine dye DiSC2(5) was purchased from Sigma-Aldrich with a purity
of 98 % and used without further purification.

Samples for optical measurements were obtained by dissolving the
corresponding oligonucleotides in a buffer with 20 mm potassium
phosphate, 100 mm KCl, at pH 7.0. Prior to measurements, the
quadruplex samples were annealed by heating to 90 8C followed
by slow cooling to room temperature. For the dye, stock solutions
in DMSO were employed.

UV/Vis absorbance measurements

UV/Vis absorbances were measured with a Jasco V-650 spectropho-
tometer (Jasco, Tokyo, Japan). The temperature was controlled by
means of a Peltier temperature control unit. For titration experi-
ments, aliquots of the oligonucleotide were stepwise added to
a 2–3 mm solution of the dye in 1 cm quartz cuvettes.

Circular dichroism

CD spectra were acquired with a Jasco J-810 spectropolarimeter
equipped with a thermoelectrically controlled cell holder (Jasco,
Tokyo, Japan). In general, by using 1 cm quartz cuvettes, CD data
were collected with a bandwidth of 1 nm, a scanning speed of
100 nm min¢1, and 10 accumulations. All spectra were blank-cor-
rected.

Fluorescence measurements

Fluorescence measurements were recorded with a Jasco FP-6500
spectrofluorometer thermostated with a Peltier unit (Jasco, Tokyo,
Japan). By using excitation wavelengths of l= 600 and 260 nm for
DiSC2(5) and the oligonucleotide, respectively, dye and G-quadru-

plex emission spectra were acquired from l= 610 to 750 nm and
from l= 300 to 500 nm with a scanning speed of 50–
100 nm min¢1, emission and excitation bandwidths of 10 and 5 nm,
and a response time of 1 s. Fluorescence excitation spectra of the
dye were recorded with emission wavelengths of l= 670 or
680 nm without or with DNA, respectively. For fluorescence titra-
tions, aliquots of the quadruplex were added stepwise to a 2–3 mm
solution of the dye. All emission spectra of the dye were corrected
for absorbance changes at l= 600 nm during titrations. In reverse
titrations, a 6 mm quadruplex solution was titrated with 0.6–1.5 mm
aliquots of DiSC2(5).

ESI mass spectrometry

ESI-MS experiments were performed on a quadrupole time-of-
flight instrument (TripleTOF5600 + , Sciex, Ontario, Canada) by
direct infusion. The G-quadruplex samples were measured in nega-
tive-ion mode with source and collision voltages set to ¢3800 and
¢10 V, respectively. The source temperature was screened from RT
to 180 8C; the latter was used without significant deterioration of
spectrum quality. The radiofrequency (rf) transmission window was
set according to the m/z of the analyte. The infusion was per-
formed by means of a syringe at 20 mL min¢1. Other optimized set-
tings included a curtain gas of 16 psi, nebulizer and drying gas of
both 17 psi, and a declustering potential of ¢20 V. Acquisition was
performed with an accumulation time of 2000 ms in MCA (multiple
channel acquisition) mode. Samples were prepared at a concentra-
tion of 2 mm of oligonucleotide in 150 mm ammonium acetate
buffer (pH 7.0) containing 10 % methanol and varying amounts of
the cyanine dye (up to a 4:1 molar ratio of dye/quadruplex).

NMR spectroscopy experiments

For all NMR spectroscopy measurements, a low salt buffer with
10 mm potassium phosphate, pH 7.0, was used. Final concentra-
tions of the MYC quadruplex were between 0.5 and 0.7 mm. NMR
spectra were acquired on a Bruker Avance 600 MHz spectrometer
equipped with an inverse 1H/13C/15N/31P quadruple resonance cryo-
probehead and z-field gradients. Data were processed by using
Topspin 3.1 and analyzed with CcpNmr Analysis software.[26] Proton
chemical shifts were referenced relative to trimethylsilyl propionate
(TSP) by setting the H2O signal in 90 % H2O/10 % D2O to dH =
4.62 ppm at 40 8C. A WATERGATE with w5 element was employed
for solvent suppression for measurements in 90 % H2O/10 % D2O.
2D NOE experiments at 40 8C were acquired with mixing times of
150 and 200 ms for free MYC and MYC in the presence of DiSC2(5).

Differential line-broadening effects were evaluated for all unambig-
uously assigned intranucleotide base–sugar proton contacts in 2D
NOE spectra. Cross-peak amplitudes for the complex were deter-
mined as a qualitative measure of the line widths in the w1 and/or
w2 dimensions and related to corresponding cross-peak amplitudes
of the unaffected free MYC quadruplex acquired and processed by
using the same parameters. Cross-peaks observed for the free
quadruplex, but completely missing in the complex spectra, should
either indicate excessive line broadening or significant conforma-
tional readjustments, and corresponding residues were thus cate-
gorized as being strongly perturbed nucleotides. The extent of
signal broadening was averaged for the individual residues and
used as an indicator for perturbations caused by DiSC2(5) binding.

Keywords: cyanines · dyes/pigments · energy transfer · G-

quadruplexes · molecular recognition
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Figure S1. A) UV-vis absorption spectra of 2 M DiSC2(5) in potassium buffer at 20 oC. B) 
Temperature dependent UV-vis absorption spectra of 3 M DiSC2(5) in potassium buffer at 20, 25, 
30, 35, 40 and 45 oC. 
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Figure S2. Fluorescence titration (exc=600 nm) of 3 M DiSC2(5) in potassium buffer at 20 oC with 
A) the single-stranded dT10 added in aliquots of 0.25 eq up to a final 5:1 ssDNA: DiSC2(5) molar ratio, 
B) the AT duplex added in aliquots of 0.25 eq up to a final 4.5:1 duplex: DiSC2(5) molar ratio, and C) 
the GC duplex added in aliquots of 0.25 eq up to a final 3.5:1 duplex: DiSC2(5) molar ratio. 
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Figure S3. UV-vis titration of 3 M DiSC2(5) in potassium buffer with the MYC quadruplex added in 
0.75 M aliquots at 20 oC; the arrows indicate changes of the monomer absorption band during 
titration. 
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Figure S4. Superimposed 2D NOE H6/H8-H1’ spectral region of the MYC quadruplex in the absence 
(orange) and in the presence (green) of a threefold excess of DiSC2(5) at 40 oC (200 ms mixing time); 
assignments to the residue number are indicated for the intranucleotide base-sugar proton crosspeaks. 
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Figure S5. A) Long-wavelength region of UV-vis absorption spectrum for a 1:2 mixture of DiSC2(5) 
with the MYC quadruplex and B) CD spectra for mixtures of DiSC2(5) with the MYC quadruplex in 
molar ratios of 1:1 (red), 1:2 (black) and 1:4 (blue); T = 20 oC, c(DiSC2(5)) = 3 M. 
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Figure S6. Non-denaturing gel electrophoresis of the MYC sequence (10 µM) in the absence and the 
presence of DiSC2(5). After annealing the DNA in K+ containing buffer (pH 7.0) by heating to 90 °C 
for 5 min followed by slow cooling to room temperature, the dye was added and the samples were 
loaded on a 15% polyacrylamide gel. The gel was run with 100 V at 4 oC and bands were 
photographed under UV light at 254 nm. Lane 1 and 2: marker lanes; lane 3: MYC:DiSC2(5) 1:0; lane 
4: MYC:DiSC2(5) 1:0.25; lane 5: MYC:DiSC2(5) 1:1; lane 6: MYC:DiSC2(5) 1:4; lane 7: 
MYC:DiSC2(5) 0:1. Whereas the dye without DNA (lane 7) remains undetectable under these 
conditions, the MYC quadruplex shows a single dark band without added dye (lane 3). For the 
mixtures with added DiSC2(5) an increasingly strong second band appears in addition to the free 
quadruplex band and is clearly identified as being a quadruplex with bound dye through its red 
emission. An end-to-end or end-to-tail stacking of this complex to form a dimeric species is 
compatible with its noticeably slower migration. 
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Figure S7. Long-wavelength CD spectral region of a 2:1 DiSC2(5):MYC quadruplex mixture at 20 oC 
and c(DiSC2(5)) = 3 M. Ligand displacement experiments were performed by adding the competing 
PIQ ligand (shown on top) in 0.75 M aliquots to the dye-quadruplex solution up to a 1:1 PIQ-to-dye 
molar ratio; arrows indicate changes of CD amplitudes during titration. 
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Figure S8. Fluorescence emission of free DiSC2(5) (black) and a 1:2 DiSC2(5):MYC quadruplex 
mixture (red) with an excitation wavelength of 600 nm (A) and 254 nm (B); T = 20 oC, c(DiSC2(5)) = 
3 M. 
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Selective Targeting of G-Quadruplex Structures by
a Benzothiazole-Based Binding Motif
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Abstract: A benzothiazole derivative was identified as

potent ligand for DNA G-quadruplex structures. Fluores-
cence titrations revealed selective binding to quadruplexes
of different topologies including parallel, antiparallel, and

(3 + 1) hybrid structures. The parallel c-MYC sequence was
found to constitute the preferred target with dissociation

constants in the micromolar range. Binding of the benzo-
thiazole-based ligand to c-MYC was structurally and thermo-

dynamically characterized in detail by employing a compre-

hensive set of spectroscopic and calorimetric techniques.
Job plot analyses and mass spectral data indicate noncoop-

erative ligand binding to form complexes with 1:1 and 2:1

stoichiometries. Whereas stacking interactions are suggested

by optical methods, NMR chemical shift perturbations also
indicate significant rearrangements of both 5’- and 3’-flank-
ing sequences upon ligand binding. Additional isothermal
calorimetry studies yield a thermodynamic profile of the
ligand–quadruplex association and reveal enthalpic contribu-

tions to be the major driving force for binding. Structural
and thermodynamic information obtained in the present

work provides the basis for the rational development of ben-
zothiazole derivatives as promising quadruplex binding
agents.

Introduction

Although prevalent in the living cell, DNA duplexes are only

one of several secondary structures that may be adopted by
nucleic acids.[1] In particular, G-rich sequences also fold into tet-

rastranded assemblies called G-quadruplexes (G4s) under ap-
propriate conditions. In general, G4 structures comprise a stack
of G-tetrads that are composed of a planar arrangement of
four hydrogen-bonded guanine bases and additionally stabi-

lized by cations, usually potassium or sodium, located within
a central channel of negative potential.[2, 3] G4s have attracted
rapidly growing interest during the past two decades because
of their existence and potential regulatory role in vivo; this
makes them promising drug targets, especially in anticancer

strategies.[4] Thus, G-rich sequences able to fold into a quadru-
plex structure are found at the telomere single-stranded ends,

but are also over-represented in promoter regions of various
oncogenes. G4-selective ligands, with their ability to induce
quadruplex formation, may inhibit telomerase action in cancer

cells or block expression of specific oncogenes, such as c-
MYC.[5–8] However, the quadruplex also constitutes a powerful
platform in technological methodologies and has found vari-

ous applications in aptamer and sensing systems for an in-
creasing number of proteins, metabolites, and metal ions.[9, 10]

Apart from favorable chemical and physical properties, ther-
apeutically useful ligands should not only discriminate be-
tween G4s and the prevailing genomic double-helical DNA,
but also between G4s of different topology and conformation.

Such discrimination seems to be feasible because the 3D struc-
ture of G4s is far from uniform and depends on the particular
sequence, coordinating cations, and environmental conditions.
Unfortunately, the type and orientation of loops or the dimen-
sion of G4 grooves that vary among different G4s have not yet

been fully exploited in G4 recognition. The majority of G4 li-
gands developed and tested so far have been shown to pref-

erably stack on the G4 outer tetrads with limited discriminato-

ry potential. Thus, G4 binders typically feature extended aro-
matic surface areas for optimal stacking on a G-tetrad and are

often linked with flexible side chains for additional less specific
electrostatic and van der Waals interactions.[11, 12] Developing

a ligand that targets a particular G4 with high affinity and high
selectivity is still a challenging task that is also hampered by
limited thermodynamic and structural data.[13–15]

Cyanine dyes, such as thiazole orange or oxazole yellow,
based on benzothiazole and benzoxazole heterocycles, have

been widely used as fluorescent probes for nucleic acids.[16–18]

Concomitant with increasing interest in G4 structures, novel

benzothiazole or benzoxazole cyanine dyes have been devel-
oped for selective G4 detection. Ideally, these should exhibit
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a combination of high binding affinity, quadruplex selectivity,
and significant changes in their fluorescence quantum yield

upon complex formation. However, simple cyanine dyes often
show indiscriminate affinity for nucleic acid secondary struc-

tures and their binding to quadruplex DNA often suffers from
complexity and only poorly characterized binding modes.

Thus, given the strong propensity of cyanines to aggregate,
nucleic acid targets frequently induce additional assembly–dis-

assembly of the bound dye.[19, 20]

Remarkably, G4-selective ligands structurally unrelated to
the cyanine dye family, but based on benzo-fused thiazole or
oxazole heterocyclic moieties, have rarely been reported.[21]

The promising binding properties of the two heterocycles

prompted us to explore their use as a structural platform in
G4-selective binding motifs. A promising quadruplex-binding

2-aryl-benzothiazole ligand was identified and its binding to

various G4 structures was subjected to more detailed structural
and thermodynamic characterization. A comprehensive analy-

sis of affinity, selectivity, binding mode, and the thermodynam-
ic profile of association makes use of a diverse array of power-

ful biophysical methods, including circular dichroism (CD), MS,
fluorescence and NMR spectroscopy, and isothermal titration

calorimetry (ITC). These provide complementary information

on interactions with different G4 structures, and serve as
a solid basis for future structural optimizations.

Results and Discussion

Synthesis and spectroscopic characterization of benzothia-
zole derivative L4

In initial binding assays of 2-aryl-benzothiazoles and 2-aryl-

benzoxazoles that have been selected for their availability,
drug-like properties, and the presence of functionalities ame-

nable to simple and straightforward derivatization, acryloylfur-

anyl-substituted benzothiazole L4 not only exhibits significant
binding to G4 structures, but also noticeable discrimination

against quadruplexes with different topologies (Figure S1 in
the Supporting Information). The unfused 2-aryl substituent ex-

pands the p-conjugated system and allows for increased stack-
ing interactions with outer G-tetrads, but should be flexible
enough to adopt nonplanar conformations for alternative in-
teractions with loops or within the G4 grooves (Figure 1 A).

The L4 derivative was prepared from 3-[5-(1,3-benzothiazol-

2-yl)furan-2-yl]prop-2-enoic acid. Amide formation of the acid
with the polyamine N,N-bis(3-aminopropyl)methylamine was
accomplished through activation as the N-hydroxysuccinimide
(NHS) ester. The latter was isolated before reaction with a five-
fold excess of polyamine in DMF. The amine side chain at-
tached to the conjugated scaffold for this first-generation

ligand is closely related to spermidine and has frequently been
employed for ligands interacting with DNA. In addition to pos-
sible favorable contributions to the DNA binding properties
through amine functionalities with their high proton affinities,
it also increases water solubility of the ligand. As an added

benefit, the primary amino group may be used to easily tether
additional binding motifs in future modifications.

The optical properties of the L4 ligand are summarized in
Table 1 (see also Figure S3 in the Supporting Information).

Molar absorptivities at the absorption maximum at l= 368 nm
have been determined from measurements at eight ligand

concentrations and show only small changes upon going from
aqueous buffer to a solution in DMSO. Also, the strict linearity

of concentration-dependent absorbances over a concentration

range of 5 mm<c<40 mm suggest the absence of noticeable
aggregation processes in either solvent. In contrast to absorp-

tion, the fluorescence intensity of the ligand is heavily influ-
enced by the solvent, with a fluorescence quantum yield in-

creasing by a factor of nearly five upon going from aqueous
buffer to DMSO.

Quadruplex-selective L4 binding affinities

To evaluate the binding affinities of L4 towards G4s with differ-
ent folds, various well-characterized G4 targets, namely, Tetra,
c-MYC, TBA, HT, and ODN, were selected for the binding stud-
ies.[22–26] Quadruplex topologies and sequences of all oligonu-

cleotides are shown in Figure 1 B. Initially, CD spectra were ac-

quired that confirmed the expected topologies of the five
quadruplexes under the solution conditions employed (see

Figure S4 in the Supporting Information). It should be men-
tioned that spectra were acquired by using potassium buffer,

except for HT, which was dissolved in a Na+-containing buffer
to ensure folding into an antiparallel topology. Thus, the two

Figure 1. A) Structure of L4. B) Sequence and topology of the quadruplexes
c-MYC, TBA, Tetra, HT, and ODN, and that of the duplex DDD; guanine bases
of G-tetrads are underlined.

Table 1. Optical properties of L4 at 20 8C.

Conditions Absorption Fluorescence[b]

lmax [nm] e [m@1 cm@1][a] lmax [nm] F [a.u.]

buffer, pH 7.0 368 18 364:294 429 1.0
DMSO 368 19 154:67 422 4.8

[a] From the slope of concentration-dependent absorption data; average
values with standard deviations from three independent determinations.
[b] c = 3 mm ; lex = 365 nm.
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parallel c-MYC and Tetra quadruplexes reveal negative and
positive amplitudes centered at l= 243 and 264 nm, respec-

tively. In contrast, two maxima at l&245 and 294 nm and
a minimum at l&265 nm identify the antiparallel topology

adopted by telomeric HT and TBA quadruplexes, whereas the
ODN sequence folds into a (3 + 1) hybrid structure, in line with

a negative amplitude at l= 239 nm and two positive ampli-
tudes at l= 264 and 287 nm.[27, 28] Next, the impact of ligand
binding on the G4 structures was examined by ligand titra-

tions. Adding L4 in increasing amounts has only small effects
on the G4 CD spectral signatures and only changes amplitudes
to a minor extent, even with the ligand in a tenfold excess
(Figure S4 in the Supporting Information). Consequently, ligand
L4 does not significantly perturb the quadruplex conformation
and all G4s preserve their native topology. However, at high

ligand concentrations, very weak induced CD (ICD) effects of

the ligand are noticeable for TBA and ODN in the L4 absorp-
tion range between l= 325 and 410 nm; this demonstrates

quadruplex binding of the ligand. Typically, the ICD signal is
expected to be small for intercalation or outer stacking and

contrasts with groove binding, which often induces a positive
CD of larger magnitude with the same shape as that of the ab-

sorption band.[29] Consequently, the low-amplitude positive

ICDs may indicate an outer stacking binding mode. It should
be emphasized that, due to their dependence on the relative

orientation of transition dipole moments, and thus, on the L4
orientation, the absence of corresponding ICD effects for the

other G4 structures does not exclude high-affinity binding of
the ligand.

To determine binding affinities, the ligand was titrated with

the quadruplexes and its fluorescence was followed during the
course of the titration. As shown in Figure 2, the addition of

nucleic acid results in quenching of the L4 fluorescence to var-
ious degrees, depending on the particular quadruplex. Upon

the addition of ODN, and especially c-MYC, a faster decline to-
wards a limiting L4 fluorescence associated with binding-site

saturation is clearly apparent relative to the other G4 struc-

tures. This already indicates widely differing binding affinities,
of which c-MYC is the preferred target. To evaluate binding to

single- and double-stranded DNA, titrations were also per-
formed with the Dickerson–Drew dodecamer duplex DDD and

a single-stranded T10 decamer. Whereas the duplex titration
data suggest weak to moderate L4 binding, only a gradual

linear decrease of fluorescence was observed in the case of
T10 ; this indicates some nonspecific electrostatic interactions

with cationic L4.
Hyperbolic binding isotherms were fitted based on a model

with equivalent and independent binding sites and with limit-
ing fluorescence intensity, binding stoichiometry (n), and asso-

ciation constant (Ka) as free floating parameters. However, with

cL4Ka<10, and incomplete saturation at the end of titration,
the stoichiometry n and Ka are increasingly interdependent
and cannot be separately obtained with sufficient accuracy in
the nonlinear least-squares fit of most binding isotherms.[30] On

the other hand, the product nKa = Ka
app is reasonably well de-

fined by the isotherms under the present conditions. Ka
app

allows for a convenient comparison of quadruplex affinities,

but with the true number of individual binding sites undeter-
mined. As plotted in Figure 3, Ka

app values of L4 range from

1.1 V 105 m@1 for TBA to 1.1 V 106 m@1 for the c-MYC target; the

latter is in a range reported for the G4 binding of many typical

quadruplex ligands.[31–33] Binding to c-MYC is also accompanied
by the most pronounced change in L4 fluorescence. Whereas

a high L4 affinity is also found for hybrid-type ODN, both HT
and Tetra quadruplexes bind L4 with only modest affinity. Due

to a weak L4 association, no reliable fits were obtained for
single- or double-stranded DNA. However, with an estimated
Ka

app of 104–105 m@1 for DDD, duplex affinities are one to two

orders of magnitude lower than those of the preferred c-MYC
target.

Stoichiometry of L4 binding to c-MYC

Given the favored L4 binding to the c-MYC quadruplex and its

biological significance as a potential target, we focused on the
c-MYC sequence for additional studies on the number and af-

finity of potential binding sites. However, the artificially de-
signed ODN quadruplex, with its (3 + 1)-hybrid structure and

Figure 2. Fluorescence titrations of L4 (6 mm) with different quadruplexes,
duplex DDD, and single-stranded T10 in potassium phosphate or sodium
phosphate buffer (HT), pH 7; T = 20 8C, lex = 365 nm.

Figure 3. Quadruplex binding constants Ka
app = nKa, as determined by fluo-

rescence titrations of ligand L4 with quadruplex in potassium phosphate or
sodium phosphate buffer (HT), pH 7, at 20 8C; average values from +3 inde-
pendent experiments are plotted and standard deviations are indicated by
error bars.
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long diagonal loop, constitutes a G4 target for L4 that is only
slightly less preferred than that of c-MYC.

Because unambiguous binding stoichiometries were not ac-
cessible by the fluorescence titration experiments, the method

of continuous variation was employed. By mixing the ligand
and quadruplex in different molar ratios, while keeping the

total concentration constant, a Job plot was constructed
(Figure 4). Here, differences in the fluorescence of L4 between

different mixtures and corresponding quadruplex-free solu-

tions are plotted against the molar ratio of L4 to c-MYC. Two
independent measurements yielded an intersection of the two

linear regions at ratios of 0.63 and 0.67, in agreement with
a 2:1 stoichiometry of ligand–quadruplex.

Because multiple binding sites of the asymmetric c-MYC

quadruplex cannot be equal, the question arises if the sites ex-
hibit noticeable differences in their binding affinity. To elabo-

rate on this issue, we also performed a reverse titration, by ti-
trating the quadruplex with aliquots of L4 (Figure S5 in the

Supporting Information). Such a reverse titration is made possi-

ble through the intrinsic G4 fluorescence of c-MYC in the
range l= 325–360 nm when excited at l= 260 nm.[34] In con-

trast to single- and double-stranded DNA, the guanine ar-
rangement in quadruplexes results in enhanced fluorescence,

which gradually decreases upon adding the ligand. The combi-
nation of forward and reverse titrations gives a more compre-

hensive picture of binding due to the different initial condi-
tions. Disregarding cooperative binding (see below), changes
in fluorescence at the start of the reverse titrations are domi-
nated by the formation of 1:1 complexes and by ligand bind-
ing to high-affinity sites on the free quadruplex being in

excess. On the other hand, with the ligand in excess, the initial
fluorescence upon titrating the quadruplex to the ligand will

mostly respond to the formation of higher order complexes
that also involve low-affinity sites. Consequently, results ob-
tained for the forward and reverse titrations will only match

for stoichiometries of >1 if available binding sites are of simi-
lar affinity and trigger similar optical responses. Fitting the

data of the reverse titration with a model of equivalent and in-
dependent binding sites enabled the separate determination

of Ka = 6 V 105 m@1 and the number of binding sites n = 2.4.
These values are in good agreement with previously deter-

mined parameters. Given some uncertainties due to a small
but non-negligible absorbance of L4 at the wavelength of G4

excitation, comparable binding constants determined from for-
ward and reverse titrations thus suggest binding sites of

broadly similar affinity.
We complemented optical studies by also following changes

in ligand absorption upon c-MYC addition (Figure S6 in the

Supporting Information). Inspection of the UV/Vis spectra re-
veals hypso- and bathochromic effects, in agreement with

a stacked ligand and an isosbestic point at l= 395 nm that is
increasingly blurred for later titration steps. These fully repro-

ducible results demonstrate the presence of more than two
spectrally distinct species as a result of inequivalent binding
sites, but may also indicate additional weak and nonspecific as-

sociation, mostly driven by electrostatic forces between nega-
tively charged nucleic acid and cationic ligand (see below).

In contrast to optical methods, mass spectrometry allows
the separate detection of individual complexes if they are
stable enough during the ionization process (here electrospray
ionization (ESI)) and can be transferred into the gas phase.[35, 36]

To reduce counterion condensation on the nucleic acid upon

evaporation in the presence of sodium or potassium ions, DNA
and ligand were dissolved for ESI-TOF MS analysis in 150 mm
ammonium acetate buffer with the addition of 10 % methanol.
The amount of methanol additive ensured a stable signal with-

out changing buffer conditions to a more significant extent. In-
itial CD measurements on c-MYC in the ammonium acetate/

MeOH buffer confirmed the formation of a parallel quadruplex.

ESI-TOF mass spectra of solutions of c-MYC–L4 are shown in
Figure 5 and indicate two predominant charge states of z = 4–

and 5–.
In accordance with cation coordination between G-tetrads,

signals at m/z 1403.4 and 1754.6 identify ions [c-MYC]5@ and
[c-MYC]4@, respectively, with two tightly bound ammonium

ions, as expected for a conserved quadruplex fold. With one

equivalent of the ligand in the spraying solution, [1:1] complex
ions appear at m/z 1483.1 (z = 5–) and 1854.1 (z = 4–), but sig-
nals of free quadruplexes still dominate. The addition of more
ligand to yield a molar ratio of quadruplex to L4 of 1:2 results

in a further increase of the [1:1] complex ion and the appear-
ance of additional ions of [1:2] complexes with m/z 1562.7 (z =

5–) and 1953.6 (z = 4–). The 1:1 and 1:2 complexes further
grow in intensity at the expense of free quadruplex with an in-
creasing molar ratio of ligand to quadruplex. The intensity dis-

tribution of ions at different molar ratios clearly suggests non-
cooperative L4 binding to two binding sites. Although differ-

ent buffer conditions were employed, the mass spectral data
corroborated results from the optical measurements in identi-

fying two independent L4 binding sites on the c-MYC quadru-

plex.

Interacting sites of L4 and c-MYC

To obtain additional information on the L4 binding mode,
NMR spectra of the c-MYC quadruplex were acquired in the

Figure 4. Job plot showing differences in L4 fluorescence at l= 429 nm be-
tween mixtures of L4 with c-MYC at different molar fractions and L4 without
DNA in potassium phosphate buffer at 20 8C. The sum of ligand and quadru-
plex concentration was fixed to 6 mm. The intersection of the two linear re-
gression lines suggests 2:1 stoichiometry for the ligand–quadruplex.
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absence and presence of the ligand. The imino proton spectral
region of 1D 1H NMR spectra are shown in Figure 6 at 40 8C.

The free quadruplex exhibits twelve well-resolved guanine

imino signals engaged in hydrogen bonding between d= 10.5
and 12.0 ppm; this demonstrates the formation of a quadruplex

structure composed of three G-tetrads under the solution con-
ditions employed.

Adding increasing amounts of L4 leads to a moderate
broadening of the signals, but no additional resonances are

observed. This indicates intermediate to fast exchange process-

es between free and bound c-MYC, in agreement with a sharp-
ening of signals due to faster exchange at elevated tempera-

tures. Most imino resonances are gradually shifted upfield
during titration to a varying extent. Upfield shifts of G4 imino

protons upon binding have frequently been observed and can
be attributed to ring-current effects of the aromatic ligand

stacked on the outer G-tetrad.[37, 38] Notably, saturation is not
yet reached, even after the addition of ligand in a threefold
excess; this possibly also indicates some ligand-mediated ag-

gregation processes.
For the resonance assignments, standard NMR spectroscopy

methodologies were employed on a mixture of c-MYC–L4 in
a 1:3 molar ratio.[39] In particular, 2D NOE spectra enabled the

complete assignment of H6/H8 base and H1’/H2’/H2“ sugar
protons in the complex, but not those of residue A22 at the 3’-
terminus (see Tables S1 and S2 in the Supporting Information).

Thus, intranucleotide and sequential H6/H8–H1’ and H6/H8–
H2’/H2” NOE contacts allow for a continuous walk along the

sequence starting from T1 of the 5’-terminus and only inter-
rupted by the three propeller loops (see Figure S8 in the Sup-

porting Information). Unambiguous discrimination of the
second and third G-tracts was possible through connectivities

observed between H1’ of residue G10 and A12 H2 within the

second propeller loop. Imino protons were identified by H1–
H8 contacts detected within G-tetrads and H1–H1 contacts

along the G-tracts. Ambiguities in a few assignments were re-
solved by direct comparison with assignments made for the

free quadruplex, with its largely similar NOE patterns. For the
latter, proton chemical shifts were previously published and

only some small deviations, in particular, those apparent at the

5’- and 3’-overhang, resulted from different temperature and
solution conditions.[23]

Unfortunately, hampered by dynamic processes, no intermo-
lecular NOE contacts between L4 and c-MYC protons were de-

tected. Nevertheless to localize c-MYC–L4 interactions within
the complex, chemical shift differences of base and sugar pro-

tons between the complex and free quadruplex were deter-

mined. Plotted as a function of residue, these chemical shift
footprints identify sites considerably perturbed by the bound
ligand and are likely to be located near the ligand-binding site.
Chemical shift changes along the G4 sequence, involving non-

exchangeable base and sugar protons, as well as imino pro-
tons within the G-tetrads, are shown in Figure 7 and Figure S9

in the Supporting Information, respectively. Conspicuously, 5’-
and 3’-overhang residues experience the largest perturbations,
whereas loop residues are only affected to a small extent

(Figure 7). Significant deshielding effects are observed for the
H8 and H1’ protons of A3 flanking the 5’-tetrad, and for the

methyl resonance of T20 flanking the 3’-tetrad. The last of
these initially broadens and considerably shifts downfield by

0.17 ppm (Figure S7 in the Supporting Information). Chemical

shifts of nonexchangeable protons within the four G-tracts are
moderately affected by L4 binding with changes of Dd,
0.1 ppm. Given a largely unaffected TA propeller loop that
shields the groove between the second and third G-tracts,

more noticeable perturbations along G8-G9-G10 and G13-G14-
G15 must result from conformational readjustments, rather

Figure 5. ESI-TOF mass spectra of c-MYC in the presence of L4 with molar
ratios of 1:1 (A), 1:2 (B), and 1:3 (C) in 150 mm ammonium acetate/10 %
methanol.

Figure 6. Imino proton spectral region of 0.45 mm c-MYC quadruplex with
increasing amounts of L4 in 10 mm potassium phosphate, pH 7, at 40 8C. As-
signments to G residues are given for the free c-MYC.
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than direct ligand contacts. Except for G17, major chemical
shift changes of Dd&0.2 ppm are also observed for the imino

protons of the 5’-tetrad and indicate their contact to bound L4
(Figure S9 in the Supporting Information). Whereas imino
groups of the central tetrad are moderately affected through

mediated long-range effects, only G15 exhibits a significant up-
field shift within the 3’-tetrad.

In the following, the impact of L4 binding to the quadruplex
proton chemical shifts was also mapped on a surface model of

the c-MYC structure (PDB 1XAV; Figure 8). Changes in chemical

shifts for imino, H6/H8, and H1’/H2’/H2“ protons were sepa-
rately assigned for each type of proton to five classes with dif-

ferent gradations of red color. To ensure unobstructed views of
the outer tetrads, both 5’-TGA and TAA-3’ overhangs were re-

moved. As seen in Figure 8, the deeply red-colored 5’-tetrad is
strongly affected by the ligand. On the other hand, smaller dis-

connected areas of chemical shift perturbations are observed

at the 3’-terminus and only minor effects of L4 are seen for
the groove and loop regions. These results suggest that the

furylbenzothiazole moiety of the ligand preferentially stacks on
the G4 5’-tetrad. Fewer and/or weaker contacts with the outer
quartet at the 3’-end, mostly involving G15, are indicated by
the G imino chemical shift footprints (Figure S9 in the Support-

ing Information). The positively charged aminoalkyl side chain
of L4 may form additional contacts within the freely accessible

groove or with loop and overhang nucleotides to support

binding on the outer tetrads. However, its impact on quadru-
plex chemical shifts seems to be small due to its high flexibili-

ty, and no further information on corresponding interactions
can be obtained based on chemical shift changes.

As shown by the surface model in Figure 8, furanose sugars
at the 3’-tetrad protrude beyond the plane and may hamper

putative stacking interactions with the ligand. The higher affin-

ity of the better accessible 5’-tetrad is not without precedence
and has also been observed for other ligands binding to the c-

MYC quadruplex.[40, 41] In further analogy to these studies, the
strongly impacted overhangs may also indicate large confor-

mational readjustments with the possible formation of
a ligand-induced binding cavity. It should be cautioned, how-
ever, that large changes in proton chemical shifts upon ligand

binding do not necessarily correlate with thermodynamic asso-
ciation constants and only indicate significant ligand-induced
perturbations. Thus, whereas chemical shift footprints are very
valuable for an initial localization of bound ligand, they do not

provide for the unambiguous identification of high- and low-
affinity binding sites, especially when differences in microscop-

ic association constants are only moderate.

Thermodynamic signature of binding

A more detailed understanding of the thermodynamic contri-

butions to binding is a prerequisite for the rational structural
optimization of ligands. Consequently, additional isothermal

calorimetry studies were performed to measure the enthalpy

of L4 binding to the c-MYC quadruplex directly. By using
a model-free approach, standard molar enthalpies for the high-

affinity binding sites were determined by an excess-site
method, yielding DHo = (@5.79:0.25) kcal mol@1 from three in-

dependent measurements (Figure 9 A). With a standard free
energy of @7.77 kcal mol@1 per binding site, as independently

Figure 7. Chemical shift perturbations Dd=d(complex)@d(c-MYC) for H6/H8, H1’, H2’, and H2“ protons along the c-MYC sequence upon the addition of L4
(3 equiv). Overhang and loop residues are highlighted in dark and light gray, respectively.

Figure 8. Proton chemical shift perturbations mapped with red indicating
variable intensity on a surface model of c-MYC (PDB 1XAV). View of the 5’-
(left) and 3’-tetrad (right). Arrows indicate the freely accessible groove.
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determined from fluorescence titration experiments (see
above), an entropic contribution of @TDSo =@1.98 kcal mol@1

can be calculated. Whereas both enthalpic and entropic effects
favor binding, it is the enthalpic contribution that mostly

drives L4 association with the c-MYC quadruplex (Figure 9 B).
This is in contrast with previous ITC studies on the binding of

indolenine cyanine dyes to quadruplexes.[42] These have shown

that the interaction of the cyanines is predominantly entropy
driven, which indicates a significant impact from hydrophobic

effects on complex formation. On the other hand, stacking,
dipole–dipole, hydrogen-bond, and electrostatic interactions

are suggested to considerably contribute to binding of the
benzothiazole derivative, with its relatively small hydrophobic

surface area.

We also performed a complete ITC titration for a comparison
with isotherms acquired by optical methods. Interestingly, ITC

titration curves revealed additional low-affinity binding, proba-
bly through nonspecific electrostatic interactions at the quad-

ruplex outer surface (Figure S10 in the Supporting Informa-
tion). Without any partial fixing of parameters, attempts to fit

the experimental data based on a model with inequivalent
binding sites resulted in only poorly defined fit values. Howev-
er, fitting the isotherms with fixed stoichiometry and standard
molar enthalpy, as determined previously for the specific high-
affinity binding, leaves a reduced set of adjustable parameters

and enables their more accurate determination. Thus, in addi-
tion to parameters for the low-affinity binding with Ka values in

the order of 104 m@1, a corresponding fit yields Ka = 6.5 V 105 m@1

for each of the two high-affinity binding sites. This is in excel-
lent agreement with the values obtained from the fluorescence

titrations, and demonstrates the reliability of the values ex-
tracted and consistency among the different methods for the

present binding event.

Conclusion

Cyanine dyes with benzothiazole moieties have found wide-
spread use as optical probes due to their often favorable pho-

tophysical properties. Binding G4s with high affinity, but little
discriminatory power, thiazole orange has been employed in

the past for ligand displacement studies on various G4s.[43, 44]

However, benzothiazole compounds not belonging to the cya-

nine dye family have rarely been examined in more detail as
G4 binding agents. We have therefore derivatized a planar
furyl-substituted benzothiazole with an extended p-conjugated
system and examined its binding to various quadruplexes of
different topologies. With a difference in Ka

app of up to one

order of magnitude, the ligand exhibits significant discrimina-
tory potential for different quadruplex folds, binding the fa-

vored c-MYC target with micromolar affinity. At the same time,

moderate to good selectivities with respect to double-helical
DNA and Ka

app(c-MYC)/Ka
app(duplex) ratios of 10–100 are esti-

mated from titration experiments. Clearly, despite these prom-
ising binding properties, the selectivities of this first-generation

ligand have to be improved for advanced applications.
Further developments of G4 ligands on a rational basis will

strongly benefit from a better understanding of the modes of

interaction and thermodynamic driving forces for binding. Al-
though dynamic exchange processes of the ligand between

different binding sites prevent the determination of a high-res-
olution structure, the present studies not only disclose en-

thalpic and entropic contributions to binding, but also indicate
binding of the benzothiazole-based ligand through partial

stacking on the outer G-tetrads. The cationic amine side chain

is expected to promote binding through electrostatic interac-
tions with phosphates of the loop or within the groove. Inter-

actions other than stacking forces are also suggested by the
thermodynamic signature that indicates a predominantly favor-

able enthalpy in driving ligand association with parallel c-MYC.
Enforcing entropic contributions through an extension of non-

polar surface areas associated with enhanced hydrophobic ef-

fects may thus be a viable strategy in the future to further in-
crease affinities. However, selectivity should benefit from more

specific interactions, such as those of hydrogen bonding, p

stacking, or van der Waals. Corresponding modifications are
easily introduced through altered side chains and through cou-
pling with other G4-binding motifs for possible synergistic ef-

fects. The easy availability of the present benzothiazole struc-
ture combined with its straightforward derivatization should
represent key advantages for its further development to effi-
cient G4-binding ligands.

Experimental Section

General

3-[5-(1,3-Benzothiazol-2-yl)furan-2-yl]prop-2-enoic acid and N,N-
bis(3-aminopropyl)methylamine were purchased from Otava (Kyiv,
Ukraine) and TCI (Eschborn, Germany), respectively. All other re-
agents and solvents were purchased from Sigma–Aldrich (Stein-
heim, Germany) and Euriso-Top (Saarbrecken, Germany). Solvents

Figure 9. A) Model-independent excess-site ITC titration of L4 to the c-MYC
quadruplex. The upper and lower panels show the heat burst for every injec-
tion step and the corresponding normalized heat signal versus molar ratio,
respectively. B) Thermodynamic binding profile of L4 with DGo (black bar),
DHo (gray bar), and @TDSo (white bar). Parameters were calculated from
standard thermodynamic relationships: DGo =@RTln Ka and
DGo =DHo@TDSo.
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were distilled under reduced pressure prior to use. The progress of
reactions was monitored by TLC on plates precoated with silica gel
60F254 (Merck).

Synthesis of L4

3-[5-(1,3-Benzothiazol-2-yl)furan-2-yl]prop-2-enoic acid (80 mg,
0.295 mmol) was dissolved together with NHS (91.7 mg,
0.797 mmol) and N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide
hydrochloride (DCI; 152.8 mg, 0.797 mmol) in dry DMF (7 mL). The
mixture was stirred in the dark at room temperature under an
argon atmosphere and the progress of the reaction was followed
by TLC (CH2Cl2-MeOH 9:1). After 22 h, the solvent was removed
under reduced pressure. The NHS ester was dissolved in CH2Cl2

and washed three times with distilled water. The organic phase
was dried over Na2SO4 and the solvent removed (yield 95 %).
The NHS ester intermediate (110.0 mg, 0.28 mmol) was dissolved in
DMF and added dropwise to a mixture of N,N-bis(3-aminopropyl)-
methylamine (239.4 mL, 1.495 mmol) and DMF (total volume 3 mL).
The mixture was stirred in the dark at room temperature, while
being monitored by TLC (CH2Cl2/MeOH 7:3, 10 % NH3). After 3 h,
the solvent was removed under reduced pressure and the product
dissolved in CH2Cl2. It was washed three times with distilled water,
twice with a saturated solution of NaCl, and dried over Na2SO4.
Amide L4 was finally purified by column chromatography on silica
gel (CH2Cl2/MeOH 10:0 to 7:3 followed by 0 to 10 % NH3). Total
yield 47 %; MW 400.54 g mol@1; Rf = 0.50 (CH2Cl2/MeOH 7:3, 10 %
NH3) ; 1H NMR (600 MHz, 298 K, [D6]DMSO): d= 8.33 (t, 5.5 Hz, 1 H;
amide NH), 8.18 (d, 7.8 Hz, 1 H; H-4), 8.05 (d, 7.8 Hz; 1 H, H-7), 7.57
(t, 7.8 Hz, 1 H; H-6), 7.49 (t, 7.8 Hz, 1 H; H-5), 7.46 (d, 3.6 Hz, 1 H; H-
9), 7.32 (d, 15.6 Hz, 1 H; H-12), 7.05 (d, 3.6 Hz, 1 H; H-10), 6.68 (d,
15.6 Hz, 1 H; H-13), 3.20 (quart, 6.5 Hz, 2 H; H-1’), 2.58 (br, 2 H; H-6’),
2.30 (t, 7.0 Hz, 4 H; H-3’, H-4’), 2.12 (s, 3 H; N-CH3), 1.59 (quin,
7.0 Hz, 2 H; H-2’), 1.50 ppm (quin, 7.0 Hz, 2 H; H-5’) ; 13C NMR
(150 MHz, 298 K, [D6]DMSO): d= 164.3 (C=O), 153.4 (C-3a), 153.3 (C-
11), 148.4 (C-8), 133.9 (C-7a), 126.9 (C-6), 125.7 (C-5), 124.9 (C-12),
122.7 (C-7), 122.4 (C-4), 122.2 (C-13), 116.1 (C-10), 114.4 (C-9), 54.9
(C-3’, C-4’), 41.8 (N-CH3), 39.7 (C-6’), 37.2 (C-1’), 30.1 (C-5’), 26.9 ppm
(C-2’).

Sample preparation

DNA oligonucleotides were purchased from TIB MOLBIOL (Berlin,
Germany). Before use, oligonucleotides were precipitated in etha-
nol and the concentrations were determined spectrophotometri-
cally by measuring the absorbance at l= 260 nm. Optical and calo-
rimetric measurements were performed in a buffer with 20 mm po-
tassium phosphate, 100 mm KCl, pH 7.0. For the telomeric quadru-
plex HT, a buffer with 20 mm sodium phosphate, 100 mm NaCl,
pH 7.0, was used. Prior to measurements, quadruplex samples
were annealed by heating to 90 8C for 15 min followed by slow
cooling (10 h) to 5 8C. For the L4 ligand, a concentrated stock solu-
tion in DMSO was employed. Generally, the concentration of sam-
ples in DMSO for optical measurements was <1 %.

Circular dichroism (CD)

CD spectra were acquired with a Jasco J-810 spectropolarimeter
equipped with a thermoelectrically controlled cell holder (Jasco,
Tokyo, Japan). Measurements were performed at 20 8C in 1 cm
quartz cuvettes on a 5 mm solution of oligonucleotide without or
with ligand in a molar ratio of 1:1, 1:5, or 1:10. Spectra were re-
corded from l= 230 to 450 nm with a bandwidth of 1 nm, a re-

sponse time of 1 s, a scanning speed of 50 nm min@1, and 5 accu-
mulations. All spectra were blank-corrected.
CD melting curves were acquired over a temperature range from
20 to 90 8C with a bandwidth of 1 nm, a response time of 4 s,
a heating rate of 0.5 8C min@1, and data points every 0.5 8C. By
using 1 cm quartz cuvettes, the concentrations of quadruplex and
ligand were 5 and 25 mm, respectively. The wavelength employed
for recording ellipticities was l= 264 nm for c-MYC and l= 289 nm
for ODN. The intersection of the melting curve with the median of
the fitted baselines was used to determine the melting point, Tm,
in three independent measurements.

Fluorescence measurements

Fluorescence measurements were performed with a Jasco FP-6500
spectrofluorometer thermostated with a Peltier unit (Jasco, Tokyo,
Japan). By using 1 cm quartz cuvettes, ligand emission spectra
were acquired from l= 375 to 550 nm with an excitation wave-
length of l= 365 nm, a scanning speed of 100 nm min@1, emission
and excitation bandwidths of 5 nm, and a response time of 1 s. For
fluorescence titrations, aliquots of the quadruplex were added
stepwise to a 6 mm solution of the ligand. Emission spectra of the
G4 were acquired from l= 300 to 400 nm with a scanning speed
of 50 nm min@1, an excitation wavelength of l= 260 nm, emission
and excitation bandwidths of 10 nm, and the response time set to
2 s. In the reverse titrations, a solution of c-MYC (6 mm) was titrated
with aliquots of L4. Emission spectra were recorded after a 5 min
equilibration period in each case. Volume-corrected fluorescence
intensities at l= 429 nm for L4 and l= 330 nm for c-MYC in re-
verse titrations were plotted over the molar ratio and fitted with
an appropriate equation based on equivalent binding sites.
Job plots were performed at 20 8C by varying both the ligand and
quadruplex concentration, but keeping their sum fixed at 6 mm.
Different volumes of equimolar stock solutions of each binding
partner were mixed to give different molar fractions of ligand rang-
ing from zero to one. A blank measurement was performed by re-
placing the quadruplex solution with buffer. The difference in fluo-
rescence between sample and blank at l= 429 nm for L4 was plot-
ted against the molar fraction of ligand. The stoichiometry of the
ligand–quadruplex interaction was obtained by the intersection of
the two linear regression lines.

UV/Vis spectroscopy

UV/Vis absorbances were measured with a Jasco V-650 spectropho-
tometer (Jasco, Tokyo, Japan). The temperature was controlled by
a Peltier temperature control unit. For titration experiments, ali-
quots of G4 were added stepwise to a 6 mm solution of the ligand
in buffer in 1 cm quartz cuvettes at 20 8C. Absorption spectra were
recorded at a scanning speed of 100 nm min@1 after a 5 min equili-
bration period in the range l= 300 to 450 nm with a bandwidth of
1 nm for each titration step.

ESI-MS

ESI-TOF MS experiments were performed on a quadrupole time-of-
flight instrument (TripleTOF5600 + , Sciex, Ontario, Canada) by
direct infusion. G4 samples were measured in negative-ion mode
with source and collision voltages set to @3800 and @10 V, respec-
tively. The source temperature was screened from RT to 180 8C; the
latter was used without significant deterioration of spectrum quali-
ty. The radiofrequency (rf) transmission window was set according
to the m/z of the analyte. The infusion was performed by using
a syringe at 20 mL min@1. Other optimized settings include a curtain
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gas of 16 psi, nebulizer and drying gas of both 17 psi, and a declus-
tering potential of @20 V. Acquisition was performed with an accu-
mulation time of 2000 ms in multiple channel analyzer (MCA)
mode. Samples were prepared at a concentration of 2 mm HPLC-
purified oligonucleotide in 150 mm ammonium acetate buffer
(pH 7.0) containing 10 % methanol and varying amounts of the L4
ligand.

NMR spectroscopy

NMR spectra were acquired on a Bruker Avance 600 MHz spec-
trometer equipped with an inverse 1H/13C/15N/31P quadruple reso-
nance cryoprobe head and z-field gradients. For all NMR spectros-
copy measurements on the quadruplex and quadruplex–ligand
mixtures, a low-salt buffer with 10 mm potassium phosphate,
pH 7.0, was used. Titrating the ligand in a concentrated solution in
DMSO to the quadruplex resulted in a final DMSO content of
about 7 % for L4–quadruplex mixtures with a molar ratio of 3:1.
Data were processed by using Topspin 3.1 software and analyzed
with the CcpNmr Analysis program.[45] Proton chemical shifts were
referenced relative to the temperature-dependent chemical shift of
H2O (dH = 4.62 ppm at 40 8C). For water suppression in 90 % H2O/
10 % D2O, a WATERGATE w5 pulse sequence with gradients was
used. NOESY experiments for free c-MYC and c-MYC in the pres-
ence of L4 were performed at 40 8C with a mixing time of 300 ms
and a spectral width of 10 kHz. 4 K V 1 K data points with 24 transi-
ents per t1 increment and a recycle delay of 2 s were collected in t2

and t1. Prior to Fourier transformation, data were zero-filled to give
a 4 K V 2 K matrix and both dimensions were apodized by squared
sine bell window functions.

Isothermal titration calorimetry (ITC)

ITC experiments were performed with a MicroCal PEAQ-ITC instru-
ment (Malvern Instruments, UK). Samples were dissolved in buffer
(pH 7.0) containing 5 % DMSO. Titrations were performed at 20 8C
with a reference power of 5 mcal s@1 and a delay between injections
of 240 s. The first injection volume was rejected before data analy-
sis. Subsequent titration steps involved injections with 1.5 mL each
of a 999 mm solution of ligand to 20 mm quadruplex. For the direct
determination of binding enthalpies by the excess-site method,
buffer solutions of 200 mm quadruplex and 200 mm ligand were
employed with a delay between injections of 300 s and injection
volumes of 3 mL.
Blank titrations for the correction of the titration curves were con-
ducted by injecting the ligand into buffer under otherwise identi-
cal experimental conditions. In the case of the model-independent
protocol, the molar binding enthalpy, DH8, was directly determined
by signal integration of the power output following each injection,
normalization by the number of moles of added ligand, and aver-
aging from three independent experiments with 12 titration steps
each. The final data were analyzed with Origin software.
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Figure S1. A) Structure of benzothiazole and benzoxazole derivatives L4, L5, and L6. B-F) 
Normalized ligand fluorescence upon titrating the ligands (6 µM) with quadruplexes TBA (B), HT 
(C), Tetra (D), ODN (E), and c-MYC (F) in potassium phosphate or sodium phosphate buffer (HT) at 
pH 7 and T = 20 °C. Note, that with ligand L4 saturation is reached more rapidly indicating its higher 
affinity for all G4 structures. G) Changes in CD melting temperature of c-MYC and ODN 
quadruplexes upon addition of ligand in a five-fold excess; standard deviations based on three 
independent measurements are indicated. Due to its high thermal stability, the c-MYC quadruplex was 
dissolved in a sodium phosphate buffer previously found to conserve its parallel fold. Again, binding 
of ligand L4 results in the highest G4 thermal stabilization. 
  

N

S O

N
H

O

N
CH3

NH2

R

R =
N

O

N

O

Cl

F

O

R

R

O

L4

L6

L5

A

L5 L6

0 1 2 5 6

L4

43
molar ratio TBA:ligand

0

F n
or

m

0.2

0.4

0.6

0.8

1.0

B

0 1 2 5 6

L4

43
molar ratio HT:ligand

0

F n
or

m

0.2

0.4

0.6

0.8

1.0
L5 L6C

0 1 2 5 6

L4

43
molar ratio Tetra:ligand

0

F n
or

m

0.2

0.4

0.6

0.8

1.0
L5 L6D

0 1 2 5 6

L4

43
molar ratio ODN:ligand

0
F n

or
m

0.2

0.4

0.6

0.8

1.0
L5 L6

E

0 1 2 5 643
molar ratio c-MYC:ligand

0

F n
or

m

0.2

0.4

0.6

0.8

1.0
L4 L5 L6F

14

ΔT
m

/ °
C

c-MYC 12

10

8

6

4

-2

0

ODN

L4 L5 L6

2

G



S3 
 

 

Figure S2. One-dimensional 1H NMR spectrum (A) and two-dimensional 1H-13C HSQC (B) and 1H-
13C HMBC spectrum (C) of L4 in DMSO-d6 at 298 K. 
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Figure S3. A) Absorption (black) and fluorescence emission spectrum (red) of 20 µM and 6 µM L4 in 
potassium phosphate buffer, pH 7.0. B) Fluorescence emission spectra of L4 (3 µM) in buffer (black), 
ethanol (blue) and DMSO (red); T = 20 °C. 
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Figure S4. CD spectra of c-MYC (A), Tetra (B), HT (C), TBA (D), and ODN (E) with increasing 
amounts of ligand L4 in potassium phosphate (A,B,D,E) or sodium phosphate buffer (C), pH 7, at 20 
°C. 
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Figure S5. Fluorescence titration of c-MYC (6 µM) with L4 in potassium phosphate buffer, pH 7; T = 
20 °C, λex = 260 nm. 
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Figure S6. UV-vis titration of L4 (6 µM) with c-MYC in aliquots of 0.5 eq. in potassium phosphate 
buffer at 20 °C. 
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Figure S7. Aromatic and methyl proton spectral regions of 0.45 mM c-MYC quadruplex with 
increasing amounts of L4 in 10 mM potassium phosphate, pH 7, at 40 °C. Assignments for T methyl 
protons are given for the free c-MYC. The resonance marked with an asterisk is due to residual 
acetate. A resonance of unknown origin not correlated to any other proton of the c-MYC quadruplex 
through exchange, dipolar, or scalar coupling is marked by ‘x’. 
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Figure S8. H6/H8-H2’/H2” (A) and H6/H8-H1’ (B) spectral region of a 2D NOE spectrum (mixing 
time 300 ms) of c-MYC (0.45 mM) in the presence of L4 (1:3 molar ratio) in potassium phosphate 
buffer at 40 °C. Intranucleotide and sequential NOE connectivities are followed by the red (T1-G6), 
green (G8-G10), blue (G13-G15), and black (G17-G21) horizontal and vertical lines; broken lines 
trace NOE contacts in the TA loop while H6-Me contacts in (A) are marked by asterisks. 
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Table S1. 1H chemical shifts δ (in ppm) of protons in c-MYCa 

 imino H6/H8 H1‘ H2‘1 H2‘2 
T1 n.d. 7.23 5.82 1.65 2.06 

G2 n.d. 7.64 5.65 2.39 2.46 

A3 --- 8.00 5.89 2.60 2.73 

G4 11.70 8.00 6.06 2.74 3.00 

G5 11.22 7.70 6.14 2.61 2.91 

G6 10.67 7.73 6.40 2.60 2.74 

T7 n.d. 7.87 6.52 2.47 2.67 

G8 11.68 7.99 6.14 2.48 2.91 

G9 11.49 7.89 6.14 2.66 2.85 

G10 11.08 7.85 6.41 2.60 2.74 

T11 n.d. 7.65 6.24 2.23 2.46 

A12 --- 8.53 6.68 2.96 3.07 

G13 11.89 8.09 6.17 2.62 2.96 

G14 11.24 7.78 6.20 2.67 2.98 

G15 11.00 7.79 6.44 2.61 2.71 

T16 n.d. 7.86 6.52 2.47 2.67 

G17 11.25 7.90 6.00 2.37 2.79 

G18 11.35 7.89 6.03 2.67 2.73 

G19 11.05 7.61 6.18 2.53 2.78 

T20 n.d. 7.15 5.91 1.90 2.34 

A21 --- 7.82 5.80 2.07 2.43 

A22 --- n.d. n.d. n.d. n.d. 

aAt 40 °C in 90% H2O/10% D2O, 10 mM potassium phosphate buffer, pH 7.0; n.d. = not determined.  
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Table S2. 1H chemical shifts δ (in ppm) of protons in c-MYC with L4 in a 1:3 molar ratioa 

 imino H6/H8 H1‘ H2‘1 H2‘2 
T1 n.d. 7.19 5.80 1.61 2.02 

G2 n.d. 7.51 5.56 2.26 2.32 

A3 --- 8.13 6.07 2.64 2.69 

G4 11.52 7.99 6.04 2.72 2.98 

G5 11.12 7.66 6.13 2.63 2.91 

G6 10.67 7.63 6.32 2.61 2.70 

T7 n.d. 7.88 6.52 2.48 2.67 

G8 11.51 7.92 6.09 2.43 2.86 

G9 11.36 7.80 6.07 2.61 2.81 

G10 11.06 7.79 6.37 2.64 2.76 

T11 n.d. 7.67 6.24 2.26 2.47 

A12 --- 8.55 6.67 2.95 3.06 

G13 11.69 8.01 6.11 2.57 2.94 

G14 11.14 7.70 6.14 2.62 2.92 

G15 10.87 7.70 6.40 2.64 2.75 

T16 n.d. 7.88 6.52 2.48 2.67 

G17 11.30 7.80 5.97 2.38 2.78 

G18 11.32 7.86 6.03 2.68 2.73 

G19 11.06 7.65 6.22 2.58 2.76 

T20 n.d. 7.22 5.91 1.88 2.19 

A21 --- 7.95 5.84 2.23 2.33 

A22 --- n.d. n.d. n.d. n.d. 

aAt 40 °C in 90% H2O/10% D2O, 10 mM potassium phosphate buffer, pH 7.0; n.d. = not determined.  
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Figure S9. Chemical shift changes for imino protons within the three tetrads of the c-MYC sequence 
upon binding L4. 
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Figure S10. ITC binding isotherm of L4 titrated to the c-MYC quadruplex. The upper and lower panel 
shows the heat burst for every injection step and the corresponding normalized heat signal versus 
molar ratio, respectively. The curve represents a best fit of the experimental data based on two 
nonequivalent binding sites and with molar enthalpy ∆Ho

1 and stoichiometry n1 for the high-affinity 
binding sites fixed to -5.79 kcal/mol and 2, respectively (see manuscript text). Variable parameters 
determined from curve fitting yield Ka1 = 6.5ˑ105 M-1, Ka2 = 2.7ˑ104 M-1, ∆Ho

2 = -2.4 kcal/mol, and 
n2 = 6.4. 
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a  b  s  t  r  a  c  t

Pentacyclic  triterpene  mono-  and  diesters  have  been  isolated  from  Calendula  officinalis  flowers.  GC–MS,
APCI-Exactive  Orbitrap  HR-MS  and  NMR  allowed  to identify  the  triterpene  skeleton  in  various  samples
(different  triterpene  mixtures  from  Calendula  n-hexane  extract).  NMR  provided  evidence  that  triter-
pene  diesters  are  present  in  the samples  as well.  However,  the  corresponding  quasi-molecular  ions
could  not  be  detected  by  APCI-Exactive  Orbitrap  HR-MS.  Instability  of triterpene  diesters  and  loss  of
a fatty  acid  residue,  respectively,  in  the  ion-source  made  their  MS  detection  challenging.  Thus,  a  set  of
new APCI-QTOF-MS  methods  (using  the  TripleTOF  5600+  mass  spectrometer)  were  developed  which
made  it  eventually  possible  to solve  this  problem  and  confirm  the  diester  structures  by MS via quasi-
molecular  ion  [M  + H]+ detection.  Direct infusion  APCI-QTOF  MS experiments  in MS/MS  high  sensitivity
scan  mode  with  low  collision  energy  and multi-channel  averaging  acquisition  (MCA)  allowed  the detec-
tion  of quasi-molecular  ions  of triterpene  diesters  for the  first time  and  unequivocally  confirmed  the
presence  of faradiol  3,16-dimyristate  and  -dipalmitate,  as  well  as the  corresponding  mixed  diesters  fara-
diol 3-myristate,16-palmitate  and  faradiol  3-palmitate,16-myristate.  Preferential  loss  of  the fatty  acid  in
16-position  made  it possible  to  distinguish  the  mixed  diesters  by MS/MS  spectra.  Their  chromatographic
separations  turned  out  to be challenging  due  to  their  bulkiness  and  extended  molecular  dimensions.
However,  separation  could  be  achieved  by an  uncommon  non-aqueous  RPLC  mode  with  an  in-house
synthesized  C30  phase.  Finally,  two  (U)HPLC-APCI-QTOF-MS  methods  with  C18-  and  C30-based  non-
aqueous  RPLC  provided  suitable,  sensitive  assays  to  monitor  the presence  of  monoesters  and  diesters  of
various  triterpenes  (faradiol,  maniladiol,  arnidiol,  arnitriol  A and  lupane-3�,16�,20-triol  esters)  in  the
n-hexane  extract  of C.  officinalis  with  high  mass  resolution  and  good  mass  accuracy.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Lipophilic preparations from flowers of the Asteraceae Calen-
dula officinalis L. (marigold) are recommended for the treatment
of minor inflammation of the skin and wounds [1]. Triterpenes
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from the 20-taraxastene type, especially its major triterpenoid
constituent faradiol seem to be crucial for the anti-inflammatory
potential [2–4]. These triterpenes are present as monols (e.g.
�-taraxasterol) as well as diols (e.g. faradiol and arnidiol) and
triols (e.g. heliantriol A-C) and here especially in form of their 3-
O-lauroyl, -myristoyl and -palmitoyl esters [5–7]. Although the
occurrence of triterpene diol diesters has also been reported [8],
their exact structures have never been clarified.

Structure elucidation of the non-esterified pentacyclic triter-
penes can be done by NMR  combined with MS  analysis.
Here, spectra obtained by EI-MS or GC–EI-MS technique give
characteristic fragments of the respective triterpene skeleton

http://dx.doi.org/10.1016/j.jpba.2015.10.025
0731-7085/© 2015 Elsevier B.V. All rights reserved.
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[9–14]. Additionally, LC–MS using either ESI (electrospray ioniza-
tion, especially for polar substituted triterpenes) [15–18], APCI
(atmospheric-pressure chemical ionization) or APPI (atmospheric-
pressure photoionization) has been reported [19–22]. These LC–MS
techniques are often suitable for the analysis of complex triterpene
mixtures, but they may  also cause sensitivity problems depending
on the triterpene derivative. Moreover, Vahur et al. [23] analysed a
dammar resin and concluded that the combinatorial use of MALDI-
FT-ICR-MS and APCI-FT-ICR-MS seems the best option. However,
the successful analysis of complex triterpene mono- and diester
mixtures is still missing. This is a challenging task as often triter-
penes occur in a mixture of isomeric skeletons or with the same
triterpene core and differences in the fatty acid side chains. A
prominent example is the lipophilic extract from C. officinalis L.
flowers.

A major analytical problem encountered with these triterpene
esters in developing feasible LC–MS methods is the poor ionization
efficiency and/or low stability of the [M + H]+ molecular ion initially
formed during commonly used LC compatible ionization methods
like ESI, APCI or APPI, resulting in low sensitivity. Thus, adequate
ionization parameter optimization is required to allow detection of
the intact molecular ion with sufficient sensitivity [24]. Addition-
ally, isobaric and/or isomeric interference from mono- or diester
derivatives does not allow unequivocally identifying the target
compound requiring suitable selective chromatographic methods
which allow separation of the isomeric species.

We here report on (U)HPLC-APCI-QTOF-MS in the positive mode
as a MS  setup exhibiting acceptable sensitivity, high mass resolu-
tion and good mass accuracy. Moreover, the developed (U)HPLC
methods allowed the separation of triterpene mono- and diesters
in a mixture. The combination of both methods, LC and HR-MS,
enabled the identification of various triterpene mono- and diesters,
which have not been previously reported for C. officinalis flowers.
Moreover, structure elucidation of novel faradiol diesters was  pos-
sible based on NMR  data and this LC–MS method.

2. Experimental

2.1. Materials

Faradiol for preparation of monoester and diester standards
was purchased from PhytoLab (Vestenbergsgreuth). Faradiol 3-
myristate and faradiol 3-palmitate were previously isolated from
C. officinalis L. flowers [25]. Chemicals and solvents for synthe-
sis of standards were obtained from Sigma–Aldrich. Solvents for
HPLC–MS were of MS-grade and purchased from Carl Roth (Karl-
sruhe, Germany). MS-grade water was prepared by a Purelab Ultra
Purification system from Elga Labwater (Celle, Germany).

2.2. Experimental methods

2.2.1. NMR
Spectra were recorded in CDCl3 on a Bruker DRX 400 MHz

instrument (Bruker, Bremen, Germany) at 400 MHz  (1H) and
100 MHz  (13C).

2.2.2. GC–MS
Analysis was performed on an Agilent 6890 Series; detector:

Agilent 5973 Network Mass Selective Detector, Agilent Tech-
nologies; ionization energy: 70 eV; column: fused-silica capillary
column (30 m × 0.25 mm)  coated with 0.25 �m dimethyl polysilox-
ane (RTX®-1 MS,  Restek) and helium as carrier gas with a flow rate
of 1.0 ml  per minute. The temperature profile was isothermal at
270 ◦C for 50 min. The injector and detector temperatures were
300 ◦C, the injection volume was 1.0 �l and the split ratio 50:1.

2.2.3. HR-APCI-MS
Spectra in the positive mode were recorded after direct infu-

sion (in MeOH with a flow rate of 100 �l/min) on an Exactive Mass
Spectrometer (Thermo Scientific).

2.2.4. LC-APCI-QTOF-MS
Analyses were run on a Sciex TripleTOF 5600+ (Sciex, Ontario,

CA) with a Duospray ion source coupled to an Agilent 1290 Series
UHPLC instrument (Agilent, Waldbronn, Germany) equipped with
a Pal HTC-XS autosampler from CTC (Zwingen, Switzerland).

Source parameters in APCI+-mode were as follows: curtain gas
30 psi, nebulizer gas 60 psi, drying gas 50 psi, source temperature
500 ◦C, source voltage 5500 V. Cycles consisted of a TOF-MS scan
from 100 to 2000 m/z, followed by individual product-ion scans.
Parameters for TOF-scan: collision energy (CE) 5 V, declustering
potential (DP) 100 V, RF-transmission 400 m/z: 50%, 550 m/z: 50%.
Due to strong in-source decay of the analytes (in particular the
diesters) owing to neutral loss of fatty acid and/or water, time
bins were set to 60 in order to enhance sensitivity compromising,
however, mass resolution. For product-ion scan in high sensitiv-
ity mode, CE was raised to 17 V. Precursor and enhancement m/z
(EMZ) were set according to [M + H]+ for confirmation runs, whilst
using otherwise [M + H-H2O]+ and [M + H-RCOOH]+ monitoring the
in-source decay products for enhanced sensitivity. Hold up time tm

was determined by injection of 5 �l of acetone.

2.2.5. Direct infusion APCI-QTOF-MS
Infusion spectra were obtained employing the Sciex TripleTOF

5600+ in APCI+ mode. Spectra were acquired using multichannel
averaging (MCA) for enhanced signal to noise ratio. Source tem-
perature was  set to 500 ◦C, curtain gas to 30 psi, nebulizer gas to
50 psi, drying gas to 40 psi and source voltage to 5500 V. CE and DP
were set accordingly (see Results and discussion section). Trans-
mission windows were set for MS  scans m/z 400 50% and m/z  850
50% for Q1 and for MS2  scans Q2 transmission was set to m/z  400
50% and m/z 550 50%. Time bins were varied accordingly between
20 and 60. For optimal sensitivity, product ion scans were acquired
in high sensitivity mode and Q1 resolution was set to low. Flow rate
was adjusted accordingly between 15 and 30 �l per minute.

2.2.6. C18-Chromatography for monoesters
Liquid chromatography of monoesters was performed on a

core–shell Kinetex C18, 2.6 �m (100 × 3 mm ID) column from Phe-
nomenex (Torrance, USA) using a non-aqueous gradient elution
mode. Eluent A consisted of acetonitrile and eluent B of MeOH. The
gradient profile was as follows: 0–1 min, 0%B; 1–10 min, 0–100%B;
10–15 min, 100%B. The flow rate was set to 400 �l/min and the
column temperature kept constant at 45 ◦C.

2.2.7. C30-Chromatography for diesters
Liquid chromatography of diesters was  performed on an in-

house synthesized C30-modified silica column (50 × 4 mm ID). The
column packing material was obtained by refluxing Kromasil 100 Å
5 �m silica gel (EKA Chemicals, Bohus, Sweden) with triacon-
tyldimethylchlorosilane (ABCR, Karlsruhe, Germany) leading to a
surface coverage of 1.4 �mol/m2. A non-aqueous gradient elution
mode was employed with the following gradient profile: 0–1 min,
30% B; 1–25 min, 30–100% B; 25–30 min, 100% B. Eluent A con-
tained MeOH and eluent B 2-propanol. The flow rate was set to
1200 �l/min and the column temperature to 8 ◦C.

2.2.8. Further column chromatography
Open CC was carried out by using Silica gel 60 (0.06–0.20 mm)

or Florisil® (60–100 mesh), both from Roth, and flash chromatog-
raphy by using the Sepacore® chromatography system (Büchi
Labortechnik, Flawil, Switzerland) instrumented with two C 605
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pump modules, a C 620 control unit, a C 635 UV detector, a C
660 fraction collector, the control software Sepacore® Control 1.2
and pre-packed Silica gel 60 (0.015–0.04 mm,  Machery Nagel),
polypropylene cartridges.

2.2.9. TLC
Fractions were monitored by analytical TLC (Silica gel 60 F254

aluminium sheets, Merck) developed with CH2Cl2-EtOAc (9:1, v/v)
and detected at 366 nm and vis after derivatization with anisalde-
hyde/sulphuric acid and heating at 120 ◦C for 10 min. Sample
application was carried out with the Automatic TLC sampler AST-4
(CAMAG, Muttenz, Switzerland).

2.3. Plant material

C. officinalis L. flowers were obtained from the Dr. Junghanns
GmbH, Aschersleben, Germany, and personally identified by Dr.
Junghanns, lot no.: 1200812. Flower heads were collected during
September 2012 and dried at 45 ◦C.

2.4. Extraction and isolation

Air-dried and powdered flower heads (502 g) were exhaustively
extracted with n-hexane (5.8 l) using a Soxhlet apparatus. After
removal of the solvent under vacuum at 40 ◦C and lyophilization,
a crude n-hexane extract (55.7 g) was obtained. Two portions of
8 g of this extract were separated into 15 fractions from I, and
19 fractions from II by flash chromatography (15 × 4 cm)  on sil-
ica gel with mixtures of petrol-CH2Cl2 (50:49, v/v) and MeOH
(0–60%, v/v) and a flow rate of 10 ml/min. Subsequently, fraction
I.13 (1.89 g) and fraction II.11 (2.12 g) were fractionated by open
CC (30 × 2 cm and 50 × 3 cm)  on Florisil® with mixtures of petrol-
acetone (0–90%, v/v) yielding 13 and 9 fractions, respectively. A
portion of sub-fraction I.13.II.1 (200 mg)  was separated on sil-
ica gel by flash chromatography (12 × 1.5 cm)  using mixtures of
cyclohexane-CH2Cl2 (7:4, v/v) and MeOH (0–8%, v/v) yielding 5 sub-
fractions. Fractionation of sub-fraction I.13.II.1.5 (45 mg)  over silica
by open CC (30 × 1 cm)  using n-hexane-EtOAc mixtures (20–100%,
v/v) afforded a fraction with 4a + b and 5a + b (9 mg). All fractions
were monitored by TLC (CH2Cl2-EtOAc; 9:1, v/v) for triterpene-
diol esters. Fractions with this triterpene type were combined to
TFa (2.32 g) which was chromatographed by flash chromatography
(15.0 × 4.0 cm)  on silica gel with mixtures of CH2Cl2-EtOAc (0–30%,
v/v) affording fractions with a mixture of 7–10 (11.8 mg), 6a + b
(38.9 mg)  and 14 sub-fractions. After monitoring the fractions for
triterpenetriol esters using analytical TLC (CH2Cl2-EtOAc; 9:1, v/v)
fractions I.13.I.2 (46.9 mg), I.13.II.3 (61.4 mg), I.13.III.2 (39.5 mg),
II.12.5 (83.3 mg)  and TFa.15 (0.11 g) were combined to TFb (0.34 g).
TFb was chromatographed by open CC (38 × 1.5 cm)  with mixtures
of n-hexane/EtOAc (20–100%, v/v) resulting in 14 sub-fractions.
Further separation of sub-fraction TFb.10 (38.8 mg)  by open CC
(30 × 1 cm)  with mixtures of CH2Cl2-EtOAc (0–30%, v/v) yielded
2a + b (10.7 mg)  and 1 (3.8 mg). Isolation of 3a + b (3.7 mg)  was
afforded by fractionation of sub-fraction TFb.11 (18.5 mg)  by open
CC (39 × 1 cm)  using mixtures of CH2Cl2-EtOAc (5–20%, v/v).

2.5. Synthesis of faradiol mono- and diester standards

Faradiol mono- and diesters were synthesized by a Steglich-
type esterification protocol. In brief, myristic or palmitic acid, or a
mixture of both, were dissolved in CH2Cl2 (dried and distilled over
phosphorous pentoxide). Subsequently, 4-dimethylaminopyridine
(DMAP) (18 mmol) was added to 0.24 mmol  fatty acid followed
by addition of dicyclohexylcarbodiimide (DCC) (0.26 mmol). After
refluxing this reaction mixture for 2 h, faradiol (0.7 mmol) was
added. The progress of the reaction was monitored and samples

taken after 6 h and after 20 h. The reaction was finally quenched
with MeOH and the solvent evaporated. This procedure afforded
faradiol 3-myristate (F3-M), faradiol 16-myristate (F16-M) and
faradiol 3,16-dimyristate (FMM)  from the reaction with myristic
acid; faradiol 3-palmitate (F3-P), faradiol 16-palmitate (F16-P) and
faradiol 3,16-dipalmitate (FPP) from palmitic acid, as well as a mix-
ture of all of them along with mixed diesters, faradiol 3-myristate,
16-palmitate (FMP) and faradiol 3-palmitate,16-myristate (FPM)
from the reaction with a mixture of both myristic and palmitic acid.
Besides, a faradiol 3-myristate,16-palmitate standard from fara-
diol 3-myristate and a faradiol 3-palmitate,16-myristate standard
from faradiol 3-palmitate were synthesized by esterification with
palmitic and myristic acid, respectively, using the above reported
protocol.

3. Results and discussion

3.1. Identification of triterpene monoesters

Re-investigation of the triterpenoid fraction from C. officinalis
flowers afforded several known triterpenes (Fig. 1). Based on
1D and 2D NMR  analyses (1H, 13C, HSQC, HMBC, 1H/1H-COSY)
as well as HR-APCI–MS (positive mode after direct infusion)
and UHPLC–APCI–QTOF-MS, partly GC–MS analysis after alkaline
hydrolysis and comparison to spectral data from the literature the
compounds were identified as 3-myristic and 3-palmitic acid esters
of arnitriol A (2a + b) [26], lupane-3�,16�,20-triol (3a + b) [26] and
maniladiol (6a + b) [10,26,27] as well as faradiol (1) [2]. Triter-
penes 4a + b and 5a + b were isolated in a mixture. Identification
of the triterpene skeleton as faradiol and arnidiol was accom-
plished after alkaline hydrolysis by GC–MS [28], and of the esters
by UHPLC-APCI-QTOF MS.  Compounds 2a + b and 3a + b have not
been reported for C. officinalis yet.

3.2. UHPLC-APCI-QTOF MS characterization of isolated
monoester samples

Identification of the triterpene monoesters was successful in
a mixture of the myristic and palmitic acid esters without prior
chromatographic separation. However, the conditions used for HR-
APCI-MS analyses with Exactive Orbitrap mass spectrometer did
not yield [M + H]+ quasi-molecular ions, respectively, but gave an
intense peak [M + H-H20]+ after loss of H2O. This prompted us
to test other instruments and optimize ionization parameters on
a QTOF instrument (TripleTOF 5600+). Samples of compounds 1
to 6a + b were analyzed by UHPLC-APCI-QTOF MS  using a Kine-
tex core–shell C18 column. Due to the high lipophilicity of the
triterpene fatty acid monoesters a non-aqueous gradient elution
mode was applied. Such non-aqueous RP method may  be regarded
uncommon, but is actually often employed for very lipophilic nat-
ural compounds such as carotenoids [29], xanthophylls [30,31],
triglycerides [32] and D vitamins [33]. In fact, no elution of triter-
pene esters was  observed when a common RP-type gradient from
water-acetonitrile (95:5; v/v) to 100% acetonitrile was used for elu-
tion. Next, a gradient was  run from 100% MeOH  to 100% acetonitrile.
Unfortunately, the triterpene monoesters eluted close to t0 unre-
solved from impurities. Thus, the gradient solvents were exchanged
in A and B, and a gradient from 100% acetonitrile to 100% MeOH  gave
finally an acceptable retention and separation (Fig. 2). Surprisingly,
MeOH showed higher elution strength than acetonitrile which may
indicate that to some extent H-bond qualities of the elution solvent
are of importance to disrupt analyte-sorbent interactions. As shown
in Fig. 2 all monoesters eluted as narrow peaks within 10 min  after
the non-esterified basic faradiol (1).
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Table 1
Summary of MS data and retention times (Kinetex C18) of triterpene monoesters. For confirmation see MS/MS spectra in supplemental information.

Compound Name Formula Calculated m/z Found at m/z � mDa � ppm tR (min)

1 faradiol C30H50O2 443.38836 443.3863 2.06 4.6 2.36
2a  arnitriol A 3-myristate C44H76O4 669.58164 669.5918 −10.16 −15.2 5.80
2b  arnitriol A 3-palmitate C46H80O4 697.61294 697.6268 −13.86 −19.9 6.64
3a  lupane-3�,16�,20-triol-3-myristate C44H78O4 671.59729 671.5955 1.79 2.7 4.97
3b  lupane-3�,16�,20-triol-3-palmitate C46H82O4 699.62859 699.6293 −0.71 −1.0 5.83
4a  faradiol 3-myristate C44H76O3 653.58672 653.5912 −4.48 −6.9 6.74
4b  faradiol 3-palmitate C46H80O3 681.61802 681.6252 −7.18 −10.5 8.02
5a  arnidiol 3-myristate C44H76O3 653.58672 653.5922 −5.48 −8.4 6.52
5b  arnidiol 3-palmitate C46H80O3 681.61802 681.6153 2.72 4.0 7.77
6a  maniladiol 3-myristate C44H76O3 653.58672 653.5948 −8.08 −12.4 6.52
6b  maniladiol 3-palmitate C46H80O3 681.61802 681.6218 −3.78 −5.5 7.80

The triterpene monoesters are susceptible to in-source decay
giving preferentially [M + H-H2O]+ signal in APCI-QTOF MS detec-
tion. In order to be able to detect the quasi-molecular ion
[M + H]+ which confirms the presence of the respective triterpene
monoester, careful optimization of the instrumental settings of the
TripleTOF 5600+ mass spectrometer was necessary. For monitor-
ing of the quasi-molecular ion [M + H]+ and the confirmation of
the respective monoesters in the samples, a MS/MS scan in the
high sensitivity mode with enhancement mass set on the precur-
sor m/z and a CE of 5 V, which provided the best sensitivity for
the target mass, was selected. While we were finally able to detect
the [M + H]+ quasi-molecular ions of the monoesters with such
settings and unequivocally confirm their presence (Table 1), for
sensitive detection of the substances in the samples, the [M + H-

H2O]+ fragment ion can be conveniently selected. All monoesters
could be identified based on accurate masses (Table 1). Mass
errors were typically less than 10 mDa  (except for arnitriol A 3-
palmitate, 2b, 13.9 mDa). Product-ion scans (CE at 17 V) provided
characteristic fragmentations of the substances and confirmed
the correct structural annotations. Detailed information for each
sample with chromatogram, fragmentation spectrum and inter-
pretation of characteristic fragments is provided as Supplementary
Material. Interestingly, product ion spectra of the monoesters
revealed that they are fairly stable and preferentially lose water
rather than the fatty acid residue. However, the corresponding frag-
ment ions with loss of R-COOH are also always observed in the
product ion spectra.
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3.3. Identification of the novel faradiol fatty acid diesters by NMR

Re-investigation of the triterpenes of C. officinalis flowers also
afforded a fraction with triterpene diesters (details are given in
Experimental, 2.4. Extraction and isolation). 1H NMR  of the mix-
ture showed the presence of six singlet methyl groups [�H 0.86
(H-23), 0.86 (H-24), 0.90 (H-25), 1.08 (H-26), 1.10 (H-27), 0.84 (H-
28)], an olefinic methyl group [�H 1.67 (H-30)], a doublet methyl
group [�H 1.03 (H-29)], and an olefinic proton [�H 5.28 (H-21)].
The occurrence of two oxymethine proton signals that were shifted
downfield [�H 4.50 (H-3), 4.88 (H-16)] indicated two  esterified
hydroxyl groups. The strong signal near �H 1.28 for (CH2)n in the 1H
spectrum and the long-range correlation between C-1′ at �c 173.6

and H-2′ at �H 2.33 indicated the occurrence of long chain fatty acids
as acyl moieties. All 1H NMR  data were in agreement with a pen-
tacyclic triterpene of the 20-taraxastene type with two esterified
hydroxyl groups [26] which was  confirmed by the 13C NMR  data
(see Table 2) [26,34]. 1H and 13C NMR  assignments were verified
by HMBC and HSQC experiments.

Determination of the acyl moieties was not possible in the
mixture. Preliminary studies by HR-APCI-MS (positive mode
after direct infusion) only suggested the occurrence of myristic
and palmitic acid as acyl moiety. However, a newly developed
HPLC-QTOF-MS method enabled the identification of the com-
plex mixture which is composed of faradiol 3,16-dimyristate
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Table  2
1H NMR  (400 MHz) and 13C NMR  (100 MHz) spectroscopic data for faradiol diesters
(7–10)  in CDCl3 (� in ppm, J in Hz).

Position �C �H (J in Hz)

1 37.8 n.d.
2  22.6 1.63 m
3 80.4 4.50 dd (11.2, 5.6)
4  37.8
5 55.3 0.84 m
6 18.0 1.42 m
7 34.1 1.41
8  41.1
9 49.8 1.34 m
10 36.8
11 21.4 1.59 m
12 27.0 2.08 m
13 38.7 n.d.
14 42.7
15 33.1 1.35 m

1.78 m
16 79.2 4.88 dd (11.6, 4.4)
17 37.8
18 47.6 1.19 m
19 35.7 1.68 m
20 139.6
21 117.9 5.28 brd (7.2)
22 38.7 1.65 m

1.85 m
23 27.9 0.86 s
24 16.5 0.86 s
25 16.3 0.90 s
26 16.0 1.08 s
27 16.0 1.10 s
28 12.7 0,84 s
29 22.3 1.03 d (6.4)
30  21.4 1.67 s

acyl
1′ 173.6
2′ 34.8 2.33 t (7.2)
3′ 25.1 1.33 m
4′–13′ (4′–11′)a 29.1–29.7 1.27 m
14′ (12′)a 31.9 1.29 m
15′ (13′)a 22.6 1.30 m
16′ (14′)a 14.1 0.90 t (7.2)

a In parenthesis: carbon for myristoyl, n.d. not determined.

(7), faradiol 3-myristate,16-palmitate (8) faradiol 3-palmitate,16-
myristate (9) and faradiol 3,16-dipalmitate (10), (see next chapter).

3.4. HPLC-APCI-QTOF MS  characterization of faradiol diesters

NMR  analyses suggested the occurrence of faradiol diesters.
To unambiguously identify the acyl moieties faradiol diesters
were synthesized as standards and a new method was  developed
which allowed detection of the quasi-molecular ions and a (par-
tial) separation of the diesters and mixed diesters, respectively.
Thereby, liquid chromatography was based on an in-house devel-
oped C30 phase obtained by controlled surface modification of
5 �m (100 Å) silica particles with triacontyldimethylchlorosilane.
This C30 stationary phase showed a better separation of the diesters
(faradiol 3,16-dimyristate, FMM,  and faradiol 3,16-dipalmitate,
FPP), in particular it allowed partial resolution of the two mixed
faradiol diesters (faradiol 3-myristate,16-palmitate, FMP, and fara-
diol 3-palmitate,16-myristate, FPM), which was not possible by
non-aqueous RPLC on C18 phase, not even with highly efficient
core-shell columns. It was used an in-house developed C30 phase
instead of a commercial C30 column because it was hypothesized
that selectivity could be tailored via the C30 ligand density which
indeed was the case (data not shown). Elution conditions needed
to be adjusted in order to be able to elute the highly lipophilic fara-
diol diesters in a reasonable time. Thus, acetonitrile was replaced by

MeOH as the solvent with weak elution strength in channel A and
MeOH in channel B substituted by the stronger eluting 2-propanol.
The corresponding gradient from 0 to 100% B over 25 min  provided
a reasonable separation (Fig. 3a). This LC method offers sufficient
methylene selectivity to distinguish chromatographically between
corresponding myristic and palmitic acid diesters of faradiol. Fur-
thermore, some minor selectivity exists for the mixed diesters (FMP
and FPM) which can be partially resolved (Rs ∼0.4). This, along
with characteristic fragmentation spectra (vide infra), turned out
to be sufficient for unequivocal identification and confirmation of
the presence of FMP  and FPM.

Due to strong in-source decay of the diesters, MS  detection
in this HPLC-APCI-QTOF MS  run was  based on monitoring the 3-
monoester ion because of preferential loss of the fatty acid at
16-position (Fig. 4). This characteristic fragmentation gave fur-
ther indication of the presence of both FMP  and FPM because no
peak would be detectable at the position of the mixed diesters in
the chromatogram if the corresponding compound with the par-
tial structure of the respective ester at C-3 is not present in the
sample. Since a peak shows up at the retention time of the mixed
diester in both traces, the XIC for faradiol 3-myristate fragment at
m/z 635.5761 (blue trace) as well as the XIC for faradiol 3-palmitate
fragment at m/z 663.6074 (red trace), we can safely conclude that
both FMP  and FPM are present in this sample (in Fig. 3a a mix-
ture of faradiol mono- and diester standards is shown). Further,
Fig. 3b shows an XIC of the TOF-MS run extracted for 407.3673
(±2.5 mDa) corresponding to the 20-taraxastene skeleton obtained
for all compounds in the sample with this moiety obtained due
to in-source fragmentation. In this chromatogram it becomes evi-
dent that also the faradiol 16-myristate and faradiol 16-palmitate
monoesters are present in this standard mixture, eluting just before
the corresponding 3-fatty acid monoesters.

The spectra in Fig. 4a and b confirm that loss of fatty acid in
diesters occurs preferentially in position 16. Fig. 5 shows the frag-
mentation pattern concluded from the MS  analysis of the faradiol
esters. The MS/MS  spectrum of faradiol 3-myristate,16-palmitate
(FMP) documents that this component loses primarily palmitic acid
and thus the fragment ion faradiol 3-myristate at m/z  635.5785 is
more abundant than the corresponding faradiol 16-palmitate at m/z
663.6035 (Fig. 4a). Likewise, the fragment ion faradiol 3-palmitate
at m/z 663.6057 is more abundant than the corresponding faradiol
16-myristate at m/z 635.5782 in the MS/MS  spectrum of faradiol
3-palmitate,16-myristate (FPM) (Fig. 4b). These data clearly con-
firm the presence of both mixed diesters in the synthesized mixed
standard and provide an additional means for the unequivocal
assignment of the faradiol diesters.

Mass spectrometric detection of the intact faradiol diesters,
however, is even more problematic and challenging than of the
triterpene monoesters. The ester group at C-16 is particularly prone
to neutral loss of fatty acid already in the ion-source, even in APCI
mode. In a conventional APCI+-TOF-MS survey scan, no [M + H]+ ion
can be detected due to insufficient signal intensity of this quasi-
molecular ion and poor detection sensitivity in this mode. Thus,
an MS/MS-high sensitivity scan mode with low CE of 5 V and mul-
tichannel averaging acquisition (MCA)-mode (1 Hz, time bins 80)
has been used. With these settings it was  possible to detect the
[M + H]+ quasi-molecular ions of the diesters by direct infusion
experiments of the mixture containing faradiol diesters 7–10.  The
results are summarized in Table 3. As can be seen, experimentally
found accurate masses for the faradiol diesters are in good agree-
ment with the theoretically calculated ones. Mass errors less than
12 mDa  (<13 ppm) can, together with characteristic fragmentation
patterns, be regarded as experimental evidence for a successful
identification of novel faradiol diesters.

The detection of the diesters in the direct infusion experiments
has been confirmed by the analysis of the standard mixture contain-
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Fig. 4. Infusion MS spectra of standards show that at low CE (7 V) the fatty acid loss occurs preferentially in 16-position. (a) FMP standard selectively synthesized from
faradiol 3-myristate. (b) FPM standard selectively synthesized from faradiol 3-palmitate. It can be observed from the insert that the corresponding 16-monoester fragment
is  detected with low abundance only.
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Fig. 6. Analysis of mixture 7–10 of C officinalis by HPLC-APCI-QTOF MS on C30 column. TOF-MS XICs extracted for m/z 635.5761(±2.5 mDa) (blue trace) and m/z 663.6074
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Table  3
Identification of faradiol diesters in the mixture containing 7–10 in C. officinalis flowers. Note that accurate masses have been determined via direct infusion MS/MS  in MCA
mode,  as the [M + H]+ peak is unstable.

Compound Formula Calculated m/z Found at m/z � mDa  � ppm tR (min)

7 C58H102O4 863.7851 863.7815 −3.60 −4.17 15.68
8/9  C60H106O4 891.81639 891.8181 1.71 1.92 18.10/18.54
10  C62H110O4 919.84769 919.8358 −11.89 −12.93 20.84

Faradiol 3,16-dimyristate (7); faradiol 3-myristate, 16-palmitate (8); faradiol 3-palmitate,16-myristate (9); faradiol 3,16-dipalmitate (10) tR refers to C30 chromatography.

ing FMM,  FMP, FPM and FPP by C30-HPLC-APCI+-QTOF-MS (Fig. 6).
The most abundant peak occurs from the mixed faradiol diester 8
(peak at ca. 18 min) followed by compound 7 (peak at ca 15.5 min).
The diester 10 (peak at ca. 21 min) could be detected in this sample
as well but mainly as a minor component. Last but not least, also
traces of the mixed diester 9 could be identified in the fraction of
the n-hexane extract of C. officinalis.

4. Conclusions

Here we show that triterpenes with long chain fatty acids can
be separated by using an uncommon non-aqueous RP-HPLC mode
with an in-house synthesized C30 phase. Moreover, the develop-
ment of a set of new APCI-QTOF-MS methods using the TripleTOF
5600+ mass spectrometer proved to be a valuable tool to determine
the quasi-molecular ions of this type of triterpene esters. Thus the
combination of 1D and 2D NMR  and direct infusion APCI-QTOF MS
experiments in MS/MS  high sensitivity scan mode with low colli-
sion energy and multichannel averaging acquisition proved to be a
successful approach to elucidate the composition of complex mix-
tures of triterpene diesters. The proposed methods also show good
potential for routine analysis of C. officinalis extracts to monitor
monoesters and diesters of various triterpenes. For that purpose,
however, modern highly efficient commercial C30 phases based
on core–shell particles (e.g. Accucore C30) or sub-2 �m particles
(which are expected to become also available in due time) are rec-
ommended and should be utilized.
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UHPLC-APCI-QTOF MS characterization of isolated triperpene monoester samples 

The following chromatograms, spectra and tables are in support of the data shown in Table 1 

of the main document.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S1: Detection of faradiol (1) by UHPLC-APCI-QTOF-MS on Kinetex C18. a) XIC on 

in-source decay body fragment at 407.3672 (±10mDa) revealing a peak for faradiol (1) at 

0

200

400

600

800

1000

1200

1400

1600

350 370 390 410 430 450 470

In
te

n
s

it
y
 

[m/z] 

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1.8 2.8 3.8 4.8 5.8 6.8 7.8 8.8

In
te

n
s

it
y
 

retention time [min] 

1: 2.36 min 

a) 

b) 

407.3700 
425.3824 

443.3911 



3 
 

retention time of 2.36 min. b) Product ion scan on [M+H]
+
 of 1 at tR = 2.36 showing 

fragments characteristic for faradiol. The retention time and spectral data have been 

confirmed by an authentic standard. 

 

Table S1: Summary of MS data from CID-MS/MS-spectra obtained for faradiol (1). Note 

that transition from #1 to #2 occurs as neutral loss. 

# m/z found m/z calculated Δ mDa Δ ppm fragment 

1 443.3911  443.3884 2.8 6.9 [M+H]+ 

2 425.3824 425.3778 4.6 10.8 #1-H20 

3 407.37 407.3672 2.7 6.1 #1-2H20 
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Fig. S2: Detection of arnitriol A 3-monoesters (2a + b) by UHPLC-APCI-QTOF-MS on 

Kinetex C18. a) XIC on in-source decay triterpene skeleton fragment at 405.3515 (±10 mDa), 

retention time 5.80 min for 2a and 6.64 min for 2b. b) Product ion scan on [M+H]
+
 of 2a 

showing characteristic fragments of arnitriol A 3-myristate eluted at tR = 5.80 min. c) Product 

ion scan on [M+H]
+
 of 2b showing characteristic fragments of arnitriol A 3-palmitate eluted 

at tR = 6.64 min. 
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Table S2: Summary of MS data from CID-MS/MS-spectra obtained for arnitriol A 3-

myristate (2a).  

# m/z found m/z calculated Δ mDa Δ ppm fragment 

1 669.5774 669.5816 13.8 20.6 [M+H]+ 

2 651.5749 651.5710 15.8 24.3 #1-H2O 

3 633.5676 633.5604 4.9 7.7 #1-2H2O 

4 441.3449 441.3727 3.1 7.1 #1-myristic acid 

5 423.3666 423.3621 4.4 10.5 #1-H20-myristic acid 

 

Table S3: Summary of MS data from CID-MS/MS-spectra obtained for arnitriol A 3-

palmitate (2b).  

# m/z found m/z calculated Δ mDa Δ ppm fragment 

1 697.6195 697.6129 6.6 9.4 [M+H]+ 

2 679.6081 679.6023 5.8 8.5 #1-H2O 

3 661.6058 661.5917 14.0 21.1 #1-2H2O 

4 441.3745 441.3727 1.8 4.1 #1-palmitic acid 

5 423.3666 441.3727 4.4 10.5 
#1-H2O-palmitic 

acid 
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Fig. S3: Detection of lupane-3β,16β,20-triol 3-monoesters (3a + b) by UHPLC-APCI-QTOF-

MS on Kinetex C18. a) XIC on in-source decay triterpene skeleton fragment at 407.3672 (±10 

mDa), retention time 4.97 min for 3a and 5.83 min for 3b. b) Product ion scan on [M+H]
+
 of 

3a showing characteristic fragments of lupane-3β,16β,20-triol 3-myristate eluted at tR = 4.97 

min. c) Product ion scan on [M+H]
+
 of 3b showing characteristic fragments of lupane-

3β,16β,20-triol 3-palmitate eluted at tR = 5.83 min. 
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Table S4: Summary of MS data from CID-MS/MS-spectra obtained for lupane-3β,16β,20-

triol 3-myristate (3a). 

# m/z found m/z calculated Δ mDa Δ ppm fragment 

1 671.543 671.5973 54.3 80.9 [M+H]+ 

2 653.5703 653.5867 16.5 25.2 #1-H2O 

3 635.5575 635.5761 18.7 29.4 #1-2H2O 

4 443.3623 443.3878 26.1 58.9 #1-myristic acid 

5 425.3602 425.3778 17.6 41.4 #1-H2O-myristic acid 

 

 

Table S5: Summary of MS data from CID-MS/MS-spectra obtained for lupane-3β,16β,20-

triol 3-palmitate (3b). 

# m/z found m/z calculated Δ mDa Δ ppm fragment 

1 699.5729 699.6286 55.7 79.6 [M+H]+ 

2 681.5799 681.6180 38.2 56.0 #1-H2O 

3 639.5821 663.6074 11.1 17.3 #1-2H2O 

4 443.3771 443.3878 11.3 25.4 #1-palmitic acid 

5 425.3556 425.3778 22.2 52.3 #1-H2O-palmitic acid 
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Fig. S4: Detection of faradiol 3- and arnidiol 3-monoesters (4a + b and 5a + b, respectively) 

by UHPLC-APCI-QTOF-MS on Kinetex C18. a) XIC on in-source decay triterpene skeleton 

fragment at 407.3672 (±10 mDa), retention time 6.74 min for 4a and 8.02 min for 4b, 6.52 for 

5a and 7.77 for 5b. b) Product ion scan on [M+H]
+
 of 5a showing characteristic fragments of 

arnidiol 3-myristate eluted at tR = 6.52. c) Product ion scan on [M+H]
+
 of 4a showing 

characteristic fragments of faradiol 3-myristate eluted at tR = 6.74. d) Product ion scan on 

[M+H]
+
 of 5b showing characteristic fragments of arnidiol 3-palmitate eluted at tR = 7.77. e) 

Product ion scan on [M+H]
+
 of 4b showing characteristic fragments of faradiol 3- palmitate at 

tR = 8.02. 
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Table S6: Summary of MS data from CID-MS/MS-spectra obtained for faradiol 3-myristate 

(4a).  

# m/z found m/z calculated Δ mDa Δ ppm fragment 

1 653.5879 653.5867 1.2 1.8 [M+H]+ 

2 635.58 635.5761 3.9 6.1 #1-H20 

3 425.3856 425.3778 7.8 18.4 #1-myristic acid 

4 407.3697 407.3672 2.5 6.0 
#1-H2O-myristic 
acid 

 

Table S7: Summary of MS data from CID-MS/MS-spectra obtained for faradiol 3-palmitate 

(4b).  

# m/z found m/z calculated Δ mDa Δ ppm fragment 

1 681.6318 681.6180 13.8 20.3 [M+H]+ 

2 663.6233 663.6074 15.8 23.8 #1-H20 

3 425.3827 425.3778 4.9 11.5 #1-palmitic acid 

4 407.3704 407.3672 3.1 7.7 
#1-H2O-palmitic 
acid 

 

Table S8: Summary of MS data from CID-MS/MS-spectra obtained for arnidiol 3-myristate 

(5a).  

# m/z found m/z calculated Δ mDa Δ ppm fragment 

1 653.5983 653.5867 11.6 17.7 [M+H]+ 

2 635.5763 635.5761 0.2 0.3 #1-H20 

3 425.3839 425.3778 6.1 14.4 #1-myristic acid 

4 407.3695 407.3672 2.2 5.5 
#1-H2O-myristic 
acid 
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Table S9: Summary of MS data from CID-MS/MS-spectra obtained for arnidiol 3-palmitate 

(5b). 

# m/z found m/z calculated Δ mDa Δ ppm fragment 

1 681.6321 681.6180 14.1 20.7 [M+H]+ 

2 663.6141 663.6074 6.6 10.0 #1-H20 

3 425.3839 425.3778 6.1 14.4 #1-palmitic acid 

4 407.3713 407.3672 4.1 10.1 
#1-H2O-palmitic 
acid 
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Fig. S5: Verification of the elution order of isobaric faradiol 3- (4a + b) and arnidiol 3-

monoesters (5a + b). Blue: 4a + b and 5a + b. Red: faradiol 3-myristate and –palmitate 

standards mixture. Elution order: arnidiol 3-monoester are eluted before the corresponding 

faradiol 3-monoester. 
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Fig. S6: Detection of maniladiol 3-monoesters (6a + b) by UHPLC-APCI-QTOF-MS on 

Kinetex C18. a) XIC on in-source decay triterpene skeleton fragment at 407.3672(±10 mDa), 

retention time 6.52 min for 6a and 7.81 min for 6b. b) Product ion scan on [M+H]
+
 of 6a 

showing characteristic fragments of maniladiol 3-myristate eluted at tR = 6.52. c) Product ion 

scan on [M+H]
+
 of 6b showing characteristic fragmentations of maniladiol 3-palmitate eluted 

at tR = 7.81. 
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Table S10: Summary of MS data from CID-MS/MS-spectra obtained for maniladiol 3-

myristate (6a).  

# m/z found m/z calculated Δ mDa Δ ppm fragment 

1 653.5745 653.5867 12.19897 18.665 [M+H]+ 

2 635.576 635.5761 0.19424 0.305613 #1-H20 

3 425.3836 425.3778 5.804407 13.64511 #1-myristic acid 

4 407.3672 407.3672 0.041887 0.102823 #1-H2O-myristic acid 

 

Table S11: Summary of MS data from CID-MS/MS-spectra obtained for maniladiol 3-

palmitate (6b).  

# m/z found m/z calculated Δ mDa Δ ppm fragment 

1 681.6229 681.6180 4.9 7.1 [M+H]+ 

2 663.6131 663.6074 5.6 8.4 #1-H20 

3 425.3861 425.3778 8.3 19.6 #1-palmitic acid 

4 407.373 407.3672 5.8 14.2 #1-H2O-palmitic acid 
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APCI-QTOF MS characterization of faradiol diesters (7 – 10) 

The following spectra are added in support of the MS data presented in Table 3. 
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Fig. S7: Direct infusion MS/MS spectra (MCA mode) confirming the presence of faradiol 

diesters 7 – 10 in fraction of C. officinalis a) Faradiol 3,16-dimyristate (7). b) Faradiol 3-

myristate,16-palmitate / faradiol 3-palmitate,16-myristate (8 / 9). c) Faradiol 3,16-dipalmitate 

(10) 

 

Table S12: Summary of MS data obtained for faradiol 3,16-dimyristate (7) in direct infusion 

APCI-MS/MS experiments (MCA mode). 

# m/z found m/z calculated Δ mDa Δ ppm fragment 

1 863.7815 863.7851 -3.6 -4.17 [M+H]
+
 

2 635.5742 635.5761 1.9199 3.0207 #1-myristic acid 

3 407.3655 407.3672 1.7211 4.2250 #1-2myristic acid 
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Table S13: Summary of MS data obtained for faradiol 3-myristate,16-palmitate / faradiol 3-

palmitate,16-myristate (8 / 9) in direct infusion APCI-MS/MS experiments (MCA mode). 

# m/z found m/z calculated Δ mDa Δ ppm fragment 

1 891.8181 891.81639 1.71 1.92 [M+H]
+
 

2 663.6008 663.6074 6.619065 9.974467 #1-myristic acid 

3 635.5723 635.5761 3.8641 6.079718 #1-palmitic acid 

4 407.3682 407.3672 0.956636 2.348333 
#1-myristic acid-palmitic 
acid  

 

 

Table S14: Summary of MS data obtained for faradiol 3,16-dipalmitate (10) in direct infusion 

APCI-MS/MS experiments (MCA mode). 

# m/z found m/z calculated Δ mDa Δ ppm fragment 

1 919.8358 919.84769 -11.89 -12.93 [M+H]
+
 

2 663.605 663.6074 2.491546 3.754562 #1-palmitic acid 

3 407.3691 407.3672 1.83576 4.506379 #1-2palmitic acid  
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NMR spectra of the mixture of faradiol 3,16-diesters (7 – 10). 

 

 

 

 

Fig. S8: 
1
H NMR (400 MHz, CDCl3) spectrum of faradiol 3,16-diesters (7 – 10) 
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Fig. S9: 
13

C NMR (100 MHz, CDCl3) spectrum of faradiol 3,16-diesters (7 – 10) 
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Fig. S10: HSQC spectrum of faradiol 3,16-diesters (7 – 10) 
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Fig. S11: HMBC spectrum of faradiol 3,16-diesters (7 – 10) 
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Fig. S12: 
1
H/

1
H-COSY spectrum of faradiol 3,16-diesters (7 – 10) 
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a  b  s  t  r  a  c  t

A  thin  functional  film  of  poly(3-mercaptopropyl)methylsiloxane  was  coated  onto  vinyl-modified  silica
particles  (5  �m, 100  Å pore  size)  and  chemically  crosslinked  to the  surface.  Excess  of  thiol  functionalities
allow  bonding  of alkene  containing  ligands  by  thiol-ene  click  reaction  in  a second  step  (QN-VII).  Besides
that  a  single  step  surface  modification  procedure  was  established  in  which  alkene  functional  ligands  were
directly added  to the  polysiloxane  coating  solution  and thus,  after  evaporation  of  the  solvent,  crosslink-
ing  to  the  vinylized  surface  and  bonding  of  chromatographic  ligand  to  the  thiolated  polysiloxane  film
occur  simultaneously  in  one  step  (QN-VI).  Successful  bonding  of  the  polysiloxane  film  was  confirmed
for  both  approaches  by 29Si cross-polarization/magic  angle  spinning  NMR  spectra.  The  new  surface
functionalization  concept  can be utilized  as a new  platform  for the  preparation  of  various  low-bleed,
mass  spectrometry-compatible  stationary  phases  with  a variety  of functional  ligands.  The concept  was
demonstrated  by  thiol-ene  click  reaction  with  quinine  carbamate  and  its subsequent  use  for  enantiomer
separation  by  HPLC-UV  and  HPLC-ESI-QTOF-MS  of  acidic  chiral  analytes.  Chromatographic  enantioselec-
tivities  were  similar  to a comparable  brush-type  CSP  (QN-V0).  The  greatly  reduced  background  signal  in
LC-MS, however,  comes  at expense  of  somewhat  lower  chromatographic  efficiencies  (C-term  by factor  of
2  larger  compared  to brush-type  CSP).  For  quantitative  analysis  in single  reaction  monitoring  (MRMHR)
in high  sensitivity  mode,  limit  of detection  and  limit  of  quantification  results  are  comparable  for  both
surface-polymer  modified  CSPs,  with  only  slightly  higher  values  for the  conventional  brush-type  CSP
(QN-V0).

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Efficient surface functionalization is key in many disciplines
of material sciences comprising sensor and microarray technolo-
gies, nanoscience, solid-phase synthesis, heterogeneous catalysis,
and separation science to mention but a few. For liquid chromato-
graphic separations of low molecular analytes, spherical porous
silica particles have become the materials of first choice as supports
and are commonly chemically modified in a brush-type manner
for chromatographic separation modes such as reversed-phase [1],

∗ Corresponding author. Fax: +49 7071 29 4565.
E-mail address: michael.laemmerhofer@uni-tuebingen.de (M.  Lämmerhofer).

polar bonded phases (amino phases, HILIC phases) [2–6], mixed-
mode ion-exchangers [7–12], chiral stationary phases [13–17], and
so forth. Along this line, surface silanols are chemically modified
by silanization reaction with alkoxy or chlorosilanes via mono-
or bifunctional siloxane bonds [18]. The resultant Si O Si bond
is relatively stable under a broad range of conditions. However,
it is susceptible to acidic and alkaline hydrolytic cleavage. Mod-
ern alkyl-bonded RP phases show only moderate bleeding and
the eluted alkyl silanols do usually not or only minimally inter-
fere with common detection concepts. Brush-type bonded HILIC
silica phases are more critical, because the adsorbed water shell
favours hydrolytic cleavage of Si O Si bonds. Most susceptible
to hydrolytic cleavage amongst bonded silica phases are classical
amino phases such as 3-aminopropyl silica [19]. Since those lig-

http://dx.doi.org/10.1016/j.chroma.2016.01.058
0021-9673/© 2016 Elsevier B.V. All rights reserved.
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ands are commonly non-chromophoric, there is little interference
with UV detection. However, nowadays mass spectrometric detec-
tion becomes more and more the method of choice for detection
in LC and the column bleeding, especially of polar bonded phases,
is no longer invisible to the detector. Alkyl silanols bleeding from
RP phases exhibit poor ionization efficiencies in positive ion mode
and thus are unproblematic. HILIC, amino and chiral ligands on con-
trary are polar with sometimes exceptional ionization efficiencies
in electrospray ionization interfaces to mass spectrometry. In such
cases column bleeding may  interfere dramatically with detection
and limit detection sensitivity.

To overcome this problem a number of strategies have been
proposed. Polymeric siloxane bondings prepared by synthesis pro-
tocols which promote polymerization of silane precursor before
condensation to the silica surface is one propagated concept but
does not fully solve the problem, which may  be due to imper-
fect condensation chemistries [20,21]. Hydrolytically more stable
bonded chromatographic silica based stationary phases can be also
obtained through hydrosilylation of olefins on a hydride-modified
silica intermediate [22]. Hypercrosslinking of a monolayer of an
aromatic network on top of silica was shown to create a very stable
surface bonding which can be modified for various types of LC [23].
More stable stationary phases for RPLC were obtained by incor-
poration of organic bridges into the silica backbone and chemical
modification of these molecules via ether bridges [24]. A frequently
employed strategy is to use polymeric ligands which are coated
onto the surface of silica and are crosslinked [25–27]. In a few
works, also polysiloxane derivatives, e.g. with pendant alkyl groups,
have been coated onto silica surface to prepare alkyl functionalized
stationary phases, yet were not crosslinked to the surface [28,29].
While polysiloxane based chiral stationary phases are standard
in GC enantiomer separation, such surface modification is rarely
used in liquid chromatography with few examples demonstrated
[30–36]. For instance, Schomburg and co-workers prepared chirally
modified pre-polymers (viz. polymethylsiloxanes with SiH groups)
onto which quinine was bonded by hydrosilylation reaction to the
double bond of quinine and the resultant chiral pre-polymer then
bonded to silica or vinyl silica i.e. the synthesis of the chiral polymer
is done externally and not in-situ on the support [36]. We  recently
reported surface functionalization of an organic polymer monolith
with 3-mercaptopropylmethylpolysiloxane and bonding of a chi-
ral quinine carbamate selector for CEC enantiomer separation [37].
Crosslinking of polymeric selectors is also pursued as strategy to
immobilize polysaccharide selectors [38–40] or by in-situ reaction
of N,N’-diallyl-L-tartardiamide with a multifunctional hydrosilane,
yielding a network polymer incorporating the the chiral selector
that is simultaneously covalently bonded to vinyl silica [41,42].

The goal of this work was to develop a platform technology
which allows the preparation of functionalized silica stationary
phases for various HPLC separation modes via thiol-ene click reac-
tion and is based on a bonding chemistry that does not suffer
from ligand bleeding in UV, fluorescence, charged-aerosol detec-
tion and in particular mass spectrometric detection. The concept
is based on the coating of a thin film of a polysiloxane with
functional thiol groups onto vinylized silica particles and the
subsequent crosslinking of the film to the surface by radical addi-
tion reaction (thiol-ene click reaction). Excess of accessible thiols
can be used for immobilization of vinylized ligands, structurally
tailored for the respective chromatographic mode. A one step
coating/surface crosslinking/ligand immobilization approach with
poly(3-mercaptopropyl) methylsiloxane, vinyl silica and vinyl-
group bearing ligand is also proposed. The concept is illustrated by
use of tert-butylcarbamoylquinine as vinyl-group containing ligand
for enantioselective chromatography of chiral acidic analytes. The
chromatographic performance of the new coated and crosslinked
chiral stationary phases is compared to a corresponding brush-

type bonded CSP. The advantage of this new bonding chemistry
for hyphenation with mass spectrometry is documented for total
ion as well as selected ion monitoring mode.

2. Materials and methods

2.1. Materials

Poly(3-mercaptopropyl) methylsiloxane (PMPMS), 3-
mercaptopropyl dimethoxymethylsilane and vinyltrichlorsilane
were supplied by ABCR (Karlsruhe, Germany). The synthesis
chemicals 4-(dimethylamino) pyridine (DMAP) and 2,2′-azobis(2-
methylpropionitrile) (AIBN) as well as the chemicals used for the
preparation of LC-mobile phases i.e. acetic acid, LCMS-grade ammo-
nium acetate, LCMS-grade ammonium formate and HPLC grade
methanol were purchased from Sigma Aldrich (Munich, Germany).
Acetonitrile HPLC grade was purchased from J.T.Baker (Deventer,
Netherlands). Ultra-LC–MS grade acetonitrile, methanol, formic
acid and acetic acid were purchased from Carl Roth (Karlsruhe,
Germany). The test compounds N-acetyl-d,l-phenylalanine (Ac-
D,L-Phe), N-(carbobenzyloxy)-d,l-phenylalanine (Z-D,L-Phe), and
dichloroprop were from Sigma–Aldrich. Spherical silica gel Kro-
masil 100 Å, 5 �m particle size, was  supplied by Eka Chemicals
(Bohus, Sweden).

2.2. Synthesis and characterization of stationary phases

2.2.1. Synthesis of vinyl silica gel
Vinyl silica gel was prepared by refluxing a slurry of 20 g

Kromasil (100 Å, 5 �m)  in 200 mL  pyridine (dried over molecu-
lar sieves) with 52 mmol  vinyltrichlorosilane in the presence of
58 mmol  DMAP dissolved in 10 mL  chloroform overnight at 80 ◦C
using a mechanical stirrer. After washing repeatedly with hot
toluene, chloroform, methanol and diethylether the modified silica
gel was  dried at 60 ◦C under vacuum and subjected to elemental
analysis. The results are presented in Table 1.

2.2.2. Two-step polysiloxane-bonded tBuCQN CSP (QN-VII)
2.5 g of vinyl silica gel were suspended in 25 mL  methanol and

placed in a round bottom flask. 0.42 mL  PMPMS  (corresponding to
1.0 mmol thiol groups per g silica gel) and 0.6 mmol radical ini-
tiator AIBN were added. The slurry was slowly rotated and the
solvent evaporated under vacuum at 35 ◦C. The dried silica gel was
suspended again in 25 mL  methanol and 2 mmol  of tBuCQN ligand
(synthesized as descried in [43–45]), together with 0.6 mmol AIBN,
was added. The slurry was again slowly rotated and the solvent was
evaporated under vacuum at 35 ◦C. The flask with dry and modified
silica gel was filled with nitrogen, closed with a silicon rubber plug
and placed in the drying cabinet at 60 ◦C overnight. The product was
then washed several times with hot toluene and hot methanol, and
was afterwards dried in a vacuum oven at 60 ◦C. The dried tBuCQN-
modified silica gel (Fig. 1a) was  subjected to elemental analysis to
determine the selector coverage (based on nitrogen) (Table 1).

2.2.3. One-step polysiloxane-bonded tBuCQN CSP (QN-VI)
2.3 g of vinyl silica gel were suspended in 25 mL  methanol and

placed in a round bottom flask. Next, 1.9 mmol  of tBuCQN ligand,
together with 0.40 mL  PMPMS  (corresponding to 1.0 mmol thiol
groups per g silica gel) and 0.6 mmol  radical initiator AIBN, were
added. The slurry was  slowly rotated and the solvent evaporated
under vacuum at 35 ◦C. The flask with dry tBuCQN-modified silica
gel was filled with nitrogen, closed with a silicon rubber plug and
placed in a drying cabinet at 60 ◦C overnight. The product was  then
washed several times with hot toluene and hot methanol, and after-
wards dried in a vacuum oven at 60 ◦C. The dried modified silica gel
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Table  1
Elemental analysis and surface coverage data for tBuCQN chiral stationary phases.

Stationary phases %C %H %N %S S [mmol/g] ligand coverage [mmol/g] ligand coverage [�mol/m2]

Vinyl silica gel 5.32 1.09 0.03 0.01 – – –
QN-VII 15.27 2.82 1.1 2.19 0.68 0.25 0.8
QN-VI 14.05 2.35 1.11 1.64 0.51 0.25 0.8
QN-V0 15.14 2.38 1.59 1.84 0.73 0.38 1.3

Fig. 1. Surface chemistries of crosslinked polysiloxane-coated (a) and brush-type (b) tert-butylcarbamoyl quinine (tBuCQN) modified CSPs.

was subjected to elemental analysis and the amount of tBuCQN lig-
and on the silica surface was determined by calculations based on
nitrogen (Table 1).

2.2.4. Brush-type tBuCQN CSP (QN-V0)
The brush-type tert-butylcarbamoylquinine CSP (Fig. 1b),

employed as benchmark for comparison, was synthesized using
3-mercaptopropyl dimethoxymethylsilane according to protocols
described elsewhere [43–45].

2.2.5. 2 29Si Cross-polarization magic angle spinning (CP/MAS)
NMR characterization

29Si CP/MAS NMR  spectra were acquired on a Bruker ASX 300
instrument (Bruker, Rheinstetten, Germany). Magic angle spinning
was carried out with a 7 mm double bearing ZrO2 rotor filled with
about 250 mg  modified silica sample at a spinning rate of 3 kHz.
The 90◦ proton pulse length was 5.5 �s, and contact and relax-
ation delay times were 5 ms  and 1 s, respectively. All chemical shifts
were referenced externally to trimethylsilyl ester of octameric sil-
ica (Q8M8).
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Fig. 2. 29Si CP/MAS NMR  spectra of (a) vinyl silica and (b) of two-step polysiloxane bonded tBuCQN CSP QN-VII.
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2.2.6. Column packing
All modified silica gels were packed into stainless steel columns

of the dimension 150 mm × 4 mm ID at a pressure of 80 MPa  using
methanol as delivery solvent.

2.3. Liquid chromatographic experiments

2.3.1. Instrumentation
All samples were analyzed on an Agilent 1100 series LC system

from Agilent Technologies (Waldbronn, Germany) equipped with
an autosampler, degasser, quaternary pump, thermostated column
compartment and diode array detector. The system was controlled
by OpenLab CDS ChemStation—Edition for LC & LC/MS System (Rev.
B.04.03.16). Data were analyzed using ChemStation software (Rev.
B.04.03.16).

2.3.2. Stationary phase characterization
2.3.2.1. Chiral separation test conditions. The mobile phase for the
chiral separation test run consisted of methanol, acetic acid and
ammonium acetate (98/2/0.5, v/v/w). The flow rate was 1 mL/min.
The sample concentration was 1 mg/mL. All components were dis-
solved in the mobile phase. The injection volume was 10 �L. All
samples were analyzed at a column temperature of 25 ◦C and at a
wavelength of 254 nm.  Acetone was used as a void volume marker.

2.3.2.2. Van Deemter analysis. The column efficiency test was
performed using a sample containing N-acetyl-d,l-phenylalanine
(AcPhe) and acetone as void volume marker. The mobile phase con-
sisted of methanol, acetic acid and ammonium acetate (98/2/0.5,
v/v/w). The following flow rates were investigated: 3.0, 2.0, 1.0,
0.75, 0.5, 0.35, 0.25 mL/min. All samples were analyzed at a column
temperature of 25 ◦C and at a wavelength of 254 nm. Theoretical
plate numbers were calculated using peak width at half height,
determined by ChemStation Software (Rev. B.04.03.16). Height
equivalents of theoretical plates (HETP, H) were not corrected for
extra-column contributions.

2.3.2.3. MS-compatibility tests. Analyses were run on a Sciex
TripleTOF 5600+ equipped with a Duospray ion source which was
coupled to an Agilent 1290 Series UHPLC instrument (Agilent,
Waldbronn, Germany) with a Pal HTC-XS autosampler from CTC
(Zwingen, Switzerland). Experiments were carried out with ESI
interface in TOF MS  mode.

General MS  settings were adjusted to the following optimized
values: curtain gas (CG) 30 psi, nebulizer gas (GS1) 60 psi, drying gas
(GS2) 50 psi, source voltage (ISVF) +5500 V, source temperature (T)
400 ◦C, scan window (SW) m/z  = 100 to 2000, RF Transmission (RF)
m/z = 80 50%, m/z = 230 50%, accumulation time (AT) 250 ms.

The columns were evaluated in non-aqueous as well as hydro-
organic mobile phase mode and were examined for their propensity
to cause ligand bleeding. For the non-aqueous conditions the
mobile phase was composed of methanol and acetonitrile (1:1, v/v)
with 25 mM ammonium formate and 6.6 mM of formic acid. The
flow rate was 0.7 mL/min. For the hydro-organic condition, 100 mM
ammonium acetate in methanol and water (4:1, v/v) was  used with
a flow rate of 1 mL/min. The sample concentration was 1 mg/mL.
The test compound Ac-D,L-Phe was dissolved in the mobile phase.
The injection volume was 10 �L. All samples were analyzed at a
column temperature of 25 ◦C.

For the determination of the limit of detection (LOD) and limit
of quantification (LOQ), on-column AcPhe concentrations 2.5, 5,
25, 50, 250, 500 and 2500 pg of R- and S-AcPhe in MilliQ water
were analyzed in triplicates, while background noise was mea-
sured in quadruplets. UHPLC TripleTOF ESI-MS measurements
were performed under non aqueous conditions in negative mode
using high sensitivity settings for selected reaction monitoring

(MRMHR) scan mode selecting the precursor ion m/z = 208.0974
using Unit (0.70 Da) Q1 resolution and monitoring the fragment
(product) ion m/z = 164.0717. The optimum fragmentation con-
ditions, collision energy (CE) of −16 V and DP  of −151 V for
negative mode as well as CE of +18 V and DP of +114 V for
positive mode were determined by direct infusion. For data pro-
cessing MultiQuantTM 3.0 was used, employing extracted ion
chromatogram on m/z = 164.0717 ± 0.05 Da with a smoothing fac-
tor of 6. Peak integration was performed manually.

3. Results and discussion

3.1. Synthesis of coated chiral stationary phases

Brush-type bonded silica phases are commonly synthesized
from mono-, di- or trialkoxy silanes and corresponding chlorosi-
lanes, respectively. In any of these cases, there is a certain amount of
monofunctionally bonded ligand on the surface which is relatively
stable but may  be released upon acidic or alkaline hydrolytic cleav-
age. Multi-functional bondings, on the contrary, are more stable
because the ligand does not bleed from the surface upon hydroly-
sis of one siloxane bond. For this reason, a functional polymer was
coated onto porous silica particles in this work and crosslinked to
the vinylized surface. Vinyl-modified silica (100A, 5 �m)  was used
as substrate for the immobilization of the thiolated polysiloxane
film. A coating-crosslinking surface functionalization strategy was
selected in which the chiral selector was immobilized by either a
two step or one step synthesis approach.

In the two step approach (QNVII), a thiol-modified silica gel is
firstly prepared onto which the chiral vinyl selector is then immo-
bilized in a second step. Thus, a quantity of poly(3-mercaptopropyl)
methylsiloxane corresponding to about 1 mmol thiols per g silica
was suspended in methanol and used to prepare a slurry with vinyl
silica. A small amount of AIBN was also added before the suspen-
sion was evaporated to dryness to coat a thin film of the functional
polysiloxane onto the vinyl silica surface. At this stage, the thiol-
modified polysiloxane film can be crosslinked to the surface by
briefly subjecting the coated material to heat treatment. As such,
the material could be stored as thiol-modified silica to be used later
for immobilization of vinyl ligands by thiol-ene click reaction. In the
current study, no such heat treatment was performed at this stage.
In a second step, the chiral selector was dissolved in methanol along
with radical initiator AIBN and the mixture added to the slurry of
thiolated silica. The solvent was  evaporated again and the reaction
mixture heated to 60 ◦C for initiating the radical addition reaction.
Thereby, a part of the thiols from the polysiloxane film react with
the vinyl groups of vinyl-modified silica while others react with the
chiral selector.

In the one step approach (QNVI), poly(3-mercaptopropyl)
methylsiloxane, corresponding to about 1 mmol thiols per g sil-
ica, vinyl silica, AIBN and chiral selector were all slurried together
and the solvent was slowly evaporated. Subsequently, the thiol-ene
click reaction was initiated by heat treatment and allowed to pro-
ceed at 60 ◦C overnight. Crosslinking of the polysiloxane film to the
surface and bonding of selector to this thiol-modified polysiloxane
film occurred simultaneously in a single step.

The data for elemental analysis shown in Table 1, clearly confirm
the successful immobilization of both, the poly(3-mercaptopropyl)
methylsiloxane and the quinine carbamate ligand on both of the
two distinct coated-crosslinked tBuCQN CSPs, QN-VI and QN-VII.
The thiol content was  adjusted to be in the same order as in the
brush type CSP by charging the reaction mixture for the coating
process with an appropriate quantity of poly(3-mercaptopropyl)
methylsiloxane. The quantity of chiral selector to be added into the
reaction mixture, in order to obtain a similar surface concentration
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of ligand as observed on the corresponding brush-type tBuCQN CSP
(QN-V0), was pre-optimized with allylamine. It becomes evident
from Table 1 that the sulfur loading is a bit lower for the one-step
QN-VI as compared to the two-step polysiloxane-bonded tBuCQN
CSP (QN-VII) (0.51 vs 0.68 mmol/g) while for the latter it is virtu-
ally identical to the brush-type CSP (0.73 mmol/g). On the other
hand, the tBuCQN-ligand concentration is a good match between
the two versions of coated CSP (0.25 mmol/g), yet is a little lower
than on the QN-V0 (0.38 mmol/g). Further adjustments of surface
concentrations of both thiol and chiral selector are readily possible,
if necessary from a chromatographic viewpoint.

Structural information on the surface chemistry can be derived
from solid-state NMR  spectroscopy. Spectra from 29Si CP/MAS NMR
[46] provide a detailed picture about the type of silanol species
present on the modified silica surface at distinct stages of surface
modification [47–49]. Fig. 2 depicts 29Si CP/MAS NMR  spectra of
vinyl silica and the QN-VII. Characteristic resonances for native sil-
ica can be seen at −110 ppm (Q4, siloxane groups) and −102 ppm
(Q3, free silanol groups) in both of the modified silica materials.
Vinyl silica (Fig. 2a) shows another resonance signal close to 0 ppm
indicating successful bonding of vinyl silane via monofunctional Si-
O-Si bonds. The spectrum of the polysiloxane bonded CSP (Fig. 2b)
displays two new resonance signals at about –20 ppm and + 10 ppm,
respectively, resulting from the coating and crosslinking of the
polysiloxane film. The same resonance signals were also observed
in the QN-VI (not shown). The signal at approximately – 20 ppm
can be assigned as the methylsilane species in the polysiloxane
chain. The signal at ca. +10 ppm appears upon reaction of thiols
with the alkene group of vinyl silica altering the electronic envi-
ronment of the surface-bound silane species due to transformation
of the unsaturated alkene to a saturated alkyl group. Treatment of
vinyl silica with AIBN (without polysiloxane and tBuCQN ligand)
under otherwise identical conditions does not lead to formation
of significant quantities of this silane species indicating successful
crosslinking of the polysiloxane film to the silica surface.

These results clearly confirm successful bonding of a polysilox-
ane film and immobilization of chiral selector, and demonstrate the
straightforward approach for the synthesis of coated-crosslinked
CSPs via thiol-ene click reaction with controlled surface chemistry.

3.2. Comparison of chromatographic performance with brush
type CSP

The cardinal question of this study was to clarify whether
the new coated-crosslinked CSPs (Fig. 1a) can achieve the same
chromatographic performance as the corresponding brush-type
CSP (Fig. 1b) obtained by immobilization via monomeric 3-
mercaptopropyl trialkoxysilane and representing state-of-art in
the field. Thus, three chiral acids (Ac-Phe, Z-Phe and dichloroprop)
were selected as test substances and analyzed comparatively on the
two new coated-crosslinked CSPs, QN-VI and QN-VII as well as the
brush-type tBuCQN-CSP QN-V0 using polar organic mode elution
conditions composed of MeOH with acetic acid and ammonium
acetate (98:2:0.5; v/v/w). The results are summarized in Table 2
and representative chromatograms are depicted in Fig. 3. In spite
of lower selector coverage on the two coated-crosslinked CSPs,
both retention factors as well as enantioselectivities are in the
same range. �-Values of the two coated-crosslinked CSPs ranged
between 96% (Z-Phe) and 102% (dichloroprop on single-step coated
version) related to those of the corresponding brush-type CSP. For
Ac-Phe, separation factors on polysiloxane-coated versions QNVI
and QNVII were practically identical to those achieved on brush-
type tBuCQN-CSP.

It may  be striking that retention and separation factors are not
much different although the brush-type CSP has higher selector
loading. The reason may  be a complex interplay between slight
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Fig. 3. Representative chromatograms of Ac-Phe obtained on tBuCQN-modified
CSPs based on (a) crosslinked polysiloxane-coated silica via two-step approach (QN-
VII) (b) crosslinked polysiloxane-coated silica via one-step approach (QN-VI), and (c)
brush-type bonding (QN-V0). Conditions as specified in Experimental and Table 2,
respectively.

differences in phase ratio, non-specific adsorption to polysiloxane
backbone and support as well as specific binding to the selector. It
could be argued that non-specific binding increments significantly
add to retention, in particular under aqueous conditions, and thus
reduced enantioselectivity could be expected in such a case. Thus,
in order to complete the picture, chromatographic tests were also
performed with hydroorganic mobile phases and it can be seen that
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Fig. 4. Chromatogramms of Ac-R,S-Phe analyzed on QN-V0, QN-VI and QNVII ana-
lyzed under hydro-organic mobile phase conditions using ESI-TripleTOF-MS in
positive mode. Mobile phase: 100 mM NH4Ac in MeOH:water (4:1 (v/v)), 25 ◦C,
1  mL/min.

retention characteristics in this elution mode is also very similar,
albeit retention is slightly higher on the brush-type CSP which has
higher selector coverage (Fig. 4).

The trade-off of polymeric immobilization of the quinine carba-
mate selector via a coated and crosslinked polysiloxane film turns
out to be a lower chromatographic efficiency. As can be seen from
Table 2, plate numbers reach about 46% and 53% for QN-VII and
QN-VI, respectively, as compared to the corresponding QN-V0. This
translates also into somewhat lower resolution values (Table 2). In
order to gain deeper insight into possible reasons for this efficiency
loss, H/u curves were acquired on all three CSPs under compara-
ble conditions (Fig. 5). The general trend is the same for all three
CSPs. As common for enantioselective HPLC, the minimal theoreti-
cal plate height (Hmin) is always observed at very low flow rate. On
the other hand, the mass transfer resistance is significant. Multiple
simultaneous interactions at the chiral selector cause typically a
slower mass transfer than is common for RP-type chromatography
on particles with identical morphology. In the comparison of the
H/u-curves of the three CSPs it is most striking that the two coated-
crosslinked CSPs reveal steeper H/u-curves i.e. the mass transfer
resistance is more pronounced compared to the brush type CSP.
Determination of C-terms indicates that they are by a factor of
about 2 larger on both coated versions (e.g. 45 ms  for (R)-Ac-Phe
vs 19 ms  on the brush type CSP). It might be related to diffusion
limitations of analytes in the coated film, inhomogeneities in the
coating, or too narrow pores due to a thick porous film render-
ing intra-particulate pore diffusion of analytes significantly more
obstructed than in brush type CSPs without such coated film. Over-
all, it becomes evident that there is some room for optimization
which will be objective of further studies.
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Fig. 5. H/u curves for a) acetone (non-retained marker), b) Ac-R-Phe, c) Ac-S-Phe.
For conditions see experimental section.

3.3. Minimized ligand bleeding and reduced MS  background
signals of new coated CSPs

Brush-type chiral stationary phases show stronger background
signal in MS  detection compared to what we are used from modern
RP columns. This is due to a slight ligand bleeding which does typi-
cally not negatively affect enantioselectivity over a long time range,
but originates in a higher noise and thus reduced signal-to-noise

Table 2
Comparison of chromatographic data of crosslinked polysiloxane bonded, QN-VI and QN-VII versus brush-type quinine carbamate CSPs, QNV0.

Analyte QN-VII QN-VI QN-V0

k1 k2  ̨ RS N1 N2 k1 k2  ̨ RS N1 N2 k1 k2  ̨ RS N1 N2

Ac-Phe 1.17 1.75 1.50 5.04 2603 2442 1.12 1.68 1.50 5.36 3081 2831 1.16 1.77 1.52 7.60 5331 5291
Z-Phe  2.66 3.20 1.20 2.77 2279 2264 2.58 3.10 1.20 2.92 2657 2539 2.18 2.72 1.25 4.69 5063 4904
Dichloroprop 3.10 3.70 1.19 2.90 2507 2524 3.04 3.68 1.21 3.39 2966 2891 2.43 2.89 1.19 3.95 5344 5446

Experimental conditions: mobile phase, MeOH-AcOH-NH4Ac (98:2:0.5; v/v/w); flow rate: 1 mL/min; column temperature: 25 ◦C; detection: UV 254 nm;  sample: 1 mg/mL;
injection volume: 10 �L; column dimension: 150 × 4.0 mm ID.
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ratios, consequently impaired detection sensitivities. This holds
for non-commercial brush-type CSPs but also commonly utilized
commercial brush type CSPs with low molecular mass selectors
and macrocyclic intermediate sized selectors bonded to silica via
monomeric silane linkers of the similar type as shown in Fig. 1b. In
part, the stronger background signal emerges as a result of much
better ionization efficiencies of polar selector molecules, in par-
ticular in positive ion mode, as compared to alkyl silanol ligands
released as column bleed from RP phases.

Most commonly, trifunctional silanols are employed for immo-
bilization of chiral selectors on silica surface. Silanization reactions
with such derivatives give a distribution of mono-, di- and trifunc-
tional bondings [48]. In particular, the mono-functionally bonded
ligands are prone to ligand release by hydrolytic cleavage and sig-
nificantly contribute to the background signal in MS.  For better
comparability, a methyl-silane linker was used herein for synthe-
sis of the brush-type CSP, because this way the structural element
by which the selector is bonded is exactly the same in both brush-
type and polysiloxane-bonded tBuCQN CSPs. While the carbamate
group is fully stable under mobile phase conditions, the most labile
bond is the Si-O-Si linkage of the selector to the silica support.

Fig. 6a illustrates the total ion current (TIC) chromatograms
of Ac-Phe measured in positive ion mode with a polar organic
mobile phase as specified in the figure caption. As can be seen,
the background signal abundance is significantly reduced for the
polysiloxane-coated CSP versions, QNVI and QNVII as compared
to the brush-type CSP QNV0. The TIC of the brush-type bonded
CSP, QNV0 provides a background signal abundance of ca. 5 × 105.
On the contrary, the TIC for the corresponding two-step synthe-
sized polysiloxane-coated CSP QNVII reaches a signal abundance
of only about 2.5 × 105, which is reduced by a factor of ca. 2.
The noise level was further minimized for the single-step synthe-
sized polysiloxane-coated CSP, QN-VI (signal intensity ca. 1.5 × 105)
which was close to that of the mobile phase without any column
(ca. 1.0 × 105). Since the background signal, like the analyte signal,
is decisive for the detection sensitivity, the single-step synthesized
polysiloxane-coated CSP provides lower detection limits due to
improved signal-to-noise ratio. As a matter of fact, analyte peaks are
significantly above the LOD for a 5 �g injection of Ac-Phe (2.5 �g
of each enantiomer) in the TIC trace for the single-step synthe-
sized polysiloxane-coated CSP, while no peaks were visible in the
TIC for the same injected quantity in case of the brush-type CSP.
The situation is virtually identical under hydroorganic elution con-
ditions (Fig. 6b). This clearly confirms the advantage of the new
polysiloxane-coated stable bond CSPs for LC–MS coupling (Fig. 6).

3.4. Determination of limit of detection and limit of quantification

In order to determine the influence of ligand bleeding on
quantitative MS  results, the limit of detection (LOD) and limit
of quantification (LOQ) of AcPhe was determined for all three
QN-based chiral columns for nonaqueous mobile phase condition
in negative mode for the product ion m/z  164.0717 (±0.025 Da).
Since the stated conditions provided highest signal intensities,
no other conditions are shown. Calibration curves were estab-
lished by manual integration of 5 pg to 2.5 ng (on-column) of the
R and S enantiomers of AcPhe within identical time segments
using MultiQuant. Baseline correction was performed by subtrac-
tion of integrated background noise within said time segments
of four subsequent blank injections. LOD and LOQ determination
was performed according to ICH guidelines (LOD = 3.3 × STD/slope
and LOQ = 10 × STD/slope) employing the residual standard devi-
ation (STD) of the calibration curve. Table 3 shows the results
along with calibration functions, linearities and range. It can be
seen that a good linearity was achieved (even without the use of
internal standards) in the concentration range between 5–2500 pg Ta
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Fig. 6. Background signal for the polysiloxane-coated and brush-type tBuCQN CSPs as measured by total ion current (TIC) with a) non-aqueous and b) hydro-organic mobile
phase  conditions. TIC of injections of Ac-R,S-Phe onto tBuCQN-modified CSPs based on crosslinked polysiloxane-coated silica prepared via one-step approach (green trace),
based on crosslinked polysiloxane-coated silica prepared via two-step approach (blue trace), and based on brush-type bonding (red trace). Black trace corresponds to the
background signal of the mobile phase (without column). Note that for hydro-organic condition the intensity equals to 3000 cps for the pure mobile phase and is therefore
undistinguishable to the time axis.
Non-aqueous mobile phase: 25 mM NH4FA and 6.6 mM FA in ACN/MeOH (1:1; v/v); hydro-organic mobile phase: 100 mM NH4Ac in MeOH/water (4:1; v/v); column
equilibration prior run 30 min  each, without flushing into the source; MS: ESI(+). Other conditions as specified in Experimental section.

on-column both for polysiloxane-bonded and brush-type CSPs
(R2 >0.998). It is noteworthy that slopes increase in the order from
brush-type CSP over two-step to single-step polysiloxane-bonded
CSP indicating that the best sensitivity is obtained with the lat-
ter one (presumably due to less ion suppression). The same trend
is confirmed by the LODs and LOQs (Table 3). The results clearly
confirm that enhanced detection sensitivity can be achieved with
the polysiloxane-bonded CSPs, yet the brush-type tBuCQN CSP
can be readily utilized for sensitive detection in MS/MS  mode as
well.

4. Conclusions

A new platform technology has been developed which enables
the synthesis of low-bleed MS-compatible functional stationary
phases via thiol-ene click reaction. It is based on either a two-
step or a single-step coating of polysiloxane film with reactive thiol
functionalities of which a small portion is utilized to crosslink the
polymer film to the vinylized silica surface and the remainder of
thiol groups is available for immobilization of any chromatographic
ligand with vinyl group by radical addition reaction. The concept
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has been demonstrated herein for the preparation of a chiral sta-
tionary phase based on a vinyl-group containing chiral selector,
viz. tert-butylcarbamoylquinine. Enantioselecitivity could be eas-
ily adjusted to the same level as obtained with a corresponding
brush-type CSP. While the brush-type CSP shows stable retention
and separation factors over extended period, even years, the ben-
efit of the new bonding chemistry was mainly related to fewer
traces of bleeding of well ionizable polar chromatographic ligand
and thus reduced background noise in enantioselective HPLC-
ESI-QTOF-MS experiments. This renders the new immobilization
chemistry better compatible with MS  detection and provides lower
detection limits. The technology is broadly applicable to any vinyl
ligand. Besides current enantioselective chromatography, it has
been already examined for the preparation of low-bleed MS-
compatible mixed-mode reversed-phase/week anion-exchange
stationary phases using N-undecenyl-3-aminoquinuclidine as well
as amino phases based on allylamine. The results accomplished
with these ligands will be presented elsewhere. Some synthesis
parameters of the new polysiloxane-coated and crosslinked sta-
tionary phases deserve further optimization in order to achieve
optimal chromatographic efficiencies. This will be the objective of
future studies.
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Abstract Immobilization of enzymes on mesoporous
microparticulate carriers has traditionally been accompanied
by reduction in enzyme activity. Herein, we document that
immobilization of pepsin via amide coupling on gold nano-
particles (GNPs) with a carboxy-terminated hydrophilic PEG7

shell resulted in a heterogeneous nanobiocatalyst with essen-
tially equivalent turnover rates, kcat (90 %), and enhanced
catalytic efficiencies, kcat/KM (107 %), compared to homoge-
neous catalysis with pepsin in free solution for cytochrome C
as model substrate. This heterogeneous catalyst showed fur-
ther at least equivalent bioactivity in a digestion reaction of a
protein mixture consisting of cytochrome C, bovine serum
albumin, and myoglobin. UHPLC–ESI-QTOF-MS/MS anal-
ysis of the digests with subsequent Mascot database search
allowed unequivocal identification of all proteins with high
score and good sequence coverage. The functionalized nano-
particles were further characterized by Vis spectroscopy in
terms of the surface plasmon resonance (SPR) band, by dy-
namic light scattering (DLS) with regard to hydrodynamic
diameters, and in view of their ζ potentials at each step of
synthesis and surface modification. These measurements also
revealed that the pepsin-functionalized GNPs were sufficient-
ly stable over at least 1 month; thus providing a satisfactory

shelf life to the heterogeneous catalyst. Advantageously, the
pepsin–GNP bioconjugate can be conveniently removed after
reaction by simple centrifugation steps which makes them a
useful tool for analysis of therapeutic peptides and proteins,
including monoclonal antibodies. The practical utility of the
nanobiocatalyst was documented by digestion of a monoclo-
nal antibody which yielded the F(ab')2 fragment with a mass
of 97,619.4 Da.

Keywords Goldnanoparticle .Bioconjugate .Heterogeneous
nanobiocatalyst . Quadrupole time-of-flight mass
spectrometry . Enzyme kinetics . Monoclonal antibody
fragment F(ab')2

Introduction

Workflows in protein analytics, e.g., in proteomics and analysis
of protein therapeutics, commonly involve enzymatic digestion
protocols prior to their LC–MS/MS analysis [1]. Trypsin is most
popular for proteolytic cleavage into peptide fragments and is
very efficient and yields short peptides with Arg or Lys at the C-
terminal end. As a result of very short peptide fragments, MS
identification often fails and leads to incomplete sequence infor-
mation. Alternative enzymes are also often utilized, in proteo-
mics primarily Lys-C, Glu-C, chymotrypsin, and pepsin [1] and
in therapeutic protein (i.e., monoclonal antibody) analysis pep-
sin, papain, IdeS [2], or ideally a combination of these
biocatalysts [1]. These enzymes can also be very helpful for
stereochemical configuration-dependent sequence elucidations
of therapeutic peptides and peptidic natural products [3]. To
avoid detrimental interferences from enzyme and confusing re-
sults in such applications, immobilization of these biocatalysts to
solid surfaces, e.g., beaded agarose or monolithic supports, has
been suggested as a viable option to enable straightforward
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removal of the enzyme after the proteolytic reaction [4]. There
are a number of other advantages associated with such hetero-
geneous catalysts, amongst which ameliorated enzyme stability
and reusability are prominent ones [5, 6]. Often, however, bond-
ing to solid supports results in reduction of bioactivity of
immobilized enzymes mainly because of hindered substrate ac-
cess to the active site or unfavorably altered conformation of
immobilized enzyme [5, 6]. In an attempt to overcome such
limitations of heterogeneous catalysts, researchers have evaluat-
ed nanomaterials as carriers for enzyme immobilization [7, 8]. In
fact, a number of studies reported increased activities and en-
hanced reaction rates as well as improved stabilities when en-
zymes were immobilized on nanocarriers [9, 10].

In general, according to IUPAC nanomaterials have a
length scale of less than 100 nm in at least one dimension
[11]. This gives them peculiar properties of which their large
surface-to-volume ratio is perhaps the most significant one in
terms of heterogeneous bionanocatalysis for providing a large
surface for functionalization with enzyme and a large interface
for enzyme–substrate reactions [12–14]. Frequently utilized
nanoscaled supports for nanobiocatalysts comprise magnetic
nanoparticles [8], si lica nanoparticles, polymeric
nanomaterials, metal oxides, nanofibers, and metallic nano-
particles onto which enzymes have been immobilized by ad-
sorption, covalent bonding, ionic interactions, via affinity
tags , by cross - l ink ing , o r phys ica l en t rapment
(entanglement) in a polymeric network [7, 8]. Amongst the
metallic nanoparticles, gold nanoparticles (GNPs) have re-
ceived particular attention and belong to one of the most in-
tensely studied nanomaterials [15]. They can be prepared by a
straightforward and low-cost size-controlled synthesis by re-
duction and stabilization of gold(III) chloride with citrate ac-
cording to the Turkevich–Frens method [16, 17]. Through a
nucleation and growth-controlled mechanism [15, 18, 19],
GNPs can be obtained in the size range between 1 and
50 nm. Furthermore, convenient quality control by Vis spec-
troscopy due to the surface plasmon resonance (SPR) band
with absorbance maximum around 520 nm makes this mate-
rial attractive as a carrier for biofunctionalized nanomaterials
[20, 21]. Besides adsorptive bonding of enzymes by ionic and
hydrophobic interactions, enzymes can be conveniently
immobilized via bifunctional ligands containing a terminal
thiol group for direct attachment to the GNP surface and da-
tive Au–S bond through self-assembled monolayer (SAM)
formation [22] and subsequent conjugation of enzyme [12,
23]. For this reason it is not further surprising that GNPs have
become popular enzyme carriers for sample preparation in
protein analysis, e.g., with trypsin [12, 24, 25], for enzyme-
based sensor devices [26], for immunoassays [27, 28], and for
theranostic applications, e.g., in vivo tumor targeting and de-
tection by surface-enhanced Raman scattering [29].

In this work, we report on the synthesis and characterization
of pepsin-modified heterogeneous nanobiocatalysts based on a

gold core with a hydrophilic PEG7 shell onto which pepsin was
covalently attached and their proteolytic performance for sample
preparation in protein analytics. Pepsin is a digestive protease
with a molecular weight around 36 kDa and an isoelectric point
(pI) at approximately 3.2 [30, 31]. Pepsin cleaves peptide bonds
of proteins preferentially at the C-terminal side of phenylalanine
and leucine residues [32, 33]. It is sometimes used in proteomics
as an alternative to trypsin (roughly estimated in about 0.4 % of
proteomic studies [1]), but also for antibody digestion near the
hinge region to produce specifically F(ab')2 and Fc fragments
[2]. For this reason, it was also a popular enzyme target for its
immobilization to various supports such as microparticles [34,
35], magnetic beads [36], monoliths [37, 38], nanospray emitter
[39], planar surface low-density polyethylene (PE) films, or on
polycarbonate (PC) plates, on microscope glass slides [40],
dextran-modified fused-silica capillaries [41], and on fibers
[42]. In a few studies, pepsin was immobilized on
nanoparticulate carriers such as alumina nanoparticles ([43]),
anisotropic gold nanoclusters [44], and colloidal gold [45].
However, the weak physical binding in these studies with
noncovalent immobilization is regarded as suboptimal in terms
of chemical stability of these nanobiocatalysts as they have a
tendency to undergo enzyme leaching from the surface. To alle-
viate such limitations we propose herein covalently linked pep-
sin–GNP conjugates with an optimized surface chemistry that
provides both chemical as well as colloidal stability and does not
compromise bioactivity

Materials and methods

Materials

Pepsin (from hog stomach, EC 3.4.23.1, 3651 U mg−1) was
received from Fluka (Steinheim, Germany). Albumin, from
bovine serum (BSA, EC number 232-936-2, MW 66 kDa)
was obtained from Sigma-Aldrich (Munich, Germany).
Cytochrome C (CYC_HORSE, from horse heart, EC number
232-700-9, MW 12,270 Da) and myoglobin (MYG_HORSE,
from horse skeletal muscle, EC number 309-705-0, MW 16,
900 Da) were supplied byCalbiochem (Darmstadt, Germany).

Gold(III) chloride trihydrate (HAuCl4·3H2O), trisodium cit-
rate, tris(hydroxymethyl)aminomethane (Tris), N-(3-
dimethylaminopropyl)-N'-ethylcarbodiimide (EDC), O-(2-
carboxyethyl)-O'-(2-mercaptoethyl)heptaethylene glycol (HS-
PEG7-COOH), Folin & Ciocalteu’s phenol reagent glycerol, a
silver staining kit, and monoclonal anti-HSA antibody for
ELISAwere obtained from Sigma-Aldrich (Munich, Germany).

Preparation of GNPs and immobilization of pepsin

The preparation of GNPs was based on the reduction and
simultaneous stabilization of gold(III) chloride trihydrate with
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trisodium citrate in accordance to the Turkevich–Frens meth-
od [12, 16, 17, 46]. For the synthesis of 10 mL solution of
GNPs, 5.05 mg HAuCl4 (1.28 mmol in 11.25 mL doubly
deionized water (ddH2O) corresponding to a final concentra-
tion of 1.14mM) was used and heated at reflux under constant
stirring. Afterwards 1.25 mL of 20.5 mM trisodium citrate
solution (6.03 mg mL−1) was added (final concentration of
2.28 mM in a total volume of 11.25 mL) and heated for a
further 10 min, while the color turned red. The GNP solution
was allowed to cool down and stirred at room temperature for
another 60 min. The GNP solution was finally stored at 4 °C
until usage [47].

To obtain covalently immobilized pepsin, first 1 μL of HS-
PEG7-COOH solution was added to 1 mL of aforementioned
GNP solution and the bifunctional linker immobilized over-
night under constant stirring at room temperature. Afterwards
the solution was centrifuged at 12,000 rpm and resuspended in
20 mM MES buffer pH 4.5. This washing step was repeated
twice. The 50 μL of EDC (12 mM in MeOH) to activate
carboxylic acids and 250 μL pepsin (6 mg mL−1 in 20 mM
MES buffer pH 4.5) were added and stirred for 2 h at room
temperature. The nanoparticles were washed in 20 mM Tris-
HCl buffer pH 7.5 twice to cap residual activated carboxylic
groups. The supernatant of the first washing step was used for
protein quantification by the Lowry assay (see below) [12].

The resultant nanoparticles were washed twice and resus-
pended in ddH2O and characterized after each step of surface
functionalization by Vis spectroscopy, DLS, and ζ potential
measurements (see Fig. 1 and Electronic Supplementary
Material (ESM) Fig. S1).

In an additional study, in one synthesis batch nanoparticles
of each step of surface functionalization were tested for their
stability over 35 days. For this purpose, all samples were di-
luted 1:5 with ddH2O and characterized by Vis spectroscopy
(see ESM Fig. S2).

Vis spectroscopic characterization of nanoparticles as well
as size and zeta potential measurements

The SPR band was measured by Vis spectroscopy after each
step of surface modification; spectra were acquired in the
wavelength range between 350 and 800 nm. All measure-
ments were performed with a VWR UV-1600PC spectropho-
tometer. The differently functionalized nanoparticles were

further characterized by DLS and their ζ potentials, derived
from electrophoretic mobility measurements, before and after
each step of chemical modification using a Zetasizer Nano ZS
instrument (Malvern Instruments, Herrenberg, Germany). The
Zetasizer was equipped with a He–Ne laser, and the detection
was performed at 173° backscatter detection mode. Samples
were diluted in ddH2O (1:5; v/v) and measured as triplicate.
Each value was the mean of 15 subruns.

Chromatographic characterization of pepsin activity

A kinetic study was performed with pepsin in solution and with
functionalized heterogeneous nanobiocatalysts with
immobilized pepsin to determine the Michaelis–Menten param-
eters. Thus, several concentrations of CYC were digested in
20 mM sodium acetate pH 4.5 for 10 min at 37 °C. The diges-
tion was stopped by adding 0.2 mL of 0.1 M NaOH to 0.8 mL
reaction mixture (0.6 mL reaction buffer +0.1 mL pepsin+
0.1 mL CYC stock solutions with different concentrations) to
achieve neutral pH. For the study of pepsin in homogeneous
solution as control reaction, 100 μL enzyme solution
(2.5 mgmL−1 stock solution, 0.25 mgmL−1 final concentration)
in the aforementioned buffer was used for the digestion. The
approach with the immobilized pepsin was performed in 1 mL
total volume of the nanoparticle solution (0.7 mL nanoparticle
solution in reaction buffer+0.1 mL CYC stock solutions with
different concentrations). Therefore pepsin@GNP was centri-
fuged at 12,000 rpm for 10 min and resuspended in 0.7 mL
20 mM sodium acetate pH 4.5. The supernatant after the centri-
fugation step was discarded. The digestion was stopped by
adding 0.2 mL 0.1 M NaOH (total volume reaction mixture
1 mL), the nanoparticles were centrifuged, and the supernatant
was analyzed by LC–UV for quantification of undigested CYC.

Michaelis–Menten parameters KM and vmax were calculated
by linear and bilinear equations according to Lineweaver–Burk
diagrams [48]. A calibration function was established and used
to quantify undigested CYC in the reactionmixture. All samples
were measured as triplicate. For the LC analysis method of
undigested CYC, an Agilent 1100 series HPLC instrument with
a binary gradient pump, vacuum degasser, autosampler, column
oven, and a variable wavelength detector was used. The separa-
tion was performed with a 10-min gradient on a monolithic
poly(styrene-co-divinylbenzene) Proswift™ RP-1S
50 × 4.6 mm ID column from Dionex (ThermoFisher

Fig. 1 Reaction scheme for functionalization of GNPs with bifunctional cross-linker and pepsin
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Scientific) with 50 mM ammonium formate pH 3.5 containing
5 % ACN in channel A and ACN+5 % 50 mM ammonium
formate pH 3.5 in channel B (0–2 min, 20 % B; 2–6 min, 60 %
B; 6.01–10min, 20%B). The flow rate of themobile phase was
1 mL/min, and the column temperature was set to 40 °C. The
injection volume was 5 μL, and detection was performed at
280 nm.

The method was validated in accordance with the
International Council on Harmonization of Technical
Requirements for Registration of Pharmaceuticals for
Human Use (ICH) guidelines. Linearity, precision, and accu-
racy were evaluated. The LOD and LOQ were determined as
the concentrations with a signal-to-noise ratio of 3:1 and 9:1,
respectively (see ESM Figs. S3, S4, Table S1).

Protein determination by Lowry assay

The amount of immobilized pepsin was determined by the
Lowry assay [49]. Briefly, the supernatant collected after the
enzyme immobilization step was used for the quantification of
nonimmobilized pepsin. The amount of immobilized enzyme
could then be back calculated by applying the mass balance
equation. A calibration function was set up with free pepsin in
20 mM MES buffer pH 4.5 in the range 0.05 to 1 mg/mL. A
25-μL aliquot of the sample/standard/blank was mixed with
125 μL of Lowry A solution and reacted for 20 min.
Afterwards 12.5 μL Folin & Ciocalteu’s phenol reagent
(Lowry reagent B) was added and reacted for further 30 min
before measurement. Lowry reagent Awas freshly prepared ev-
ery day (2.45 mL 4 % Na2CO3 anhydrous in ddH2O, 2.45 mL
0.1MNaOH, 0.1 mL 2%Na-K-tartrate in ddH2O, and 0.05mL
CuSO4·5H2O in ddH2O). Folin & Ciocalteu’s phenol reagent
was commercially available from Sigma-Aldrich.

For the photometric determinations a Versa max microplate
reader fromMolecular Devices was used, and the wavelength
was set to 650 nm. All measurements were carried out at room
temperature. For more details see also ESM Figs. S5 and S6.

Protein digestion with pepsin-conjugated GNPs

BSA, CYC, and MYG (0.2 mg mL−1 of each protein) were
utilized as model proteins to test the digestion efficiency of con-
jugated pepsin. For this purpose, 0.2 mL of the protein mixture
was transferred to 1 mL of the nanoparticle suspension
(pepsin@GNP in 1 mL 20 mM sodium acetate pH 4.5). The
reaction with the nanoparticle approach was stopped by centri-
fugation (12,000 rpm for 10 min), which resulted in a clear
supernatant for LC–MS/MS analysis. For the digestion protocol
with free pepsin, 0.3 mg mL−1 pepsin was used (0.25 mg mL−1

final concentration in 1.2 mL total volume); 0.2 mL of the pro-
tein mixture was added to 0.8 mL pepsin in digestion buffer.
Then 100-μL aliquots were taken, and the reaction was stopped

by adding 20μL of 0.1MNaOH before injecting the sample for
LC–MS/MS analysis.

The digestion of the protein mixture was performed in
20 mM sodium acetate buffer pH 4.5 at 37 °C with a digestion
time from 4 to 24 h. As control a sample at 0 h digestion time
was also taken and analyzed. Blank samples as 20 mM sodi-
um acetate pH 4.5 were prepared as well.

Recyclability (see ESM Fig. S7) and pepsin leaching from
pepsin@GNP bioconjugate (see ESM Fig. S8) were also
examined.

LC–MS/MS method

All samples were injected via the PAL HTC-xt autosampler
(CTCAnalytics, Zwingen, Switzerland). The separationwas per-
formed with an Agilent 1290 LC system (Agilent Technologies,
Waldbronn, Germany) on an Aeris Peptide C18 (3.6 μm
150×2.1 mm ID) column from Phenomenex (Torrance, CA,
USA) with a 90-min gradient containing ddH2O with 0.1 % (v/
v) formic acid in channel A and acetonitrile with 0.1 % (v/v)
formic acid in channel B (0–5min, 5 %B; 5–60min, 5–60%B;
60–65 min, 60–95%B; 65–70 min, 95 % B; 70–72 min, to 5 %
B; 72–90 min, 5 % B). The peptide masses were detected with a
Triple TOF 5600+ quadrupole time-of-flight mass spectrometer
from Sciex (Concord, Ontario, Canada) equipped with a
DuoSpray source operated in ESI positive mode. The source
temperature was set to 350 °C, and the ion spray voltage floating
(ISVF) was 5500 V. The pressure of the ion source gases 1–3
was 50, 40, and 30 psi. Finally, the declustering potential was set
to 100V, and the collision energy to 10V. Ions weremeasured in
information-dependent data acquisition (IDA) mode for ions
greater than 100 Da with an intensity threshold greater than 10
counts per second.Accumulation times forMS (survey scan) and
MS/MS experiments were set to 250 ms. The dynamic back-
ground subtraction was activated, and the collision energy for
all MS/MS experiments was set to 25 V.

A Mascot search was performed to detect the digested pro-
tein and to examine the occurrence of autodigestion of the
immobilized pepsin. Mascot version 2.0.05 was used with
the Swiss-Prot database. Pepsin Awas selected as the enzyme.
Precursor and fragment ion mass (monoisotopic) tolerance
was set to ±0.2 Da. Peptide charge state was set to +1, +2,
+3, and one missed cleavage was allowed. Taxonomy and
modifications were not specified.

More detailed results on the UHPLC–ESI-QTOF-MS/MS
analysis of the digested protein mix can be found in ESM
Figs. S9–S12and Table S2.

Antibody digestion with pepsin@GNP

For this experiment the intact mass of monoclonal anti-HSA
from an ELISA kit was determined before and after the diges-
tion with immobilized pepsin by UHPLC–μESI-QTof-MS.
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For the digestion 100 μL pepsin@GNP in 20 mM sodium
acetate pH 4.5 was mixed with 100 μL anti-HSA (1:100 dilu-
tion in 20 mM sodium acetate pH 4.5). The digestion was
performed at 37 °C for 4 h. To obtain a clear supernatant for
analysis the nanobiocatalysts were centrifuged (12,000 rpm
for 10 min).

LC–MS method for determination of intact protein
masses

A Zorbax column (SPE 300 Å C18 5 μm 35×0.3 mm ID)
from Agilent (Santa Clara, CA, USA) was used for online
SPE. Within the first 2 min the column was used for desalting
and enrichment of the sample with a flow of 50μL/min 100%
ddH2O with 0.1 % (v/v) formic acid in channel A. From 2.01
to 8 min the adsorbed, desalted proteins were eluted from the
SPE column and flushed into the mass spectrometer with
50 μL/min 100 % acetonitrile containing 0.1 % (v/v) formic
acid in channel B. A 2-min pre-equilibration step was per-
formed to regain the starting conditions of the method. The
protein masses were detected with a Triple TOF 5600+ quad-
rupole time-of-flight mass spectrometer from Sciex (Concord,
Ontario, Canada) equipped with a DuoSpray source operated
in μESI positive mode, using a 50-μm-ID μESI-needle
(Sciex). The source temperature was set to 400 °C, and the
ISVF was 5100 V. Nebulizer gas (GS1) was set to 40 psi,
drying gas (GS2) to 40 psi, and curtain gas to 30 psi.
Finally, the declustering potential (DP) was set to 230 V, and
the collision energy (CE) to 30 V. TOF-MS scan ranged from
500 to 4000 Da. For intact protein detection Sciex’s Intact-
Protein script was activated, Q1 transmission was set to 100%
at 1250m/z, and sensitivity was increased by summing 60
time bins. Data processing and identification of the intact pro-
tein mass were performed with the Bio Tool Kit from Sciex.

Results and discussion

Synthesis and characterization of functionalized GNPs

Citrate-capped GNPs were prepared according to the
Turkevich–Frens method [16, 17]. This approach is based on
the reduction of HAuCl4 by trisodium citrate and allows a
straightforward size-controlled synthesis of GNPs in the range
of 10 to 30 nm by variation of the molar citrate-to-gold tetra-
chloride ratio in the range between 6:1 and 2:1 [47]. Citrate
ions attached to the GNP surface after synthesis are responsi-
ble for the good colloidal stability of the resultant nanoparticle
suspensions. A convenient strategy for enzyme immobiliza-
tion on nanoparticulate carriers represents adsorptive bonding
driven by attractive electrostatic interaction forces. This ap-
proach towards heterogeneous nanobiocatalysts was exam-
ined herein as well, yet was found to be suboptimal in terms

of stability of resultant nanocolloids. Therefore, immobilized
pepsin, with a pI between 2 and 3, may easily detach under
reaction conditions (pH between 1 and 4), thereby contami-
nating the resultant reaction solution after removal of the
nanoparticles with proteinogenic material which may interfere
with final analytical determinations. Hence, a covalent attach-
ment strategy of pepsin was adopted according to the reaction
scheme in Fig. 1. The bifunctional linker HS-PEG7-COOH
was first self-assembled in a dense monolayer on the gold
surface via stable dative thiol–gold bonds. It was previously
shown that this linker provides stable self-assembled mono-
layers (SAMs) with surface coverages of 4.29±0.45 ligands
per nm2 [50]. The PEG linker supports colloidal stability and
prevents nonspecific binding of proteins. It was found that
enzyme–GNP conjugates have better colloidal stability when
the enzyme was bonded via a PEG linker as compared to
corresponding alkyl linkers and compared to adsorptively
bonded enzyme–GNP conjugates as well [12]. Longer spacers
turned out to be advantageous in terms of bioactivity, and
therefore the bifunctional linker HS-PEG7-COOH was select-
ed in the current work as first choice. The terminal carboxylic
groups constitute reactive anchor functionalities for bonding
of pepsin by direct amide coupling with EDC under weakly
acidic conditions. As the last step in the synthesis, remaining
EDC-activated carboxylic groups were capped with Tris moi-
eties to yield the final pepsin-functionalized GNPs with resid-
ual carboxylic acid groups. The latter are supportive for the
colloidal stabi l i ty and shelf l ife of the resultant
bionanocatalyst.

All nanoparticles were characterized after each step of syn-
thesis and surface modification, respectively, by Vis spectros-
copy for measurement of changes of the SPR band, by DLS
analysis for nanoparticle size (i.e., hydrodynamic diameter)
characterization, and by determination of the ζ potential.
The results are illustrated in Fig. 2.

Citrate-stabilized GNPs obtained by synthesis with a 2:1
molar ratio of citrate/HAuCl4 had a mean diameter of 31.4
±0.9 nm according to DLS measurements and a ζ potential of
−34.7±1.7 mV. Such nanoparticle sizes were recently found
to be favorable over smaller ones for protein immobilization
[12] and were therefore used as the starting carrier for all
batches of modified GNPs in this study. The final concentra-
tion of the GNP solution of 1.5×10−6 mM was calculated
with the results of the DLS measurements and the Lambert–
Beer law [47].

Vis spectroscopy is the most straightforward and useful
tool for quality control of surface modification. Alterations
in size, size distribution, and shape as well as chemical chang-
es at the surface lead to shifts of the characteristic SPR band
which is found as an absorption band with a maximum at
around 525 nm according to the Mie theory [51, 52]. As
displayed in Fig. 2a, the SPR band as monitored by Vis spec-
troscopy is slightly shifted to higher wavelength upon each
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step of surface modification (from λmax = 525± 0.6 nm for
citrate-capped GNPs to λmax=528±1 nm after pegylation to
λmax = 532±1.7 nm after bonding of pepsin) and confirms
successful bonding of the respective ligand at each step. It
becomes further evident that no significant aggregation occurs
upon pegylation which yielded carboxy-terminated GNPs nor
after enzyme immobilization which afforded the final pepsin-
conjugated GNPs. Aggregation typically leads to broad ab-
sorption bands with λmax>550 nm which are absent in the
current Vis spectra (Fig. 2a) [46]. Narrow absorption bands
are observed for all three studied particle types as a result of
the absence of aggregation. The slightly broader absorption
band for the pepsin-modified GNPs may be due to asymmet-
rically shaped particles and departure from strictly spherical
shape after enzyme immobilization [47].

Sufficient colloidal stability is also confirmed by the ζ poten-
tials of the modified particles. In any case, ζ potentials were less
than −25 mV (Fig. 2b) which is indicative of sufficient electro-
static repulsion overcoming attractive van derWaals interactions
that are the prime cause for aggregation of nanoparticles.

Nanoparticle diameters were measured by DLS. As expect-
ed, with each layer of surface modification the size of the
resultant nanoparticles increased, thereby confirming success-
ful ligand attachment. The bifunctional PEG7 linker with

terminal carboxylic group has a length of about 3.5 nm [50].
After the PEG7 linker bonded to the GNP surface by SAM
formation, the diameter of the nanoparticle grew from 31 nm
to 52 nm, which is in good agreement with expectations. The
slight difference between theoretical and experimental values
may be due to strong solvation of pegylated GNPs. The sphere
equivalent particle diameter further increased to 105 nm after
coupling of pepsin to the carboxy-terminated GNPs (Fig. 2b).

The surface coverage of pepsin on theGNPswas determined
by protein quantification with the Lowry assay measuring free
pepsin in the supernatant after the reaction and applying mass
balance considerations. The pepsin concentration on the GNPs
was determined to be 0.25±0.03 mg mL−1 (7.24±0.87×10−6

mol/L). For sake of comparison, the data for nanoparticles with
pepsin adsorptively bonded directly to citrate-capped GNPs are
also included in Fig. 2b. It can be seen that the diameter was
significantly smaller (66 nm) as expected because of the miss-
ing PEG shell. Most notably, the ζ potential of this adsorptively
bonded bioconjugate was much lower compared to the cova-
lently bonded pepsin–GNP conjugate. In fact, it turned out that
such GNPs are less stable, may easily aggregate, and show
reduced shelf life, which makes them less suitable for the
intended analytical purpose. In contrast, covalent pepsin-
modified GNPs with PEG linker showed excellent stability
over extended periods (see also ESM Fig. S1). Hence, the co-
valent immobilization strategy proposed herein is favorable
particularly from the viewpoint of shelf life of the functional-
ized nanoparticles and with regards to bleeding of enzyme into
the reaction mixture in the course of sample preparation, which
otherwise gives rise to interferences in the subsequent analysis.

Characterization of heterogeneous nanobiocatalyst
by Michaelis–Menten enzyme kinetics

As a simple test to characterize the functionality of the new
nanoparticulate biocatalyst, cytochrome C (CYC) was digested
with pepsin–GNP bioconjugate in comparison to homogeneous
catalysis with free pepsin, and the data were processed according
to theMichaelis–Menten enzyme kinetics model. Three replicate
batches of incubations at each substrate concentration level
(n=3) were examined for both free and immobilized enzyme.
To ensure a representative comparison, the enzyme concentration
was kept constant in reactions with free and immobilized pepsin
(concentrations of pepsin were 7.24×10−6 for free and 7.24
±0.87×10−6 mol/L incubation, respectively, for immobilized
pepsin). For this purpose, an LC–UVmethod for the quantitative
determination of nondigested CYCwas developed and validated
according to ICH guidelines (details of method validation and
performance are given in ESM Figs. S3, S4, and Table S1). The
assay, based on separation of the intact CYC protein from
digested peptides which elute more or less unretained in the
established RPLC method with poly(styrene-co-divinylbenzene)
monolithic column, allowed accurate and precise quantification
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of undigested CYC. For the quantitative evaluation of the en-
zyme kinetics the reaction rate was determined from the time-
dependent decrease of educt (CYC). Incubations of variable con-
centrations of substrate (CYC) with free and immobilized pepsin
were analyzed using theMichaelis–Menten equation (see Fig. 3).
Both nonlinear and linear curve fitting to derive KM and vmax
gave insufficient quality of fit for both digestion with free and
immobilized enzyme. The nonlinear behavior in the
Lineweaver–Burk diagram in Fig. 2b is evident. Nevertheless,
for a rough estimation of the kinetic parameters KM and vmax
were calculated from the data plotted according to the
Lineweaver–Burk diagram. The results are summarized in
Table 1. KM values of 29 (±3) μM and 21 (±2) μM for free
and immobilized pepsin, respectively, were calculated; these
values indicated that immobilization did not negatively affect
the affinity of the substrate for the enzyme. Apparently, access
of CYC to the catalytic site is not hindered considerably by the
linkage of pepsin to GNPs, and the chemical bonding does not
seem to induce major conformational changes in the enzyme
with negative effects on bioactivity. At this point it is, however,
also quite clear that as a result of the intrinsic structural hetero-
geneity of the heterogeneous nanobiocatalyst originating from
polydispersity in size, shape, protein coverage, and in particular
orientation, each individual microscopic state of the enzyme con-
jugate may possess distinctly unique kinetic properties. As a
consequence, the characteristic kinetic parameter KM of the pep-
sin–GNP conjugate actually represents macroscopically a

weighted average value of individual microscopically distinct
nanobiocatalysts. Since the nondirected immobilization by the
selected amide coupling leads to random protein orientation
and hence presumably to hindered access of the active site in
some orientations, the decrease of the macroscopic KM value
by 27 % relative to free pepsin is not surprising. The maximal
rates of enzymatic reaction vmax values achieved by free pepsin
and heterogeneous pepsin nanobiocatalyst at maximum
(saturating) substrate concentrations are also very similar (v-

max = 4.4 ± 0.3 and 3.5 ± 0.2 × 10−8 M s−1, respectively).
Furthermore, knowledge of the total enzyme concentration in
the reaction allows calculation of the turnover number kcat which
was 6.1×10−3 s−1 and 4.5×10−3 s−1 for free and immobilized
pepsin. This corresponds to a catalytic constant for the heteroge-
neous nanobiocatalyst of 78 % of free pepsin which may be
regarded as equivalent to homogeneous catalysis. Moreover,
the ratio kcat/KM, which is a characteristic parameter to describe
the catalytic efficiency, is even higher for the immobilized pep-
sin. Consequently, it can be concluded that immobilization of
pepsin to pegylated GNPs affords a nanobiocatalyst which can
benefit from properties of heterogeneous catalysis (like easy re-
moval) while still exhibiting kinetic properties like a homoge-
neous biocatalyst.

As mentioned above, nonlinearity was found in Lineweaver–
Burke diagrams for both free and immobilized pepsin. To more
adequately characterize enzyme kinetics a biphasic behavior was
assumed and bilinear Lineweaver–Burke diagrams exploited for
deriving characteristic parameters. A summary of the results is
given in Table 1. It can be seen that at higher CYC concentration
levels, the KM values (KM,2) increase by a factor of around 10,
thereby indicating lower affinity of the substrate to both free and
immobilized enzyme. At the same time, theoretical vmax values
increase by a factor of ca. 4 at high substrate concentrations.
Overall, catalytic efficiencies are by a factor of ca. 2 lower in
the high concentration regime. In any case this nonlinear behav-
ior may indicate feedback inhibition or competitive binding of
peptidic products. Such feedback inhibition has been reported
previously for other pepsin-catalyzed reactions as well [53].

Protein digestion with free and GNP-conjugated pepsin

To test the wider scope of the performance with a more complex
sample, the functionalized heterogeneous nanobiocatalyst with
immobilized pepsin was evaluated for its digestion capability of
a protein mixture composed of bovine serum albumin (BSA),
CYC, and myoglobin (MYG) in comparison to its free analogue.
Again, for comparison the pepsin content was adjusted to be
similar for both incubations with free and immobilized pepsin.
The resultant protein digests sampled at 0, 4, 12, and 24 h were
analyzed byUHPLC–ESI-QTOF-MS/MSmeasurements in data-
dependent IDA scan mode, and the exported peak list was sub-
jected to Mascot search to elucidate the quality of digestion in a
time-dependent manner by monitoring scores of protein
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identification and corresponding sequence coverages. Figure 4a–d
show chromatograms of the pepsin digests at different digestion
times with pepsin–GNP conjugate, and Fig. 4e–h show the cor-
responding chromatograms obtained with free pepsin.

It can be seen in Fig. 4a that immediately after addition of
pepsin–GNP conjugate to the protein mixture peptides appear
in the chromatogram, while digested peptides are virtually ab-
sent in the free enzyme incubation (Fig. 4e) (see also Fig. 5a).

This could indicate accelerated reaction with the immobilized
pepsin, maybe owing to a higher local pepsin concentration on
the enzyme–GNP conjugate as compared to that in free solution
despite the approximately equal overall presence of pepsin in
the system. Another explanation might be continued digestion
during workup while spinning down the pepsin-modified
GNPs. After 4 h, BSA and MYG are completely digested both
with immobilized and free enzyme (Fig. 4b and f). A total of 39
and 42 peptides were detected with immobilized and free pep-
sin, respectively (Fig. 5b). The number of detected peptides was
not significantly altered after 12 h (Figs. 4c, g and 5c), and only
slightly increased after 24 h digestion (Figs. 4d, h and 5d). From
the Venn diagrams [54] in Fig. 5 it is clearly evident that the
heterogeneous pepsin bionanocatalyst shows a larger, or at least
similar, number of digested peptides as free pepsin.

Mascot database search uses probability-based scoring to
judge whether a result is significant and not a random event,
and scores greater than 67 are deemed to be significant
(p<0.05) [55, 56]. Scores for the distinct digested samples are
depicted in Fig. 6a. It can be seen that theMascot search enables
identification of the proteins with high scores (>100) in all
digests after 4-h digestion time or more, not only for pepsin in
solution but also the pepsin–GNP conjugate. In fact, the scores
of the Mascot search were on average even higher for the
immobilized pepsin. Moreover, sequence coverages greater
than 20 % in the digests with 4-h and 12-h digestion times for
the heterogeneous nanoparticle-based biocatalyst allows one to
conclude that its bioactivity and catalytic performance is at least
of equal quality as compared to pepsin in free solution which
cannot be conveniently removed by brief spinning (Fig. 6).

A common problem of digestion using proteolytic enzymes
in solution in sample preparation is autodigestion. This prob-
lem can be largely eliminated with immobilized enzymes. A
dedicated search for signature peptides originating from pep-
sin in the protein digests was therefore carried out. However,

Table 1 Kinetic data for
digestion of cytochrome C as
model protein by free pepsin and
pepsin-conjugated GNPs

Parameter Free pepsin Pepsin@GNP % (Pepsin@GNP vs free)

KM [M] 2.93 ±0.29 × 10-5 2.14 ±0.15 × 10-5 73

Vmax [M s-1] 4.44 ±0.30 × 10-8 3.47 ±0.22 × 10-8 78

kcat [s
-1] 6.13 ±0.41 × 10-3 4.79 ±0.31 × 10-3 78

kcat/KM [M-1 s-1] 2.09 ±0.12 × 102 2.24 ±0.02 × 102 107

Biphasic model

KM, 1 [M] 1.29 ±0.05 × 10-5 9.72 ±0.75 × 10-6 75

KM, 2 [M] 1.15 ±0.17 × 10-4 9.72 ±0.89 × 10-5 84

Vmax, 1 [M s-1] 2.47 ±0.11 × 10-8 1.93 ±0.10 × 10-8 78

Vmax, 2 [M s-1] 1.13 ±0.17 × 10-7 8.32 ±0.96 × 10-8 74

kcat, 1 [s
-1] 3.41 ±0.15 × 10-3 2.66 ±0.14 × 10-3 78

kcat, 2 [s
-1] 1.56 ±0.24 × 10-2 1.15 ±0.13 × 10-2 74

kcat, 1/KM, 1 [M
-1 s-1] 2.64 ±0.02 × 102 2.74 ±0.17 × 102 104

kcat, 2/KM, 2 [M
-1 s-1] 1.35 ±0.01 × 102 1.18 ±0.03 × 102 87

Subscript 1 refers to the low substrate concentration range and subscript 2 to the high concentration range
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in the present case neither in solution nor in digests from
immobilized pepsin could autodigestion be detected.
However, this issue might get more important if reaction times
need to be extended for proteins which are more resistant to
digestion by pepsin.

On the other hand, no pepsin contamination was present in
incubations with the immobilized pepsin nanobiocatalyst,
whereas the soluble enzyme might represent an impurity and
interference in the analyzed protein sample in conventional

reaction incubations. No pepsin bled from the GNP–pepsin
conjugate in the course of digestion of CYC (see ESM Fig. S8).

Last but not least, the immobilized pepsin@GNP
nanobiocatalyst can be reused. Recyclability was tested and
it was found that the digestion performance (sequence cover-
age) was largely maintained at the same level for up to three
cycles of reuse; however, after three reuse cycles its digestion
performance started to decline (see ESM Fig. S7).

Comparative peptide mapping

To gain insight into the proteolytic specificity of the conjugated
pepsin and to compare its performance with that of free pepsin,
also in terms of missed cleavages and peptide homology, a clos-
er look into the peptide fragments obtained by digestion of the
protein mix (CYC, MYG, BSA) for 4 h with pepsin@GNP and
free pepsin in solution was undertaken. Figures S9–S11 of the
ESM show an overview of precursors generated by
pepsin@GNP, overlays of extracted ion chromatograms
(XICs) of protein-specific peptides for each CYC, MYG, and
BSA, and an exemplary MS/MS spectrum of a model peptide.
Figure 7 illustrates the protein sequences of CYC (Fig. 7a) and
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MGDVEKGKKIFVQKCAQCHTVEKGGKHKTGPNLHGLFGRK 40

TGQAPGFTYTDANKNKGITWKEETLMEYLENPKKYIPGTK 80

MIFAGIKKKTEREDLIAYLKKATNE 105

(a) CYC_HORSE:
Length:        105
IEP:             9.59

MGLSDGEWQQVLNVWGKVEADIAGHGQEVLIRLFTGHPETL 41

EKFDKFKHLKTEAEMKASEDLKKHGTVVLTALGGILKKKG 81

HHEAELKPLAQSHATKHKIPIKYLEFISDAIIHVLHSKHP 121

Pepsin in solution

Pepsin@GNP

GDFGADAQGAMTKALELFRNDIAAKYKELGFQG           154

(b) MYG_HORSE:
Length:        153
IEP:             7.36

Fig. 7 Sequence of CYC (a) and MYG (b) with identified peptides
found in digests with free pepsin in solution (solid arrows) and pepsin-
modified GNPs with HS-PEG7-COOH spacer (dashed arrows). Peptides
were determined by Mascot search and compared with reference to the
protein sequences
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MYG (Fig. 7b), and the peptides identified in corresponding
digests of free and immobilized pepsin are indicated by arrows
covering the respective sequence (corresponding map for BSA
can be found in ESM Fig. S10). Solid arrows show the frag-
ments cut by pepsin in solution, dashed arrows the fragments cut
by pepsin@GNP. A 100 % homology was found in the gener-
ated peptide fragments in the case of CYC, yielding a sequence
coverage of 68 % for CYC both with free and gold-conjugated
pepsin (Fig. 7a). Only two missed cleavages are found (F in
position 11 and L in position 69). The former missed cleavage
may be due to K in P3 while the latter could be a result of the
negative effect on cleavage exerted by Pro at P3'. Moreover, the
N-terminal tail was not identified by Mascot. To a large extent,
good but slightly lower homology between heterogeneous and
homogeneous catalysis was also found for MYG (Fig. 7b).
While identified peptides were identical over large sequences
at the N- and C-terminal tails, in the range between position 50
and 105 peptides and sequence coverage were different for the
two approaches of digestion. Both failed to cleave at positions 3
(L), 44 (F), 47 (F), 73 (L), and 152 (F). Sequence coverage was

72 % and 62 % for MYG by free pepsin and pepsin@GNP,
respectively. Overall, good homology in generated peptide frag-
ments between immobilized and free pepsin was found also for
BSA (see ESM Fig. S12).

Determination of antibodymass before and after digestion
with pepsin@GNP

In addition to the characterization of the heterogeneous
nanobiocatalysts by model proteins (BSA, CYC, and MYG),
digestion of a real sample, a monoclonal antibody, in accor-
dance with the intended purpose of use of the developed het-
erogeneous nanobiocatalyst should demonstrate its function-
ality. Pepsin digestion of IgG under nondenaturing conditions
yields antibody fragments which are particularly useful for
middle-up mass measurement for characterization of thera-
peutic antibodies by high-resolutionMS. Since pepsin cleaves
IgG at the C-terminal side of the inter-heavy-chain disulfides
in the hinge region, it produces a bivalent antigen binding
fragment, F(ab')2, with a molecular mass of about 100 kDa.
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Fig. 8 Digestion of monoclonal antibody with pepsin@GNP. TIC (a)
and TOF-MS spectrum (b) of intact anti-HSA as measured by online-
SPE μESI-QTOF-MS. The TOF-MS spectrum was taken at the indicated

area between tR 4.5 and 5.5 min and shows the charge envelope of anti-
HSA. Themass spectra c and d depict the intact protein mass of anti-HSA
before (c) and after (d) digestion with pepsin@GNP
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HR-MS using a QTOF equipped with a μESI sprayer and a
C18 online trap column for desalting of the protein sample was
used for characterization of the intact monoclonal antibody and
the fragment obtained by digestion with pepsin@GNP. In the
established assay, the protein elutes at around 5 min from the
trap column, well separated from the salt plug at around 2.5 min
(Fig. 8a). TheMS spectrum of the intact monoclonal antibody is
shown in Fig. 8b. It shows the characteristic charge envelope, as
expected. The deconvoluted MS spectrum of the intact anti-
HSA antibody revealed a mass of about 149 kDa with a number
of isoforms (insert) (Fig. 8c). The same experiment with the
antibody fragment obtained by digestion with pepsin@GNP
resulted in a single peak with a mass of 97,619.4 Da for
(Fab')2. These results clearly document the functionality of the
immobilized pepsin nanobiocatalyst and evidence its practical
utility for therapeutic protein characterization.

Conclusions

Pepsin A was successfully immobilized on gold nanoparticles
via a bifunctional PEG7 linker resulting in efficient functional-
ized heterogeneous nanobiocatalysts with good colloidal stabil-
ity and shelf life over at least a month. Characterization of the
enzyme kinetics of the pepsin–GNP bioconjugate in comparison
to free pepsin by digestion of the model protein cytochrome C
clearly revealed that the enzyme fully retained its catalytic effi-
ciency after immobilization on this nanoparticulate carrier.
Digestions of protein mixtures followed by UHPLC–ESI-
QTOF-MS/MS analysis with subsequent protein identification
byMascot database search documented the pertinent bioactivity
of the pepsin–GNP bionanocatalyst and its utility for protein
analysis and characterization, respectively. By measuring in in-
tact protein mode it was possible to determine the (Fab')2 frag-
ment after digestion of anti-HSAwith pepsin@GNP.

While the heterogeneous pepsin–GNP bionanocatalyst
showed equivalent kinetic performance and catalytic efficiency,
it offers significant additional benefits, thus combining favorable
properties of homogeneous and heterogeneous catalysis. It can
be pipetted like a solution owing to the stable colloidal suspen-
sion, which facilitates sample handling, automation, and minia-
turization of sample preparation protocols, properties which are
characteristic of homogeneous catalysis. Owing to the high den-
sity of the metallic gold nanoparticle core, the heterogeneous
bionanocatalyst can be easily spinned down on a minispin in a
few minutes at low rpm, equipment which is available in virtu-
ally any laboratory and does not involve complicated proce-
dures. In the current enzyme–GNP bioconjugate, the enzyme
is freely accessible on the surface of the nonporous gold particle
and not deeply buried inside a pore channel such as in more
common heterogeneous catalysts in which enzymes are
immobilized on mesoporous microparticles, such as (cross-
linked) agarose; therefore, diffusion limitations are thought to

be less serious on enzyme–GNP bionanocatalysts. On the con-
trary, more common microparticulate heterogeneous catalysts
may seriously suffer from diffusion limitations in intraparticulate
pore spaces which may easily lead to substrate depletion as well
as product accumulation at intraparticulate active enzyme cen-
ters. Overall, however, the removal of the functionalized hetero-
geneous nanobiocatalysts by centrifugation before the analytical
determination is the striking advantage, both for single as well as
coupled digestion or sample preparation protocols. This is of
utmost importance in the intended primary application fields
such as for therapeutic peptide and protein characterization as
well as (sequence and stereoconfiguration) analysis of
(lipo)peptides from natural pools where enzyme contaminations
might easily interfere with the analysis and complicate the inter-
pretation of results.
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Aggregation-induced shift of SPR band 
Aggregation in colloidal preparations of (functionalized) GNPs is detrimental for their 
functionality. For instance, aggregation of pepsin-conjugated GNPs may easily lead to loss of 
enzymatic activity because of precipitation of aggregates and preclusion of access of substrates 
to the active site of the immobilized enzyme. Thus, during synthesis and functionalization it is of 
importance to maintain stable colloidal suspension and monitor colloidal stability. A convenient 
and simple method to detect colloidal stability and aggregation, respectively, is monitoring the 
surface Plasmon resonance (SPR) band in the range between 400 and 800 nm of Vis spectra of 
the nanoparticle suspensions resulting after synthesis and surface modification, respectively. 
Upon aggregation, the intensity of the original SPR absorbance band at around 520 nm is 
reduced and a new red-shifted second absorbance band appears at higher wavelength (depending 
on size of aggregates and original particles e.g. 580 nm) indicating onset of aggregation. The 
conduction electrons near each particle surface become delocalized and are shared amongst 
neighboring particles in aggregates causing the surface Plasmon resonance shifting to lower 
energies which becomes evident as red-shifted SPR band. Fig. S1 shows an example of 
aggregated GNPs versus stable colloidal suspension.  Eventually, aggregation can be observed 
even visually. The red nanoparticle solution turns to purple or dark, and finally a clear uncolored 
solution can be observed with black precipitate. Once aggregated, in nearly all cases it is difficult 
or even impossible to redisperse the aggregates into individual particles forming stable colloidal 
suspensions. During the current synthesis protocol, it was observed that activation of carboxy-
terminated pegylated GNPs by OSu (N-hydroxysuccinimide) easily aggregate, but aggregates 
disappear upon protein binding. Nevertheless, a direct coupling without OSu activation was 
employed for this reason herein. 

 

 
Fig. S1: Vis-spectra of Pepsin@GNP (pepsin-modified GNPs with PEG7 spacer) and 
adsorptively bound pepsin on GNPs. Because of a high colloidal stability the peak of 
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Pepsin@GNP shows a good shape. The undefined peak shape of adsorptively bound pepsin is 
due to particle aggregation. 
 
Stability study of all nanoparticle stages for 35 days 
One synthesis batch of pepsin-modified GNPs was used to study the long-term colloidal stability. 
Thus, an aliquot of each citrate-capped GNPs, pegylated GNPs (GNP-PEG7-COOH) and pepsin-
modified GNPs with PEG7 spacer were stored in the refrigerator at 4°C in the dark for 35 days. 
Changes of the nanoparticles, in particular aggregation, were then monitored by Vis 
spectroscopy measuring Vis spectra between 350 and 800 nm in the first 9 days daily and then 
once a week and every second week, respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. S2: Colloidal stability and shelf life of functionalized nanoparticles. (a) Citrate-stabilized 
GNPs, (b) GNPs coated with bifunctional PEG spacer having carboxy-terminated surface and (c) 
immobilized pepsin-GNP conjugate. (d) Absorption maxima of the SPR band of all nanoparticle 
stages measured over 35 days. All samples were diluted 1:5 in ddH2O. 
 
The results are illustrated in Fig. S2. As can be seen, essentially no changes in Vis spectra can be 
found for GNPs (Fig. S1a) and GNPs with PEG-spacer (Fig. S1b) over the entire period. For 
pepsin-modified GNPs wavelength shifts in absorbance maxima are virtually absent as well and 

(a

(b

(c

(d
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colloidal stability over 35 days is confirmed. However, a slight decline in absorbance of the SPR 
band between day 16 and 35 may indicate that some nanoparticles have precipitated leading to a 
slightly reduced concentration in the heterogeneous enzyme suspension. Such slightly lower 
concentration might, however, be easily and conveniently compensated for by pipetting slightly 
larger volumes to reaction mixtures in order to keep the total enzyme concentration in reaction 
incubations constant. This would guarantee satisfactory batch-to-batch reproducibility of 
enzymatic reactions when working with one pepsin-GNP conjugate batch over extended period.  
 
Chromatographic assay for the determination of CYC in enzyme kinetics study 
An accurate and precise validated HPLC-UV method was set up for the reliable quantitative 
analysis of undigested CYC in reaction batches of the enzyme kinetics study. For this 
chromatographic method a polystyrene-co-divinylbenzene monolith column with macropore 
diameter of 1 µm was selected. This type of columns has been shown to be favorable for fast 
protein analysis due to convective mass transfer. Due to a small mass transfer resistance term the 
column can be operated at high flow rates which allow fast analysis with high sample 
throughput. The mobile phase conditions and gradient profile were adjusted such that the protein 
was well retained while the digested peptides eluted at the front close to t0, thereby avoiding 
interferences with CYC quantification. A representative chromatogram is given in Fig. S3. 

 
Fig. S3: Representative chromatogram of HPLC determination of undigested CYC in reaction 
batches from enzyme kinetics study. Experimental conditions: Column, ProswiftTM RP-1S (4.6 x 
50 mm, Dionex/ThermoFisher Scientific). Mobile phase, A: 50 mM ammonium formate pH 3.5 
+ 5 % ACN; B:  ACN + 5 % 50 mM ammonium formate pH 3.5; gradient profile see insert; flow 
rate, 1 mL min-1; column temperature, 40 °C. 
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The method was validated according to ICH guidelines for method performance characterization 
in terms of detection limit (DL), quantitation limit (QL), intra-assay and inter-day precision as 
well as accuracy, and assay specificity. 
Thus a calibration function was established by diluting a CYC stock solution of 2 mg/mL in 20 
mM sodium acetate buffer pH 4.5 in the range of 0.05, 0.1, 0.2, 0.5, 1 and 2 mg/mL and 
analyzing the solutions by above HPLC-UV method. The calibration function is shown in Fig. 
S4. It can be seen that good linearity in the given concentration range was obtained with a 
determination coefficient R2 of 0.9993. DL (S/N=3:1) and QL (S/N=10:1) were determined as 
0.02 mg/ml and 0.08 mg/ml, respectively.  

 
Fig. S4: Calibration function for CYC analyzed in the course of the enzyme kinetics study. 
 
 

Table S1: Validation parameters for CYC 

c(CYC) 0.05 mg/mL 
0.1 

mg/mL 1 mg/mL 2 mg/mL 
accuracy 130.00% 114.67% 102.40% 104.87% 
intraday 
precision 1.15% 0.79% 0.48% 0.31% 
interday 
precision 1.21% 1.08% 0.60% 0.63% 

 
 
For validating the assay performance intra-assay and inter-day precision and accuracy were 
validated across the relevant concentration range at three concentration levels (close to LOQ, 
intermediate and high concentration range) of quality control (QC) samples in three replicates. 
The results are given as %RSD for precision testing and as % recovery for accuracy testing. As 
can be seen from Table S1, RSD values < 1% in all cases as well as recoveries close to 100% 
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indicate excellent assay precision and accuracy. The assay was therefore suitable for measuring 
CYC concentrations in samples from enzyme kinetics study accurately and reliably. 
 
Determination of surface coverage of GNPs with pepsin by Lowry Assay 
For determination of surface coverage of GNPs with pepsin, common protein quantification 
assays were envisaged. Lowry assay was finally selected. In the Lowry assay, peptide bonds of 
the analyzed protein(s) are first complexed with Cu(II) ions in alkaline solution according to 
Biuret reaction. In a second step, Cu(II) is reduced to Cu(I) which in turn reduces the yellow 
Folin-Ciocalteu reagens (phosphomolybdate/phosphotungstic acid). The end product has a blue 
color. The protein quantity in the sample can be determined by absorbance measurements at 650 
or 750 nm against a standard protein curve.  

 
Fig. S5: The behavior of citrate stabilized GNPs in the presence of Lowry reagent A and 1 % 
CuSO4. 
 
Initially, on-bead protein quantitation using Lowry assay was intended. However, the citrate 
stabilized GNPs aggregated in the presence of Lowry reagent A (2.45 mL 4% Na2CO3 anhydrous 
in ddH2O, 2.45 mL 0.1 M NaOH, 0.1 mL 2% Na-K-tartrate in ddH2O and 0.05 mL CuSO4·5H2O 
in ddH2O). In an additional experiment was discovered that the CuSO4 has a considerable 
negative influence on the colloidal stability of the nanoparticles (Fig. S5). For this reason, the 
protein concentration of non-immobilized pepsin in the supernatant was finally determined and 
the immobilized protein calculated by mass balance. The total pepsin concentration in the 
reaction mixture was 1.2 mg/ml. Thus, a calibration function between 0.05 and 1.0 mg/ml pepsin 
in 20 mM MES buffer pH 4.5 (the reaction medium) was established (n=3) (Fig. S6). As can be 
seen, good linearity with a determination coefficient of R2 = 0.9947 was obtained. Precision of 
the Lowry assay was good with average RSD values of 7.3 % over the relevant concentration 
range. 
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The mean pepsin content of three measured reaction mixtures in the supernatant after the 
immobilization by Lowry assay was determined to be 0.95 ± 0.11 mg/ml. Accordingly, the 
surface coverage of GNPs with pepsin was 0.25 ± 0.03 mg ml-1 of pepsin-GNP conjugate 
solution.  
 

 
Fig. S6: Calibration function pepsin in 20 mM MES buffer pH 4.5 for Lowry assay. 
 
 
Recyclability of Pepsin@GNP 
CYC (1.2 mg mL-1 stock solution) was utilized as model protein to test the digestion efficiency 
of conjugated pepsin in the course of a re-usability study. For this purpose, 0.2 mL of the protein 
sample was transferred to 0.8 mL of the nanoparticle suspension (Pepsin@GNP in 1 mL 20 mM 
sodium acetate pH 4.5). The digestion was performed at 37 °C for 4 hours digestion time. 
The reaction with the nanoparticle incubation was stopped by adding 0.2 mL of 0.1 M NaOH to 
reach neutral pH value. Pepsin@GNP was separated from the sample by centrifugation (12.000 
rpm for 10 minutes) resulting in a clear supernatant for UHPLC-ESI-QTof-MS/MS analysis. 
Five aliquots of aforementioned CYC sample were digested using iteratively the same 
Pepsin@GNP bioconjugate which was recovered by spinning and washed before re-use. Two 
washing steps in between were performed with 20 mM sodium acetate pH 4.5 (centrifugation at 
12.000 rpm for 10 minutes). 
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Fig. S7: Recyclability testing. Score and sequence coverage of CYC sample digested by the 
same Pepsin@GNP material after its re-cycling and washing. 
 
As shown in Fig. S7 it was possible to identify CYC by Mascot search. The score value dropped 
in the first two cycles (from 242 to 110) but remained more or less constant thereafter (sore of 
around 50 in the 3rd to 5th re-use). Sequence coverage, on the other hand, remained essentially 
constant in the first three cycles of re-use (~70 %), dropped to 51 % in the 4th cycle and to 26 in 
the 5th cycle of re-use. Thus, recyclability of Pepsin@GNP could be demonstrated by this 
experiment, but the digestion performance was starting to decrease after three cycles of re-use. 
 
Stability of the immobilized pepsin 
In this study digestion was performed with immobilized pepsin and pepsin in free solution. For 
the digestion protocol with free pepsin 0.2 mg ml-1 pepsin was used (0.25 mg mL-1 final 
concentration in 1.2 mL total volume) and mixed with 0.8 mL pepsin in digestion buffer. The 
digestion was performed in 20 mM sodium acetate buffer pH 4.5 at 37 °C for 4 hours digestion 
time and stopped by adding 0.2 mL of 0.1 M NaOH. The digestion with immobilized pepsin was 
performed as described in the previous subchapter. 
99 µL aliquots of the CYC samples digested by Pepsin@GNP and pepsin in solution were taken 
and reacted with 1 µL trypsin (1 mg mL-1 stock solution in 20 mM Tris-HCl pH 7.5) at 37 °C 
overnight, stopped by heat shock (95°C for 10 minutes) and analyzed by UHPLC-ESI-QTof-
MS/MS. 
Protein identification was performed by Mascot search to identify (leached) pepsin. 
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Fig. S8: Score and sequence coverage of the CYC samples digested by trypsin for the 
determination of (leached) pepsin. 
 
After the coupled digestion protocol of CYC (first digestion by Pepsin@GNP/pepsin in solution, 
second digestion by trypsin) it was possible to identify CYC by Mascot search for both samples 
(Fig. S8). After the tryptic digestion pepsin could also be identified for the sample with pepsin in 
solution but it was not possible to detect pepsin in the Pepsin@GNP sample. That means pepsin 
is immobilized on the gold nanoparticle and will not bleed off from the particles within the 
experiments and/or the washing procedure. 
 
Digestion of protein mix with GNP-conjugated pepsin 
Fig. S9a shows the TIC of a digest obtained from the protein mix (CYC, MYG, BSA) with 
pepsin-conjugated GNPs after 4h, and the 2D-plot in Fig. S9b reveals an overview of the 
detected peptide precursor ions in dependence of the retention time. The numerous peptide peaks 
clearly confirm that the immobilized enzyme maintains its bioactivity. Exemplary an XIC of the 
peptide fragment VVSTQTALA, stemming from BSA, is shown in Fig. S9c and the +TOF MS-
spectrum in Fig. S9d. Single and double charged peptide are found in the MS spectrum.  

The peak list from IDA scan was loaded into Mascot and database search performed with pepsin 
as enzyme (other parameters are specified in Experimental part of main document). A number of 
peptides were identified by Mascot from the peak list. From these signature peptides, the 
corresponding XICs were extracted for each protein and overlaid (Fig. S10) to document the 
success of digestion with the new heterogeneous nanobiocatalyst. Fig. S9 illustrates exemplarily 
the MS/MS spectrum of a characteristic peptide fragment of BSA. As can be seen there is good 
coverage of the sequence due to b-ions. 
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Fig. S9: Exemplary chromatogram of a peptide map obtained by digestion of the protein mix 
(CYC, MYG, BSA) with Pepsin@GNP conjugate and 4h digestion time (a), detected precursor 
ions in dependence of retention time (b), exemplary extracted ion chromatogram (XIC) of the 
peptide VVSTQTALA (c) and corresponding MS spectrum (d).   
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(a)
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Fig. S10: Overlay of XICs of specific peptides of (a) CYC, (b) MYG, and (c) BSA identified by 
Mascot search. Digestion with Pepsin@GNP for 4h. 
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Symbol

Res. 

Mass # (N) b b-17 b-18 y y-17 y-18 # (C)

V 99.06841 1 100.0757 83.04914 82.06513 889.4989 872.4724 871.4884 9

V 99.06841 2 199.1441 182.1176 181.1335 790.4305 773.404 772.4199 8

S 87.03203 3 286.1761 269.1496 268.1656 691.3621 674.3355 673.3515 7

T 101.0477 4 387.2238 370.1973 369.2132 604.3301 587.3035 586.3195 6

Q 128.0586 5 515.2824 498.2558 497.2718 503.2824 486.2558 485.2718 5

T 101.0477 6 616.3301 599.3035 598.3195 375.2238 358.1973 357.2132 4

A 71.03711 7 687.3672 670.3406 669.3566 274.1761 257.1496 256.1656 3

L 113.0841 8 800.4512 783.4247 782.4407 203.139 186.1125 185.1285 2

A 71.03711 9 871.4884 854.4618 853.4778 90.05496 73.02841 72.04439 1

(b)

 

Fig. S11: Model MS/MS spectrum of peptide VVSTQTALA . Determined b-/y-ions with 
PeakView of the peptide VVSTQTALA after digestion of the protein mix with Pepsin@GNP for 
4 h (mass spectra shown in Fig. 8d of main document). Precursor (+1): 889.4989 Da /(+2): 
445.2531 Da. 
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Peptide mapping for assessment of digestion performance and proteolytic specificity 
ExPasy Bioinformatics Resource Portal provides information on the proteolytic specificity of 
pepsin (http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html). It is stated that 
“Pepsin preferentially cleaves at Phe, Tyr, Trp and Leu in position P1 or P1'(Keil, 1992). 
Negative effects on cleavage are excerted by Arg, Lys and His in position P3 and Arg in position 
P1. Pro has favourable effects when being located in position P4 and position P3, but 
unfavourable ones when found in positions P2 to P3'. Cleavage is more specific at pH 1.3. Then 
pepsin preferentially cleaves at Phe and Leu in position P1 with negligible cleavage for all other 
amino acids in this position. This specificity is lost at pH ≥ 2“ 
 
 
Table S2: Proteolytic specificities of pepsin according to PeptideCutter tool. 

Enzyme 
name 

P4 P3 P2 P1 P1' P2' 

Pepsin 
(pH1.3) 

- not H,K, or R not P not R F or L not P 

 - not H,K, or R not P F or L - not P 
Pepsin 
(pH>2) 

- not H,K or R not P not R F,L,W or Y not P 

 - not H,K or R not P F,L,W or Y - not P 
Table reprinted from PeptideCutter publicly available under ExPasy Bioinformatics Resource Portal 
“http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html” 

 

Fig. 7 of the main document showed already the peptide fragments generated by pepsin in free 
solution and the Pepsin@GNP conjugate for cytochrome C and myoglobin. Good sequence 
homology was observed when digestion in free solution and with heterogeneous nanobiocatalyst 
were compared. Corresponding results for BSA are illustrated in Fig. S10. The majority of 
peptide fragments generated by pepsin are found in digests of homogeneous and heterogeneous 
catalysis, while a few were only detected in one of the two approaches. Overall good homology 
can be found for this larger protein as well. 



14 

 

 
 
Fig. S12: Sequence of BSA with identified peptides found in digests with free pepsin in solution 
(solid arrows) and Pepsin@GNP (dashed arrows). Peptides were determined by Mascot search 
and compared with reference to the protein sequences. 
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Venn diagrams (Fig. S12) for identified peptides in protein mix (created with Venny 2.1; 
http://bioinfogp.cnb.csic.es/tools/venny/index.html) 
In the control sample (0 hours) of the protein mixture (BSA, CYC and MYG) no peptides for 
BSA could be identified, neither for pepsin in solution nor for Pepsin@GNP. The number of 
identified peptides increase with increasing digestion times and were largely similar for 
homogeneous and heterogeneous catalysis. 
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ABSTRACT: The concept of covalent inhibition of c-Jun N-terminal kinase 3 (JNK3) was successfully transferred to our well
validated pyridinylimidazole scaffold varying several structural features in order to deduce crucial structure−activity relationships.
Joint targeting of the hydrophobic region I and methylation of imidazole-N1 position increased the activity and reduced the
number of off-targets. The most promising covalent inhibitor, the tetrasubstituted imidazole 3-acrylamido-N-(4-((4-(4-(4-
fluorophenyl)-1-methyl-2-(methylthio)-1H-imidazol-5-yl)pyridin-2-yl)amino)phenyl)benzamide (7) inhibits the JNK3 in the
subnanomolar range (IC50 = 0.3 nM), shows high metabolic stability in human liver microsomes, and displays excellent selectivity
in a screening against a panel of 410 kinases. Covalent bond formation to Cys-154 was confirmed by incubation of the inhibitors
with wild-type JNK3 and JNK3-C154A mutant followed by mass spectrometry.

■ INTRODUCTION

The c-Jun N-terminal kinase 3 (JNK3) belongs to the mitogen-
activated protein (MAP) kinase family, which comprises 10
members: p38 MAP kinases (p38α, -β, -γ, -δ), JNKs (JNK1, -2,
-3), and three extracellular-regulated kinases.1 The three genes
jnk1, jnk2, jnk3 encode for a total of 10 alternatively spliced
JNK isoforms with a molecular weight between 46 and 55
kDa.2,3 Although structurally highly conserved, JNKs differ in
tissue distribution fundamentally. JNK1 and JNK2 are
ubiquitously expressed, whereas JNK3 expression is primarily
restricted to the heart, testis, and brain.4

On the basis of results from several knock out experi-
ments5−7 and due to its specific tissue distribution, JNK3 has
been identified as a promising target for potential treatment of
neurodegenerative disorders such as Huntington’s disease,
Parkinson’s disease, and Alzheimer’s disease.8

Within the past years, covalent inhibition of enzymes has
experienced a resurgence.9 Carefully designed irreversible
inhibitors have been proven to be even more selective than
their reversibly binding counterparts.10,11 With approval of the

covalent inhibitor of the epidermal growth factor receptor
afatinib in 2013,12 the design of irreversible inhibitors raised the
attention of the protein kinase research community.
The recently highlighted high quality kinase probe JNK-IN-

813 (1, Figure 1) was discovered by Zhang et al.14 and provided
the first highly selective covalent pan-JNK inhibitor. The
reported aminopyrimidine-based pan-JNK inhibitors possess an
electrophilic moiety and target a cysteine (Cys-154, JNK3
numbering) conserved among all JNKs (in the hinge 7
position) that is not present in other protein kinases.10

In the search for new covalent inhibitors, researchers mostly
follow two different paths: either a nonspecific weak reversible
binder is used as a lead structure or a noncovalent, relatively
potent inhibitor already optimized for the target kinase is
chosen to be refined.14 In continuing efforts to enhance both
selectivity and activity of pyridinylimidazole-based JNK3
inhibitors, we applied the latter approach of covalent targeting
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to our previously reported potent dual JNK3/p38α inhibitor 3
(Figure 1).15 This scaffold was designed to align all moieties for
optimal interaction with the active site of the enzymes.
Computational docking studies with inhibitor 3 as well as
comparison of known crystal structures of similar pyrimidiny-
limidazole inhibitors16 (PDB codes 1PMN and 4Z9L) bound
to JNK3 suggest that the 4-fluorophenyl ring of 3 is located in
the hydrophobic region I of JNK3 and two hydrogen bond
interactions are formed with Met-149 positioned in the hinge
region. Therefore, it provides a suitable starting point to
examine structure−activity relationships (SARs).
Due to the fact that the hinge binding motifs present in 1 and

in our 2-aminopyridine scaffold are forming two hydrogen
bonds to Met-149 (Figures 1 and 2), derivatives of 3 bearing an
appropriate side chain at the pyridine-C2 position containing
an electrophilic warhead should be able to target the unique
cysteine (Cys-154).
This design hypothesis was supported by the comparing of

the binding mode of JNK-IN-7 (2, Figure 1) in the crystal
structure with JNK3 (PDB code 3V6S) and one of our

designed inhibitors, compound 7, computationally docked into
the active site (Figure 2).
Herein, we report the synthesis of tri- and tetrasubstituted

pyridinylimidazoles (compounds 4−23) as well as their
evaluation as covalent JNK3 inhibitors (Figure 3). The effects

of the 4-fluorophenyl ring at the imidazole-C4 position as well
as those of an imidazole N-alkylation were evaluated. Moreover,
the influence of the substitution pattern of both phenyl rings A
and B on the biological activity was investigated extensively. An
acrylamide-type electrophilic warhead was chosen for the
design of the herein presented compounds, since the α,β-
unsaturated carbonyl group represents a soft electrophile, which
reacts preferentially with the soft thiol present in cysteine side
chains.19 Furthermore, the presence of this Michael acceptor in
several launched covalent kinase inhibitors (afatinib, ibrutinib,
osimertinib)20 as well as in drug candidates (neratinib,
dacomitinib)20,21 allows the assessment of a general safety
profile for compounds bearing this moiety. However, in
contrast to the N,N-dimethylaminomethyl acrylamide present
in afatinib or neratinib as well as in compounds 1 and 2, the
unsubstituted acrylamide was preferred as electrophilic warhead
for our series of inhibitors. In fact, although the tertiary amine
has proven to improve properties as solubility and cellular half-
life,22 it also significantly increases the reactivity of the
acrylamide by catalyzing the Michael addition23 and therefore
could be potentially responsible for off-target side effects.

■ RESULTS AND DISCUSSION
Chemistry. The synthesis of trisubstituted imidazole

derivatives 4 and 5 bearing a 4-fluorophenyl moiety at the
imidazole-C4 position was accomplished in three steps starting
from reported inhibitor 315 (Scheme 1). First, the primary
amine was reacted with the respective nitrobenzoic acid using
benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluoro-
phosphate (PyBOP) as a coupling reagent to yield amides 24
and 25. Second, the nitro compounds 24 and 25 were reduced
to the corresponding amines 26 and 27 using tin(II) chloride.
Finally, the Michael acceptor system was introduced by
reaction of the anilines 26 and 27 with acryloyl chloride in
the presence of N,N-diisopropylethylamine (DIPEA) as a base.
As a negative control for evaluation of covalent binding to the
enzyme, compound 6 (the saturated analog of 4) was
synthesized by reaction of 3 with 3-propionamidobenzoic
acid and PyBOP as coupling reagent (Scheme S1, Supporting
Information).

Figure 1. Pan-JNK inhibitors 1 and 2 and dual JNK3/p38α inhibitor
3. aData previously reported by Ansideri and co-workers.15

Figure 2. Superimposition of 2 (gray) in crystal structure with JNK3
(PDB code: 3V6S, cyan) and 7 (salmon) covalently docked into JNK3
(PDB code 1PMN, gray) using Schrödinger Glide.17 Polar contacts of
2 and JNK3 are depicted as orange dashes. The image was generated
with PyMOL.18 Amino acid sequence was partially hidden for clarity.

Figure 3. Structural modifications of imidazole scaffold and depiction
of the terminology used throughout this article.
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The tetrasubstituted imidazoles 7, 8, and 10−20 were
prepared using a convergent synthetic strategy starting from the
corresponding nitrobenzoic acid and bromoaniline (Scheme 2).
Compounds 28a−h were synthesized in good yields by adding
O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium tetra-
fluoroborate (TBTU) and the corresponding bromoaniline to
a suspension of nitrobenzoic acid in dichloromethane at mild
conditions using DIPEA as base. In order to reduce the nitro
group to a primary amine, compounds 28a−h were treated
with tin(II) chloride in ethanol at 75 °C. The acrylamide
warhead and its saturated counterpart were introduced using
the corresponding acid chlorides. Compounds 29a−h were
suspended in dry 1,4-dioxane and treated with the activated
carboxylic acid at mild conditions using DIPEA as base. In the
last step of this synthetic route, a Buchwald−Hartwig cross-
coupling reaction was applied. Optimized conditions for the

introduction of substituted aryl moieties at the pyridine-C2
amino position have been previously described.24 The scaffold
4-(4-(4-fluorophenyl)-1-methyl-2-(methylthio)-1H-imidazol-5-
yl)pyridin-2-amine (31)25 and the side chains 30a−m were
coupled using BrettPhos Pd G1 precatalyst as the catalyst/
ligand system and cesium carbonate as base.19 Compound 9
was synthesized by performing the Buchwald−Hartwig aryl
amination reaction with 28a and 31 followed by a reduction
step (Scheme S2, Supporting Information).
This synthetic strategy allows the introduction of the side

chain using optimized Buchwald−Hartwig cross-coupling
reaction conditions in the last step, thus providing a high
degree of flexibility in terms of varying the scaffold or the side
chain.
As further modifications, compounds 21 and 22 bearing a

small methyl moiety at the imidazole-C4 position were

Scheme 1. Synthesis of Trisubstituted Pyridinylimidazoles 4 and 5 Bearing a 4-Fluorophenyl Ring at the Imidazole-C4
Positiona

aReagents and conditions: (i) m- or p-nitrobenzoic acid, PyBOP, DIPEA in dichloromethane, 5 h, rt; (ii) SnCl2·2H2O, EtOH, reflux, 6 h; (iii)
acryloyl chloride, DIPEA, DMF, 0 °C to rt.

Scheme 2. Synthesis of Final Compounds 7, 8, and 10−20 Exemplified by Synthesis of 7a

aReagents and conditions: (i) SnCl2·2H2O, EtOH, 75 °C, 2.5 h; (ii) acryloyl chloride, DIPEA, 1,4-dioxane, rt, 2 h; (iii) 31, Cs2CO3, BrettPhos
precatalyst, 1,4-dioxane(abs)/tert-butanol 4:1, 125 °C, 5 h.

Scheme 3. Synthesis of Trisubstituted Pyridinylimidazoles 21 and 22 Bearing a Methyl Moiety at the Imidazole-C4 Positiona

aReagents and conditions: (i) m-nitrobenzoic acid, SOCl2, pyridine, rt or p-nitrobenzoyl chloride, pyridine, rt; (ii) SnCl2·2H2O, EtOH, reflux, 6 h;
(iii) acryloyl chloride, DIPEA, DMF, −20 °C to rt, 3 h.
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synthesized in three steps (Scheme 3) starting from N1-(4-(4-
methyl-2-(methylthio)-1H-imidazol-5-yl)pyridin-2-yl)benzene-
1,4-diamine (32; for synthesis of imidazole 32, see Scheme S3,
Supporting Information). The buildup of the linker bearing the
electrophilic warhead at the aniline function was conducted
similarly to the strategy described for the trisubstituted
imidazoles bearing a 4-fluorophenyl ring at the imidazole
core. The conditions used to synthesize compound 23, the
saturated analog of 21, starting with precursor 32 are identical
to those used for the synthesis of 6 (Scheme S4, Supporting
Information).
Biological Evaluation. All synthesized inhibitors were

evaluated in enzyme-linked immunosorbent assays
(ELISA)26,27 to determine the IC50 values for JNK3 and
p38α. Compounds 7 and 21 were examined for their metabolic
stability and further screened in a panel against 410 kinases to
determine their selectivity within the kinome. Results are
presented in Tables 1−4 as well as in Tables S1 and S4
(Supporting Information).
Both examples of the trisubstituted pyridinylimidazoles series

bearing a 4-fluorophenyl ring at the imidazole-C4 position
(compounds 4 and 5) are very potent dual JNK3/p38α
inhibitors displaying IC50 values down to the picomolar range
(Table 1). While no preference for either tested kinase was
detectable, compounds 4 and 5 deduced from compound 3
(Figure 1) revealed that the bulky side chain not only was well
tolerated by both enzymes but also caused an increase in
inhibitory activity that is distinct in compound 4 having the
Michael acceptor in meta position. However, within the series
of 4-fluorophenyl-substituted imidazoles, the influence of the
Michael acceptor system in terms of JNK3 inhibition is rather
low, since the saturated analog of 4, compound 6, shows no
significant decrease in terms of JNK3 affinity.
We could not observe any beneficial effect of introducing

electrophilic warheads in terms of selectivity regarding the
trisubstituted imidazoles bearing a 4-fluorophenyl moiety.
Therefore, as a parallel concept, we chose to alkylate the

imidazole-N1 position with the utmost simple substituent as
prior investigations of our group correlate the N-alkylation with
a reduced p38α inhibition.28

It is crucial for the linker between the scaffold and the
warhead to comprise the optimal length and angle in order to
orient the warhead ideally for the nucleophilic attack of the
thiol to occur and simultaneously retain the original binding
mode of the scaffold. Therefore, we synthesized a broad variety
of linkers, altering the meta and para substitution patterns
consequently. Furthermore, we introduced methyl groups at
different positions of the A and B rings to slightly increase the
torsion angle.
In order to elucidate the contribution of each moiety on ring

B of 7 and 8, we synthesized compound 9 (IC50: JNK3, 30 nM;
p38α, 149 nM). The para/meta substitution pattern (where-
upon para refers to ring A and meta to ring B) with the
unsubstituted aniline, presenting a 5-fold prevalence for JNK3
over p38α, was rather encouraging since the covalent tag was
yet to be introduced. The para/meta substituted compound 7
(IC50: JNK3, 0.3 nM; p38α, 36 nM), bearing an acrylamide
warhead, features a picomolar inhibitory effect for JNK3 and
120-fold preference compared to the IC50 value of p38α,
emerging as the most potent inhibitor synthesized in this series.
Surprisingly, we observed a lower IC50 value for p38α alongside
the JNK3 inhibition compared to compound 9. The initial
assumption that the carbonyl oxygen of the acrylamide forms
an additional hydrogen bond to p38α and thereby increases its
inhibitory effect was invalidated by compound 8. It shows a 4-
fold decreased inhibition for p38α compared to its unsaturated
counterpart, compound 7. More interestingly, JNK3 inhibition
of compound 8 is significantly decreased compared to
compound 7. This can be considered as a strong indication
for the formation of a covalent bond of 7 to the JNK3.
Compound 10 (IC50: JNK3, 2 nM; p38α, 2 nM), which

features the para/meta substitution pattern and a methyl group
in ortho position at the B ring, inhibits both kinases in the low
single digit nanomolar range. The methyl group at that position

Table 1. Biological Activity of Trisubstituted Imidazoles 4−6

aIncubation time, 50 min. bIncubation time, 60 min. cIC50 values are the mean of three experiments. dRatio: IC50(p38α)/IC50(JNK3).
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seems to increase the potency on p38α drastically. The
saturated analog 11 (IC50: JNK3, 17 nM; p38α, 38 nM) lacking
the electrophilic warhead supports this assumption since JNK3

and p38α inhibition are alike. The inversion of the para/meta
substitution pattern led to compound 18 (IC50: JNK3, 4 nM;
p38α, 26 nM) exhibiting a low preference for JNK3. The

Table 2. Biological Activities of Tetrasubstituted Imidazoles 7−20

aIncubation time, 50 min. bIncubation time, 60 min. cIC50 values are the mean of three experiments. dRatio: IC50(p38α)/IC50(JNK3).
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introduction of an ortho methyl group at the A ring, which was
described by Zhang et al.14 to be the key determinant for
selectivity, bred compound 20 (IC50: JNK3, 2 nM; p38α, 3
nM). Since we could not observe a selectivity increase with
respect to JNK3 and p38α inhibition, we introduced the ortho
methyl group to the para/para substituted compound 16 (IC50:
JNK3, 8 nM; p38α, 35 nM) and its propionamide analog 17.
However, this did not yield the desired effect.
Judged by the small difference in inhibition between

compounds 14 (IC50: JNK3, 10 nM; p38α, 47 nM) and 15
(IC50: JNK3, 27 nM; p38α, 17 nM) it appears that compound
14 does not establish a covalent bond with JNK3. Remarkably,
compound 15 bearing the propionamide moiety is better
tolerated by p38α compared to 14, which stands in contrast to
the prior observation. The meta/meta substituted 12 (IC50:
JNK3, 3 nM; p38α, 217 nM) features a 72-fold preference for
JNK3 compared to the IC50 value of p38α. Additionally, the
almost 70 times lower JNK3 inhibition of 13 (IC50: JNK3, 175
nM; p38α, 241 nM) and the almost constant p38α inhibition
suggest the successful formation of a covalent bond between
compound 12 and Cys-154. The unfavorable ortho methylation
at the B ring seen with compounds 19 and 20 (increasing p38α
inhibition) is in agreement with a similar observation in
compounds 16 and 17.
Since our efforts of optimizing the linker did not result in a

JNK3 inhibitor exceeding 120-fold preference over p38α, we
chose to replace the 4-fluorophenyl ring of compounds 4−6 by
a small methyl group leading to compounds 21−23.
The rationale behind this modification is the fact that

numerous examples of known JNK selective inhibitors are not
targeting the hydrophobic region I (for recent reviews on JNK
inhibitors, see Koch et al.29 and Gehringer et al.30). The most
selective JNK3 inhibitor in this series (Table 3), compound 21,
shows an IC50 value in the low nanomolar range and is 976-fold
selective against p38α (IC50: JNK3, 2 nM; p38α, 1,952 nM).
Comparison of 21 and 22 demonstrates that the position of the
electrophilic warhead on ring B is crucial for improving both
JNK3 activity and selectivity. Compound 22 (IC50: JNK3, 200
nM), having the acrylamide in para-position, is 100-fold less
active than its isomer 21, which has the same substituent in

meta-position. Compound 23 lacks the Michael acceptor
system and shows a tremendous drop (>125-fold) in JNK3
inhibition compared to 21. SARs of the trisubstituted
pyridinylimidazoles series, which carry a small methyl moiety
at the imidazole-C4 position, indicate the formation of covalent
bond between JNK3 and the inhibitor 21. Compound 22,
presenting a para/para substitution pattern, apparently does not
establish a covalent bond to the cysteine in JNK3, since its
inhibitory effect was similar to the saturated compound 23,
unable to form a covalent bond.
Inhibitors 7 and 21, displaying the best inhibition profile

within the series, were further investigated. In order to confirm
the formation of a covalent bond to Cys-154, the enzyme−
inhibitor complex was analyzed by liquid chromatography−
mass spectrometry (LC−MS). Both compounds were
incubated with JNK3, and subsequently subjected to LC−MS
analysis. Unbound and reversibly bound ligand were removed
both by chromatography and by application of a high
declustering potential in the course of ionization (for further
details, see Supporting Information). These two passages are
aimed at disrupting reversible electrostatic interactions,
allowing only the detection of covalently bound ligand. The
expected mass shift of ∼578 Da and ∼484 Da in the case of
incubation with inhibitor 7 and 21, respectively, could be
measured on the intact protein level using LC-μESI-QTOF
mass spectrometry (for further details, see Table S2 and Figures
S1−S3a,b,d, Supporting Information). Moreover, performing
the same experiment with compounds 8 and 23, the saturated
analogs of 7 and 21, no mass shift could be observed, since the
noncovalent inhibitors do not sustain the binding to JNK3
during the LC−MS experiment (Figures S3c and S3e,
Supporting Information). Interestingly, MS analysis carried
out on compound 14 (Figure S4a, Supporting Information),
which bears the electrophilic warhead in para position and had
been assumed not capable of binding covalently, displayed the
mass shift of ∼578 Da relative to the irreversible bond with the
target. However, the shifted peak had a significantly decreased
intensity compared to the mass shift of the aforementioned
compounds 7 and 21, revealing that the para/para substitution
pattern of the linker can still permit the formation of the

Table 3. Biological Activity of Trisubstituted Imidazoles 21−23

aIncubation time, 50 min. bIncubation time, 60 min. cIC50 values are the mean of three experiments. dRatio: IC50(p38α)/IC50(JNK3).
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covalent bond, although with a nonfavorable efficiency. As
expected, incubation of compound 15, the noncovalent
counterpart of 14, did not give rise to any enzyme mass
increase (Figure S4b, Supporting Information). Finally, the
analogous MS experiment was performed by incubating
compounds 7, 14, and 21 with a JNK3 mutant, where the
reactive Cys-154 was replaced by alanine (Figure S5,
Supporting Information). Results for the three compounds
tested showed absence of mass shift, proving our hypothesis
both on the formation of the covalent bond and on the specific
amino acid (Cys-154) targeted.
Covalent inhibitors 7 and 21 were further tested in a panel of

410 kinases, including 70 disease-relevant protein kinase
mutants and 13 lipid kinases (Table S1, Supporting
Information) to evaluate their selectivity within the kinome.
At a testing concentration of 1 μM, which represents 500 times
its IC50 value, imidazole 21 inhibited only 15 kinases (including
all JNK isoforms) out of the tested kinase panel, resulting in a
low S (50) score of 0.037. This parameter is defined as the
portion of kinases that are inhibited to more than 50%, in
relation to all tested kinases.31 Notably, the tetrasubstituted
imidazole 7 reveals a remarkable selectivity profile. Besides the
JNKs, 7 inhibits only three other protein kinases (Table 4) at a

screening concentration of 0.5 μM (representing more than
1500-fold its IC50 value) and possesses an excellent S (50)
score of 0.015. The slightly changed selectivity is mainly
attributed to the methylation of the imidazole-N1 position and
specific interactions within the hydrophobic region I, the so-
called selectivity pocket, which is not targeted by compound 21.
As expected, no selectivity was seen within the JNK family,
since the targeted cysteine is conserved among all isoforms.
All final compounds were checked for being potential pan-

assay interference compounds (PAINS) using the ZINC
Patterns tool,32 which led to no hits. Since acrylamides might
interfere with intracellular proteins in a nondiscriminatory
manner,33 the most promising covalent inhibitor 7 (10 μM)
was incubated with the nonspecific thiol glutathione (present in
almost all cells, 5 mM) under similar conditions used in the
kinase activity assay (maximum concentration 10 μM, 54 min,
37 °C). Subsequent high performance liquid chromatography
(HPLC) analysis revealed only low depletion of 7 (Table S3;
Supporting Information). This observation together with the
rather clean profile of acrylamide compounds 7 and 21 in the
selectivity screening shows no evidence of unpredictable
interactions with other cysteine side chains.
Inhibitors 7 and 21 were further tested for their metabolic

stability in male human liver microsomes (HLMs). Both
covalent inhibitors undergo a partial biotransformation. Never-
theless, both tested compounds are exhibiting 13% and 31%
degradation over a time span of 180 and 190 min, respectively,

and can therefore be considered to be metabolically stable
(Table S4 and Figures S6 and S7, Supporting Information). In
agreement with prior findings,24 the metabolic degradation
leads most likely to the oxidation of the imidazole-C2 sulfur.

■ CONCLUSION
We successfully transferred the concept of covalently inhibiting
the JNKs to our pyridinylimidazole scaffold, which was
elaborated for JNK interaction. Compounds 7 and 21 with
their para/meta substitution pattern comprise the optimal
linker length and angle for the electrophilic warhead to form a
covalent bond to the Cys-154. Incubation of JNK3 with
compounds 7 and 21 followed by mass experiments
substantiated the assumption of a covalent bond formation.
Both covalent inhibitors are metabolically relatively stable when
exposed to HLM. Targeting the hydrophobic region I with a 4-
fluorophenyl ring combined with a methylation of the
imidazole-N1 position reduced the number of off targets,
resulting in compound 7 with a remarkable selectivity profile.

■ EXPERIMENTAL SECTION
Chemistry. General. The purity of all tested compounds is ≥95%

and was determined via reverse phase HPLC.
General Procedure for the Reduction of Nitro Group of

Compounds 24, 25, 33, and 34 Using Tin(II) Chloride (General
Procedure A). In 100 mL round-bottom flask, the nitro compound
was dissolved in ethanol. Tin(II) chloride was added, and the reaction
mixture was refluxed for 6 h. After cooling to rt, a saturated solution of
sodium bicarbonate (20 mL) was added. The aqueous layer was
extracted with ethyl acetate (3 × 10 mL), and the combined organic
layer was dried over anhydrous Na2SO4. The solvent was evaporated
under reduced pressure, and the crude product was purified by flash
chromatography (SiO2, dichloromethane/ethanol, 95:05 to 90:10).

General Procedure for the Preparation of Final Compounds
4, 5, 21, and 22 (General Procedure B). The respective primary
amine 26, 27, 35, or 36 was dissolved in DMF (2 mL) and placed in a
round-bottom flask under argon atmosphere. DIPEA was added in one
portion followed by dropwise addition of acryloyl chloride diluted in
dry dichloromethane (1 mL) at 0 °C (in the cases of preparation of 4
and 5) or in dry DMF (0.2 mL) at −20 °C (in the cases of preparation
of 21 and 22). The reaction mixture was further stirred for 2 h at rt,
then poured over ice and stirred for 30 min. If the crude product
precipitated, the precipitate was filtered off and purified by column
chromatography. In the case of preparation of 21, the crude product
did not precipitate. Therefore, the aqueous phase was extracted with
ethyl acetate (3 × 10 mL). The combined organic layers were dried
over Na2SO4, the solvent was evaporated under reduced pressure, and
the residue was purified with flash chromatography.

General Procedure for Synthesis of Amides 28a−h (General
Procedure C). To a stirred suspension of corresponding nitrobenzoic
acid (1.1 equiv) in dichloromethane (9 mL/mmol aniline), TBTU
(1.1 equiv), the corresponding bromoaniline (1 equiv), and DIPEA (2
equiv) were added at 0 °C. The yellowish suspension cleared up as it
was allowed to warm to room temperature and was subsequently
stirred for 3 h until complete consumption of the respective
bromoaniline was detected by TLC. The reaction mixture was poured
on a pad of silica and eluted with a mixture of ethyl acetate and petrol
ether 50/50.

General Procedure for Synthesis of 29a−h by Reduction of
Nitrobenzene Analogs 28a−h (General Procedure D). To a
suspension of tin(II) chloride (5 equiv) in ethanol (100 mL/mmol
nitrobenzene) was added the corresponding nitrobenzene (1 equiv),
and the reaction mixture was heated to 75 °C for 2.5 h until complete
conversion was detected by TLC. The solvent was evaporated under
reduced pressure. The white residue was treated with saturated
NaHCO3 solution and brine. The aqueous layer was extracted with
ethyl acetate (3 × 60 mL). The combined organic phases were dried
over Na2SO4 and evaporated under reduced pressure to yield the

Table 4. Off-Target Activity of Compounds 21 and 7 in a
Panel of 410 Kinases

aResidual activity.
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desired title compound as a white solid, which was used without
further purification.
General Procedure for Synthesis of Compounds 30a−m via

Amide Coupling (General Procedure E). To a suspension of
corresponding aniline 29 (1 equiv) in 1,4-dioxane (12 mL/mmol
aniline), DIPEA (2.5 equiv) was added followed by the corresponding
acid chloride (1.1 equiv) at 0 °C. The mixture was allowed to warm up
to room temperature and was stirred for 2 h until complete conversion
was detected by TLC. After removal of all volatiles under reduced
pressure, methanol was added and the mixture was evaporated again.
This process was repeated three times, and the solid obtained was used
without further purification.
General Procedure for Synthesis of Final Compounds 7, 8,

10−20 via Buchwald−Hartwig Cross-Coupling Reaction (Gen-
eral Procedure F). BrettPhos precatalyst (2.5 mol %) was added to a
dry mixture of tert-butanol and 1,4-dioxane (1:4; 54 mL/mmol 31) in
an argon flushed glass tube. Compound 31 (1 equiv) was added to the
reaction mixture followed by cesium carbonate (2.5 equiv) and the
respective aryl bromide 30 (1.1 equiv). The reaction mixture was
heated to 125 °C and stirred for 2 h after sealing the glass tube tightly.
Another 2.5 mol % BrettPhos precatalyst was added, and the reaction
mixture was heated to 125 °C and stirred for an additional 3 h until
HPLC confirmed complete conversion. The reaction mixture was
allowed to cool to room temperature, filtered, and washed with ethyl
acetate (20 mL). All volatiles were removed under reduced pressure,
and the residue was purified by silica flash chromatography.
3-Acrylamido-N-(4-((4-(4-(4-fluorophenyl)-2-(methylthio)-

1H-imidazol-5-yl)pyridin-2-yl)amino)phenyl)benzamide (4).
Compound 4 was synthesized according to general procedure B,
using compound 26 (80 mg, 0.16 mmol), DIPEA (30 μL, 0.17 mmol),
and acryloyl chloride (16 μL, 0.19 mmol). Purification by flash
chromatography (SiO2, dichloromethane/ethanol, 92:08) afforded 35
mg (40%) of a light yellow solid product. 1H NMR (250 MHz,
DMSO-d6) δ 12.67 (br s, 1H), 10.35 (s, 1H), 10.14 (s, 1H), 8.97 (br s,
1H), 8.21−7.96 (m, 2H), 7.96−7.87 (m, 1H), 7.73−7.40 (m, 8H),
7.38−7.13 (m, 2H), 7.12−6.77 (m, 1H), 6.68 (d, J = 4.6 Hz, 1H), 6.48
(dd, J = 9.9, 17.0 Hz, 1H), 6.30 (dd, J = 2.3, 17.0 Hz, 1H), 5.88−5.72
(m, 1H), 2.62 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 164.9,
163.3, 161.9 (d, J = 247.0 Hz), 156.3, 147.2, 142.8, 141.9, 139.1, 137.9,
135.9, 134.7, 132.0, 131.7, 130.7 (d, J = 8.9 Hz), 129.5 (d, J = 3.5 Hz),
128.7, 127.1, 122.3, 122.0, 121.0, 118.8, 118.2, 115.7 (d, J = 23.0 Hz),
112.4, 111.8, 107.0, 15.0; HPLC tR = 6.25 min. ESI-HRMS: calculated,
565.1817 [M + H]+; found, 565.1812.
4-Acrylamido-N-(4-((4-(4-(4-fluorophenyl)-2-(methylthio)-

1H-imidazol-5-yl)pyridin-2-yl)amino)phenyl)benzamide (5).
Compound 5 was synthesized according to general procedure B,
using compound 27 (78 mg, 0.15 mmol), DIPEA (30 μL, 0.17 mmol),
and acryloyl chloride (15 μL, 0.18 mmol). Purification by flash
chromatography (SiO2, dichloromethane/ethanol, 92:08) afforded 22
mg (27%) of a light yellow solid product. 1H NMR (400 MHz,
DMSO-d6) δ 12.68 (br s, 1H), 10.44 (s, 1H), 10.03 (s, 1H), 8.99 (br s,
1H), 8.12 (br s, 1H), 8.02−7.89 (m, 2H), 7.85−7.74 (m, 2H), 7.62 (d,
J = 8.3 Hz, 2H), 7.57 (d, J = 8.6 Hz, 2H), 7.51 (br s, 2H), 7.31 (br s,
1H), 7.23 (br s, 1H), 7.12−6.74 (m, 1H), 6.74−6.60 (m, 1H), 6.49
(dd, J = 10.1, 17.0 Hz, 1H), 6.31 (d, J = 17.2 Hz, 1H), 5.81 (d, J = 10.1
Hz, 1H), 2.63 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 164.3,
163.4, 161.3 (d, J = 246.2 Hz), 156.3, 147.7, 147.1, 142.9, 142.7, 141.7,
137.6, 131.6, 130.6 (d, J = 5.5 Hz), 129.7, 128.4, 127.4, 126.8, 121.0,
118.5, 118.4, 118.3, 115.7 (d, J = 26.7 Hz), 111.8, 107.1, 99.9, 15.0.
HPLC tR = 6.11 min. ESI-HRMS: calculated, 565.1817 [M + H]+;
found, 565.1804.
N-(4-((4-(4-(4-Fluorophenyl)-2-(methylthio)-1H-imidazol-5-

yl)pyridin-2-yl)amino)phenyl)-3-propionamidobenzamide (6).
Under argon atmosphere, compound 3 (100 mg, 0.23 mmol) was
suspended in dry dichloromethane (10 mL) and DIPEA (54 μL, 0.31
mmol) was added. Finally, a suspension of 3-propionamidobenzoic
acid (54 mg, 0.28 mmol) and PyBOP (161 mg, 0.31 mmol) in dry
dichloromethane (10 mL) was added and the reaction mixture was
stirred at rt for 18 h. The reaction mixture was concentrated at reduced
pressure and the crude was purified twice by flash column

chromatography (SiO2, dichloromethane/ethanol, 97:03 to 80:20)
yielding product 6 (30 mg, 21%). 1H NMR (300 MHz, DMSO-d6) δ
12.67 (br s, 1H), 10.11 (br s, 1H), 10.06 (s, 1H), 9.08−8.87 (m, 1H),
8.17−7.94 (m, 2H), 7.84 (d, J = 8.0 Hz, 1H), 7.67−7.15 (m, 10H),
7.10−6.76 (m, 1H), 6.73−6.64 (m, 1H), 2.63 (s, 3H), 2.36 (q, J = 7.5
Hz, 2H), 1.11 (t, J = 7.5 Hz, 3H); 13C NMR (101 MHz, DMSO-d6) δ
172.2, 165.1, 163.1, 161.4 (d, J = 244.9 Hz), 156.3, 148.0, 147.2, 142.9,
142.0, 139.4, 138.9, 137.9, 137.4, 135.9, 134.7, 133.8, 132.5, 132.1,
130.7 (d, J = 8.0 Hz), 129.5 (d, J = 6.0 Hz), 128.6, 126.8, 126.2, 121.7,
121.0, 118.6, 118.5, 118.2, 115.8 (d, J = 22.0 Hz), 115.3 (d, J = 22.0
Hz), 112.4, 111.8, 111.4, 107.3, 107.0, 29.5, 15.1, 9.6. The peaks of the
carbon are double due to the amide tautomerism. HPLC tR = 5.47
min. ESI-HRMS: calculated, 567.1973 [M + H]+; found, 567.1957.

3-Acrylamido-N-(4-((4-(4-(4-fluorophenyl)-1-methyl-2-
(methylthio)-1H-imidazol-5-yl)pyridin-2-yl)amino)phenyl)-
benzamide (7). According to general procedure F, 7 was synthesized
from 31 and 30a. Eluent ethyl acetate/n-hexane 45:55 to 75:25.
Another flash chromatography was performed to purify the product;
eluent dichloromethane/methanol 100:0 to 92:8 afforded 31% yield.
1H NMR (200 MHz, DMSO-d6) δ 10.34 (s, 1H), 10.15 (s, 1H), 9.12
(s, 1H), 8.26 (d, J = 5.4 Hz, 1H), 8.15 (s, 1H), 7.92 (d, J = 7.8 Hz,
1H), 7.70−7.59 (m, 5H), 7.53−7.40 (m, 3H), 7.14 (t, J = 8.9 Hz, 2H),
6.78−6.69 (m, 2H), 6.55−6.17 (m, 2H), 5.84−5.72 (m, 1H), 3.43 (s,
3H), 2.65 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 165, 163.3,
161.0 (d, J = 243.7 Hz), 156.5, 148.3, 143.5, 139.1, 138.9, 137.3, 136.8,
135.9, 132.5, 131.7, 130.6 (d, J = 2.9 Hz), 128.7, 128.3 (d, J = 8.0 Hz),
128.3, 127.1, 122.3, 122.0, 121.0, 118.8, 118.4, 115.1 (d, J = 21.5 Hz),
114.8, 111.1, 31.5, 15.3. ESI-HRMS: calculated, 578.1900 [M + H]+;
found, 578.1876. HPLC tR = 5.87 min.

N-(4-((4-(4-(4-Fluorophenyl)-1-methyl-2-(methylthio)-1H-
imidazol-5-yl)pyridin-2-yl)amino)phenyl)-3-propionamido-
benzamide (8). According to general procedure F, 8 was synthesized
from 31 and 30j. Eluent ethyl acetate/n-hexane 45:55 to 75:25.
Another flash chromatography was performed to purify the product;
eluent dichloromethane/methanol 100:0 to 92:8 afforded 62% yield.
1H NMR (200 MHz, CDCl3) δ 8.33−8.15 (m, 2H), 7.98 (d, J = 10.6
Hz, 2H), 7.72 (d, J = 8.6 Hz, 1H), 7.55−7.28 (m, 6H), 7.23−7.12 (m,
2H), 7.04 (s, 1H), 6.93 (t, J = 8.6 Hz, 2H), 6.67−6.58 (m, 2H), 3.44
(s, 3H), 2.65 (s, 3H), 2.33 (q, J = 7.7 Hz, 2H), 1.17 (t, J = 7.5 Hz,
3H). 13C NMR (101 MHz, DMSO-d6) δ 172.2, 165.1, 161.0 (d, J =
243.4 Hz), 156.4, 148.2, 143.6, 139.5, 138.9, 137.2, 136.8, 135.9, 132.6,
130.5 (d, J = 2.9 Hz), 128.6, 128.3 (d, J = 7.9 Hz), 128.3, 121.8, 121.7,
121.0, 118.5, 115.2 (d, J = 21.4 Hz), 114.8, 111.1, 31.6, 29.5, 15.3, 9.6.
ESI-HRMS: calculated, 580.2057 [M + H]+; found, 580.2054. HPLC
tR = 7.55 min.

3-Amino-N-(4-((4-(4-(4-fluorophenyl)-1-methyl-2-(methyl-
thio)-1H-imidazol-5-yl)pyridin-2-yl)amino)phenyl)benzamide
(9). Compound 9 was synthesized from S1, zinc dust (6 equiv), and
ammonium formate (6 equiv) in ethanol (62 mL/mmol S1). The
mixture was heated under reflux for 4 h until complete reduction of the
nitro group was detected by TLC. The mixture was filtered through a
pad of Celite, which was washed with ethanol. All volatiles were
removed under reduced pressure, and the residue was purified using
flash chromatography. Eluent ethyl acetate/n-hexane 45:55 to 75:25
afforded 75% yield. 1H NMR (200 MHz, CDCl3) δ 8.24 (d, J = 5.7 Hz,
1H), 7.83 (s, 1H), 7.57−7.37 (m, 5H), 7.24−7.10 (m, 6H), 7.05−6.74
(m, 4H), 6.69−6.59 (m, 2H), 3.46 (s, 3H), 2.68 (s, 4H). 13C NMR
(50 MHz, CDCl3) δ 165.8, 161.8 (d, J = 245.9 Hz), 156.7, 149.1,
146.9, 144.5, 140.1, 138.6, 136.2, 136, 133.4, 130.1 (d, J = 3.2 Hz),
129.5, 128.9 (d, J = 7.9 Hz), 128.1, 121.4, 121.3, 118.1, 116.2, 115.6,
115.1 (d, J = 21.4 Hz), 113.7, 109, 31.8, 16. ESI-HRMS: calculated,
524.1795 [M + H]+; found, 524.1761. HPLC tR = 4.13 min.

3-Acrylamido-N-(4-((4-(4-(4-fluorophenyl)-1-methyl-2-
(methylthio)-1H-imidazol-5-yl)pyridin-2-yl)amino)phenyl)-2-
methylbenzamide (10). According to general procedure F, 10 was
synthesized from 31 and 30l. Eluent: ethyl acetate/n-hexane 45:55 to
75:25. Another flash chromatography was performed to purify the
product; eluent dichloromethane/methanol 100:0 to 92:8 afforded
12% yield. 1H NMR (400 MHz, DMSO-d6) δ 10.25 (s, 1H), 9.65 (s,
1H), 9.13 (s, 1H), 8.25 (d, J = 5.1 Hz, 1H), 7.67−7.52 (m, 5H), 7.51−
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7.41 (m, 2H), 7.33−7.24 (m, 2H), 7.15 (t, J = 8.9 Hz, 2H), 6.77−6.71
(m, 2H), 6.61−6.51 (m, 1H), 6.31−6.22 (m, 1H), 5.81−5.74 (m, 1H),
3.43 (s, 3H), 2.65 (s, 3H), 2.24 (s, 3H). 13C NMR (101 MHz, DMSO-
d6) δ 167.2, 163.4, 161.0 (d, J = 243.3 Hz), 156.5, 148.3, 143.5, 138.9,
138.9, 137.2, 136.8, 136.6, 132.7, 131.6, 130.6 (d, J = 3.1 Hz), 129.4,
128.26 (d, J = 8.0 Hz), 128.3, 126.7, 126.4, 125.5, 124.1, 120.2, 118.5,
115.2 (d, J = 21.5 Hz), 114.8, 111.1, 31.5, 15.3, 14.6. ESI-HRMS:
calculated, 592.2057 [M + H]+; found, 592.2049. HPLC tR = 6.60 min.
N-(4-((4-(4-(4-Fluorophenyl)-1-methyl-2-(methylthio)-1H-

imidazol-5-yl)pyridin-2-yl)amino)phenyl)-2-methyl-3-
propionamidobenzamide (11). According to general procedure F,
11 was synthesized from 31 and 30b. Eluent ethyl acetate/n-hexane
45:55 to 75:25 afforded 63% yield. 1H NMR (200 MHz, DMSO-d6) δ
10.23 (s, 1H), 9.36 (s, 1H), 9.12 (s, 1H), 8.25 (d, J = 5.5 Hz, 1H),
7.71−7.52 (m, 4H), 7.52−7.39 (m, 3H), 7.30−7.06 (m, 4H), 6.80−
6.66 (m, 2H), 3.43 (s, 3H), 2.65 (s, 3H), 2.37 (q, J = 7.3 Hz, 2H), 2.22
(s, 3H), 1.11 (t, J = 7.5 Hz, 3H). 13C NMR (50 MHz, DMSO-d6) δ
172.1, 167.3, 161.0 (d, J = 243.7 Hz), 156.5, 148.3, 143.5, 138.9 (d, J =
2.9 Hz), 137.1, 137.0, 136.76, 132.8, 130.6, 130.5, 129.5, 128.3, 128.2
(d, J = 8.0 Hz), 126.6, 125.4, 123.8, 120.2, 118.5, 115.1 (d, J = 21.5
Hz), 114.8, 111.0, 31.5, 28.8, 15.3, 14.5, 9.8. ESI-HRMS: calculated,
594.2213 [M + H]+; found, 594.2231. HPLC tR = 7.27 min.
3-Acrylamido-N-(3-((4-(4-(4-fluorophenyl)-1-methyl-2-

(methylthio)-1H-imidazol-5-yl)pyridin-2-yl)amino)phenyl)-
benzamide (12). According to general procedure F, 12 was
synthesized from 31 and 30c. Eluent ethyl acetate/n-hexane 45:55
to 75:25. Another flash chromatography was performed to purify the
product; eluent dichloromethane/methanol 100:0 to 92/8 afforded
30% yield. 1H NMR (400 MHz, DMSO-d6) δ 10.37 (s, 1H), 10.24 (s,
1H), 9.26 (s, 1H), 8.26 (d, J = 5.2 Hz, 1H), 8.15 (s, 1H), 8.10 (s, 1H),
7.92 (d, J = 8.0 Hz, 1H), 7.65 (d, J = 7.4 Hz, 1H), 7.54−7.41 (m, 4H),
7.29−7.10 (m, 4H), 6.81 (s, 1H), 6.77 (d, J = 5.2 Hz, 1H), 6.52−6.41
(m, 1H), 6.30 (d, J = 16.9 Hz, 1H), 5.79 (d, J = 10.6 Hz, 1H), 3.44 (s,
3H), 2.65 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 165.5, 163.3,
161.1 (d, J = 243.6 Hz), 156.3, 148, 143.7, 141.4, 139.4, 139.1, 136.8,
135.9, 131.7, 130.4 (d, J = 2.6 Hz), 128.75, 128.62, 128.33 (d, J = 8.0
Hz), 128.2, 127.2, 122.5, 122.2, 118.9, 115.2 (d, J = 21.5 Hz), 115.2,
114.0, 113.5, 111.6, 110.8, 31.6, 15.3. ESI-HRMS: calculated, 578.1900
[M + H]+; found, 578.1885. HPLC tR = 6.38 min.
N-(3-((4-(4-(4-Fluorophenyl)-1-methyl-2-(methylthio)-1H-

imidazol-5-yl)pyridin-2-yl)amino)phenyl)-3-propionamido-
benzamide (13). According to general procedure F, 13 was
synthesized from 31 and 30h. Eluent ethyl acetate/n-hexane 45:55
to 75:25 afforded 62% yield. 1H NMR (400 MHz, DMSO-d6) δ 10.21
(s, 1H), 10.07 (s, 1H), 9.21 (s, 1H), 8.27 (d, J = 5.2 Hz, 1H), 8.09 (d, J
= 9.2 Hz, 2H), 7.85−7.80 (m, 1H), 7.63−7.58 (m, 1H), 7.56−7.50 (m,
1H), 7.49−7.40 (m, 3H), 7.27−7.18 (m, 2H), 7.14 (t, J = 8.9 Hz, 2H),
6.81 (s, 1H), 6.78−6.73 (m, 1H), 3.44 (s, 3H), 2.65 (s, 3H), 2.35 (q, J
= 7.5 Hz, 2H), 1.10 (t, J = 7.5 Hz, 3H). 13C NMR (101 MHz, DMSO-
d6) δ 172.1, 165.5, 161 (d, J = 243.5 Hz), 156.4, 148.2, 143.5, 141.5,
139.4, 139.3, 138.9, 136.8, 135.8, 130.5 (d, J = 3.0 Hz), 128.5, 128.2
(d, J = 7.8 Hz), 121.8, 118.6, 115.1, 115.1 (d, J = 21.4 Hz), 113.9,
113.4, 111.5, 110.6, 31.5, 29.5, 15.3, 9.5. ESI-HRMS: calculated,
580.2057 [M + H]+; found, 580.2056. HPLC tR = 7.19 min.
4-Acrylamido-N-(4-((4-(4-(4-fluorophenyl)-1-methyl-2-

(methylthio)-1H-imidazol-5-yl)pyridin-2-yl)amino)phenyl)-
benzamide (14). According to general procedure F, 14 was
synthesized from 31 and 30e. Eluent ethyl acetate/n-hexane 45:55
to 75:25. Another flash chromatography was performed to purify the
product; eluent dichloromethane/methanol 100:0 to 92:8 afforded
32% yield. 1H NMR (400 MHz, CDCl3/methanol-d4) δ 8.13 (d, J =
5.2 Hz, 1H), 7.86 (d, J = 8.6 Hz, 2H), 7.72 (d, J = 8.6 Hz, 2H), 7.54
(d, J = 8.6 Hz, 2H), 7.40−7.34 (m, 2H), 7.20 (d, J = 8.7 Hz, 2H), 6.97
(t, J = 8.7 Hz, 2H), 6.66 (s, 1H), 6.60 (d, J = 5.3 Hz, 1H), 6.43−6.36
(m, 2H), 5.75 (dd, J = 7.5, 4.2 Hz, 1H), 3.53 (s, 3H), 2.60 (s, 3H). 13C
NMR (101 MHz, CDCl3/methanol-d4) δ 166.9, 165.4, 162.6 (d, J =
246.4 Hz), 157.4, 148.9, 145.1, 142.0, 140.3, 139.2, 136.9, 134.1, 131.3,
130.6, 130.1 (d, J = 3.2 Hz), 129.8 (d, J = 8.0 Hz), 129, 128.7, 128.1,
122.4, 121.5, 120, 115.6, 115.6 (d, J = 21.6 Hz), 110.3, 32.4, 16.7. ESI-
HRMS: calculated, 578.1900 [M + H]+; found, 578.1894. HPLC tR =
5.70 min.

N-(4-((4-(4-(4-Fluorophenyl)-1-methyl-2-(methylthio)-1H-
imidazol-5-yl)pyridin-2-yl)amino)phenyl)-4-propionamido-
benzamide (15). According to general procedure F, 15 was
synthesized from 31 and 30k. Eluent ethyl acetate/n-hexane 45:55
to 75:25. Another flash chromatography was performed to purify the
product; eluent dichloromethane/methanol 100:0 to 92:8 afforded
48% yield. 1H NMR (400 MHz, DMSO-d6) δ 10.15 (s, 1H), 10.01 (s,
1H), 9.13 (s, 1H), 8.26 (d, J = 5.2 Hz, 1H), 7.92 (d, J = 8.7 Hz, 2H),
7.73 (d, J = 8.7 Hz, 2H), 7.67−7.57 (m, 4H), 7.51−7.43 (m, 2H), 7.15
(t, J = 8.9 Hz, 2H), 6.77−6.71 (m, 2H), 3.43 (s, 3H), 2.65 (s, 3H),
2.37 (q, J = 7.5 Hz, 2H), 1.10 (t, J = 7.5 Hz, 3H). 13C NMR (101
MHz, DMSO-d6) δ 172.3, 164.4, 161.0 (d, J = 243.5 Hz), 156.5, 148.3,
143.5, 142.1, 138.9, 137.1, 136.8, 132.7, 130.6 (d, J = 3.1 Hz), 129.1,
128.4, 128.3, 128.2 (d, J = 7.9 Hz), 121.0, 118.4, 118.1, 115.1 (d, J =
21.5 Hz), 114.8, 111.1, 31.5, 29.5, 15.2, 9.4. ESI-HRMS: calculated,
580.2057 [M + H]+; found, 580.2054. HPLC tR = 7.04 min.

N-(4-((4-(4-(4-Fluorophenyl)-1-methyl-2-(methylthio)-1H-
imidazol-5-yl)pyridin-2-yl)amino)phenyl)-3-propionamido-
benzamide (16). According to general procedure F, 16 was
synthesized from 31 and 30f. Eluent: ethyl acetate/n-hexane 45:55
to 75:25. Another flash chromatography was performed to purify the
product; eluent dichloromethane/methanol 100:0 to 92:8 afforded
37% yield. 1H NMR (200 MHz, CDCl3/methanol-d4) δ 8.46 (s, 1H),
8.30−8.17 (m, 2H), 7.83−7.69 (m, 2H), 7.66−7.49 (m, 3H), 7.45−
7.27 (m, 3H), 7.14−7.06 (m, 1H), 6.92 (t, J = 8.8 Hz, 2H), 6.62 (d, J =
5.1 Hz, 1H), 6.51−6.19 (m, 4H), 5.79−5.67 (m, 1H), 3.45 (s, 3H),
2.63 (s, 3H), 2.16 (s, 3H). 13C NMR (50 MHz, CDCl3/methanol-d4)
δ 166.4, 164.8, 162 (d, J = 246.3 Hz), 157.9, 148.4, 144.5, 141.5, 140.1,
138.7, 135.8, 133.8, 133.5, 130.8, 130, 129.5 (d, J = 3.2 Hz), 129.2 (d, J
= 8.1 Hz), 128.4, 128.2, 127.8, 125.0, 123.2, 119.4, 119.2, 115.0 (d, J =
21.5 Hz), 114.7, 108.4, 32, 17.7, 16.2. ESI-HRMS: calculated, 592.2057
[M + H]+; found, 592.2068. HPLC tR = 6.90 min.

N-(4-((4-(4-(4-Fluorophenyl)-1-methyl-2-(methylthio)-1H-
imidazol-5-yl)pyridin-2-yl)amino)-3-methylphenyl)-4-
propionamidobenzamide (17). According to general procedure F,
17 was synthesized from 31 and 30i. Eluent ethyl acetate/n-hexane
45:55 to 75:25 afforded 72% yield. 1H NMR (200 MHz, DMSO-d6) δ
10.23 (s, 1H), 9.36 (s, 1H), 9.11 (s, 1H), 8.25 (d, J = 5.2 Hz, 1H),
7.68−7.53 (m, 4H), 7.52−7.39 (m, 3H), 7.33−7.03 (m, 4H), 6.79−
6.65 (m, 2H), 3.43 (s, 3H), 2.65 (s, 3H), 2.37 (q, J = 7.5 Hz, 2H), 2.21
(s, 3H), 1.11 (t, J = 7.5 Hz, 3H). 13C NMR (50 MHz, CDCl3/
methanol-d4) δ 174.5, 169, 162.1 (d, J = 246.4 Hz), 156.9, 148.6,
144.7, 140, 138.8, 138.6, 136.2, 135.9, 133.9, 130.9, 129.7 (d, J = 3.2
Hz), 129.3 (d, J = 8.0 Hz), 128.4 (d, J = 0.7 Hz), 127.6, 126.2, 125.1,
121.4, 121.0, 115.2, 115.2 (d, J = 21.5 Hz), 109.4, 32.1, 29.6, 16.3, 14.6,
9.8. ESI-HRMS: calculated, 594.2213 [M + H]+; found, 594.2213.
HPLC tR = 6.68 min.

4-Acrylamido-N-(3-((4-(4-(4-fluorophenyl)-1-methyl-2-
(methylthio)-1H-imidazol-5-yl)pyridin-2-yl)amino)phenyl)-
benzamide (18). According to general procedure F, 18 was
synthesized from 31 and 30g. Eluent: ethyl acetate/n-hexane 45:55
to 75:25. Another flash chromatography was performed to purify the
product; eluent dichloromethane/methanol 100:0 to 92:8 afforded
26% yield. 1H NMR (200 MHz, CDCl3/methanol-d4) δ 7.93 (d, J =
5.3 Hz, 1H), 7.70−7.43 (m, 5H), 7.21−7.10 (m, 2H), 7.07−6.89 (m,
2H), 6.89−6.79 (m, 1H), 6.72 (t, J = 8.8 Hz, 2H), 6.54 (s, 1H), 6.39
(d, J = 5.2 Hz, 1H), 6.17 (d, J = 5.6 Hz, 2H), 5.58−5.47 (m, 1H), 3.33
(s, 3H), 2.38 (s, 3H). 13C NMR (50 MHz, CDCl3/methanol-d4)
166.4, 164.8, 161.9 (d, J = 246.3 Hz), 156.5, 148.1, 144.4, 141.5, 140.5,
139.6, 138.9, 138.5, 130.7, 129.8, 129.4 (d, J = 3.2 Hz), 129.1 (d, J =
8.0 Hz), 129.0, 128.3, 128.1, 127.5, 119.2, 115.7, 115.3, 115, 114.9 (d, J
= 21.6 Hz), 112.5, 110.4, 31.8, 16.1. ESI-HRMS: calculated, 578.1900
[M + H]+; found, 578.1900. HPLC tR = 5.95 min.

3-Acrylamido-N-(3-((4-(4-(4-fluorophenyl)-1-methyl-2-
(methylthio)-1H-imidazol-5-yl)pyridin-2-yl)amino)phenyl)-2-
methylbenzamide (19). According to general procedure F, 19 was
synthesized from 31 and 30d. Eluent ethyl acetate/n-hexane 45:55 to
75:25. Another flash chromatography was performed to purify the
product; eluent dichloromethane/methanol 100:0 to 92:8 afforded
30% yield. 1H NMR (400 MHz, DMSO-d6) δ 10.35 (s, 1H), 9.65 (s,
1H), 9.21 (s, 1H), 8.25 (d, J = 5.2 Hz, 1H), 8.07 (s, 1H), 7.62−7.50
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(m, 2H), 7.50−7.42 (m, 2H), 7.33−7.25 (m, 2H), 7.24−7.18 (m, 2H),
7.18−7.09 (m, 2H), 6.80 (s, 1H), 6.75 (d, J = 5.2 Hz, 1H), 6.62−6.50
(m, 1H), 6.26 (d, J = 17.1 Hz, 1H), 5.77 (d, J = 10.3 Hz, 1H), 3.43 (s,
3H), 2.69−2.60 (m, 3H), 2.23 (s, 3H). 13C NMR (101 MHz, DMSO-
d6) δ 167.7, 163.5, 161.0 (d, J = 243.6 Hz), 156.5, 148.2, 143.6, 141.6,
139.4, 138.9, 136.8, 136.6, 130.6 (d, J = 3.0 Hz), 130.5, 129.4, 128.7,
128.3 (d, J = 7.8 Hz), 128.2, 126.7, 126.5, 125.6, 124.1, 115.2, 115.1
(d, J = 21.4 Hz), 113.7, 112.6, 111.5, 109.8, 31.6, 15.3, 14.6. The
missing signal is most probably overlaid by another signal. ESI-HRMS:
calculated, 592.2057 [M + H]+; found, 592.2045. HPLC tR = 6.32 min.
3-Acrylamido-N-(4-((4-(4-(4-fluorophenyl)-1-methyl-2-

(methylthio)-1H-imidazol-5-yl)pyridin-2-yl)amino)-3-
methylphenyl)benzamide (20). According to general procedure F,
20 was synthesized from 31 and 30m. Eluent acetate/n-hexane 45:55
to 75:25. Another flash chromatography was performed to purify the
product; eluent dichloromethane/methanol 100:0 to 92:8 afforded
43% yield. 1H NMR (400 MHz, DMSO-d6) δ 10.36 (s, 1H), 10.16 (s,
1H), 8.31 (s, 1H), 8.18−8.12 (m, 2H), 7.92 (d, J = 8.0 Hz, 1H), 7.67−
7.58 (m, 2H), 7.52−7.37 (m, 5H), 7.18−7.10 (m, 2H), 6.69 (dd, J =
5.2, 1.2 Hz, 1H), 6.55−6.42 (m, 2H), 6.30 (dd, J = 17.0, 1.9 Hz, 1H),
5.82−5.74 (m, 1H), 3.42 (s, 3H), 2.63 (s, 3H), 2.17 (s, 3H). 13C NMR
(101 MHz, DMSO-d6) δ 165.1, 163.3, 161.0 (d, J = 243.6 Hz), 157.8,
148.5, 143.4, 139.1, 139.1, 136.8, 135.9, 135.1, 134.3, 131.9, 131.7,
130.6 (d, J = 3.0 Hz), 128.7, 128.4, 128.3 (d, J = 8.0 Hz), 127.1, 124.2,
122.5, 122.3, 122.1, 118.8, 118.4, 115.1 (d, J = 21.4 Hz), 114.3, 109.4,
31.5, 18.2, 15.4, 15.3. ESI-HRMS: calculated, 592.2057 [M + H]+;
found, 592.2064. HPLC tR = 6.60 min.
3-Acrylamido-N-(4-((4-(4-methyl-2-(methylthio)-1H-imida-

zol-5-yl)pyridin-2-yl)amino)phenyl)benzamide (21). Compound
21 was prepared according to general procedure B starting from 35
(87.5 mg, 0.20 mmol), DIPEA (46 μL, 0.26 mmol), and acryloyl
chloride (22 μL, 0.24 mmol). Purification: flash column chromatog-
raphy (SiO2, dichloromethane/ethanol, 92:08). Yield: 40 mg (41%) as
a light yellow solid product. 1H NMR (250 MHz, DMSO-d6) δ 12.28
(s, 1H), 10.35 (s, 1H), 10.13 (s, 1H), 8.99 (s, 1H), 8.14 (s, 1H), 8.08
(d, J = 5.4 Hz, 1H), 7.92 (d, J = 8.3 Hz, 1H), 7.71−7.59 (m, 5H),
7.52−7.38 (m, 1H), 7.15 (s, 1H), 6.98 (d, J = 5.6 Hz, 1H), 6.56−6.38
(m, 1H), 6.36−6.20 (m, 1H), 5.86−5.70 (m, 1H), 2.55 (s, 3H), 2.42
(s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 164.9, 163.3, 156.3, 147.2,
143.1, 139.1, 138.2, 137.0, 135.9, 134.0, 131.8, 131.7, 128.7, 127.1,
122.2, 122.0, 121.1, 118.8, 118.3, 117.9, 111.0, 105.9, 15.5, 11.4. HPLC
tR = 5.29 min. ESI-HRMS: calculated, 485.1754 [M + H]+; found,
485.1738.
4-Acrylamido-N-(4-((4-(4-methyl-2-(methylthio)-1H-imida-

zol-5-yl)pyridin-2-yl)amino)phenyl)benzamide (22). Compound
22 was synthesized according to general procedure B, using compound
36 (100 mg, 0.23 mmol), DIPEA (53 μL, 0.3 mmol), and acryloyl
chloride (23 μL, 0.28 mmol). Purification by flash chromatography
(SiO2, dichloromethane/ethanol, 98:08) afforded 20 mg (22%) of a
light yellow solid product. 1H NMR (250 MHz, DMSO-d6) δ 12.29
(br s, 1H), 10.42 (s, 1H), 10.01 (s, 1H), 8.98 (s, 1H), 8.09 (d, J = 5.4
Hz, 1H), 7.99−7.92 (m, J = 8.8 Hz, 2H), 7.84−7.76 (m, J = 9.0 Hz,
2H), 7.70−7.59 (m, 4H), 7.15 (s, 1H), 6.98 (d, J = 5.1 Hz, 1H), 6.48
(dd, J = 9.9, 17.0 Hz, 1H), 6.30 (dd, J = 2.2, 17.1 Hz, 1H), 5.76−5.85
(m, 1H), 2.55 (s, 3H), 2.42 (s, 3H). HPLC tR = 2.66 min. ESI-HRMS:
calculated, 485.1754 [M + H]+; found, 485.1752.
N-(4-((4-(4-Methyl-2-(methylthio)-1H-imidazol-5-yl)pyridin-

2-yl)amino)phenyl)-3-propionamidobenzamide (23). Under
argon atmosphere, compound 32 (80 mg, 0.26 mmol) was suspended
in a mixture of dry dichloromethane (10 mL) and DIPEA (0.054 mL,
0.31 mmol) was added. Finally, a solution of 3-propionamidobenzoic
acid (54 mg, 0.28 mmol) and PyBOP (162 mg, 0.31 mmol) in (5:1)
mixture of dichloromethane/DMF (6 mL) was added. The reaction
was stirred at rt for 6 h. The reaction mixture was poured in water, and
the aqueous layer was extracted 3 times with ethyl acetate. The organic
layers were washed with saturated NaCl solution, dried over
anhydrous Na2SO4, and concentrated at reduced pressure. The
residue was finally purified twice by flash column chromatography
(SiO2, dichloromethane/ethanol, 92:08 to 85:15) yielding 27 mg of
product (21%). 1H NMR (300 MHz, DMSO-d6) δ 10.15 (s, 1H),

10.06 (s, 1H), 9.17 (br s, 1H), 8.10 (br s, 1H), 8.07 (d, J = 5.6 Hz,
1H), 7.83 (d, J = 7.9 Hz, 1H), 7.73−7.58 (m, 5H), 7.49−7.40 (m,
1H), 7.15 (s, 1H), 7.01 (d, J = 5.4 Hz, 1H), 2.57 (s, 3H), 2.43 (s, 3H),
2.36 (q, J = 7.5 Hz, 2H), 1.11 (t, J = 7.4 Hz, 3H); 13C NMR (101
MHz, DMSO-d6) δ 172.2, 165.1, 155.8, 146.0, 143.2, 142.9, 139.8,
139.4, 137.3, 135.8, 132.6, 128.6, 121.7, 121.1, 118.8, 118.5, 113.8,
113.4, 111.0, 105.9, 29.5, 15.4, 9.6, 8.6. HPLC tR = 4.12 min. ESI-
HRMS: calculated, 487.1911 [M + H]+; found, 487.1896.

N-(4-((4-(4-(4-Fluorophenyl)-2-(methylthio)-1H-imidazol-5-
yl)pyridin-2-yl)amino)phenyl)-3-nitrobenzamide (24). In 100
mL round-bottom flask, m-nitrobenzoic acid (341.5 mg, 2.00 mmol),
PyBOP (1.28 g, 2.40 mmol), and DIPEA (463 μL, 2.60 mmol) were
mixed together in 30 mL of dichloromethane. The mixture was stirred
for 1 h at rt. Then, amine 3 (800 mg, 2.00 mmol) was added to the
reaction mixture in one portion and the reaction stirred for 5 h at rt.
The solvent was evaporated under vacuum, then ethyl acetate (50 mL)
was added and washed with water (3 × 15 mL). The combined water
layers were extracted with ethyl acetate one time. The combined
organic layers were dried over anhydrous Na2SO4. The solvent was
evaporated and the crude product was purified by flash chromatog-
raphy (SiO2, dichloromethane/ethanol, 95:05 to 90:10) to afford 462
mg (42%) of an orange solid product. 1H NMR (400 MHz, DMSO-
d6) δ 12.69 (br s, 1H), 10.48 (br s, 1H), 9.05 (br s, 1H), 8.80 (br s,
1H), 8.50−8.30 (m, 2H), 8.01 (br s, 1H), 7.89−7.75 (m, 1H), 7.64 (br
s, 4H), 7.52 (br s, 2H), 7.30 (br s, 2H), 7.13−6.75 (m, 1H), 6.70 (br s,
1H), 2.63 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 162.7, 162.2 (d,
J = 249.5 Hz), 156.2, 147.7, 147.1, 142.9, 142.1, 139.6, 138.2, 136.5,
134.0, 131.6 (d, J = 4.6 Hz), 130.6 (d, J = 7.3 Hz), 130.1, 129.6, 128.2,
125.9, 122.3, 121.3, 118.3, 115.8 (d, J = 24.8 Hz), 112.0, 107.3, 15.0.
HPLC tR = 6.87 min. FAB-MS: (m/z) calculated, 541.15 [M + H]+;
found: 541.2.

N-(4-((4-(4-(4-Fluorophenyl)-2-(methylthio)-1H-imidazol-5-
yl)pyridin-2-yl)amino)phenyl)-4-nitrobenzamide (25). Com-
pound 25 was synthesized similarly to 24 using p-nitrobenzoic acid
(310 mg, 1.85 mmol), PyBOP (1.1 g, 2.02 mmol) and DIPEA (353
μL, 2.02 mmol) and amine 3 (660 mg, 1.85 mmol) affording 637 mg
(70%) of an orange solid product. 1H NMR (400 MHz, DMSO-d6) δ
12.69 (br s, 1H), 10.46 (br s, 1H), 9.06 (br s, 1H), 8.46−8.29 (m,
2H), 8.26−8.13 (m, 2H), 8.03 (br s, 1H), 7.75−7.57 (m, 4H), 7.52 (br
s, 2H), 7.28 (br s, 2H), 7.07 (br s, 1H), 6.76−6.62 (m, 1H), 2.63 (d, J
= 2.3 Hz, 3H). 13C NMR (101 MHz, DMSO-d6) δ 163.2, 161.7 (d, J =
248.9 Hz), 156.2, 149.0, 142.2, 140.8, 138.2, 131.7 (d, J = 1.8 Hz),
129.1 (d, J = 2.4 Hz), 129.0, 123.6, 123.4, 122.5, 121.4, 121.2, 120.8,
119.0, 118.3, 115.7 (d, J = 22.2 Hz), 112.1, 107.3, 15.0. HPLC tR =
6.80 min. FAB-MS: (m/z) calculated, 541.15 [M + H]+; found: 541.2.

3-Amino-N-(4-((4-(4-(4-fluorophenyl)-2-(methylthio)-1H-imi-
dazol-5-yl)pyridin-2-yl)amino)phenyl)benzamide (26). Com-
pound 26 was synthesized according to general procedure A, using
compound 24 (160 mg, 0.30 mmol), EtOH (20 mL), and tin(II)
chloride (167 mg, 0.74 mmol). Yield: 88 mg (58%) of a light yellow
solid product. 1H NMR (400 MHz, DMSO-d6) δ 12.67 (br s, 1H),
10.03−9.83 (m, 1H), 9.08−8.84 (m, 1H), 8.23−7.90 (m, 1H), 7.61 (d,
J = 6.1 Hz, 2H), 7.58−7.44 (m, 4H), 7.37−7.17 (m, 2H), 7.17−6.99
(m, 4H), 6.84−6.72 (m, 1H), 6.72−6.63 (m, 1H), 5.29 (br s, 2H),
2.63 (br s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 165.8, 161.9 (d, J
= 247.4 Hz), 161.3 (d, J = 241.8 Hz), 156.4, 148.6, 148.0, 147.2, 142.8,
142.0, 138.9, 137.9, 137.6, 137.2, 136.1, 134.7, 132.8, 132.4, 131.0,
130.7 (d, J = 8.1 Hz), 129.4 (d, J = 10.3 Hz), 128.6, 126.8, 126.8,
126.2, 120.9, 118.7, 118.3, 116.6, 115.9 (d, J = 22.3 Hz), 115.1 (d, J =
21.2 Hz), 114.7, 113.0, 112.3, 111.8, 107.2, 107.0, 15.1, 15.0. The
peaks of the carbon are double due to the amide tautomerism. HPLC
tR = 5.32 min. FAB-MS: (m/z) calculated, 511.2 [M + H]+; found:
511.3.

4-Amino-N-(4-((4-(4-(4-fluorophenyl)-2-(methylthio)-1H-imi-
dazol-5-yl)pyridin-2-yl)amino)phenyl)benzamide (27). Com-
pound 27 was synthesized according to general procedure A, using
compound 25 (352 mg, 0.65 mmol), EtOH (70 mL), tin(II) chloride
(368 mg, 1.6 mmol). Yield: 183 mg (55%) of a light yellow solid
product. 1H NMR (400 MHz, DMSO-d6) δ 12.67 (br s, 1H), 9.65 (br
s, 1H), 9.02−8.85 (m, 1H), 8.20−7.88 (m, 1H), 7.72 (d, J = 7.3 Hz,
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2H), 7.56−7.55 (m, 1H), 7.64−7.41 (m, 6H), 7.39−7.11 (m, 2H),
7.11−6.73 (m, 1H), 6.67 (br s, 1H), 6.60 (d, J = 7.3 Hz, 2H), 5.72 (br
s, 2H), 2.62 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 164.8, 161.9
(d, J = 241.0 Hz), 156.4, 151.8, 148.0, 147.1, 142.8, 141.9, 137.2,
132.8, 130.6 (d, J = 7.0 Hz), 129.1, 126.8 (d, J = 3.8 Hz), 121.4, 120.8,
118.7, 118.3, 115.8 (d, J = 21.3 Hz), 112.5, 111.7, 106.9, 15.0. HPLC
tR = 4.86 min. FAB-MS: (m/z) calculated, 511.2 [M + H]+; found:
511.3.
N-(4-Bromophenyl)-3-nitrobenzamide (28a). According to

general procedure C, 28a was synthesized from 4-bromoaniline and
3-nitrobenzoic acid. All volatiles were evaporated under reduced
pressure to afford 56% yield as an off-white solid. 1H NMR (200 MHz,
DMSO-d6) δ 10.68 (s, 1H), 8.78 (s, 1H), 8.51−8.33 (m, 2H), 7.91−
7.70 (m, 3H), 7.56 (d, J = 8.8 Hz, 2H). Exact mass: 320.0. ESI-MS
(m/z): 319.4, 321.4 [M − H]− (peaks were measured at half-intensity
due to isotopic pattern of bromine).
N-(4-Bromophenyl)-2-methyl-3-nitrobenzamide (28b). Ac-

cording to general procedure C, 28b was synthesized from 4-
bromoaniline and 2-methyl-3-nitrobenzoic acid. All volatiles were
evaporated under reduced pressure to afford 89% yield as an off-white
solid. 1H NMR (200 MHz, DMSO-d6) δ 10.71 (s, 1H), 8.01 (d, J = 7.5
Hz, 1H), 7.89−7.45 (m, 6H), 2.41 (s, 3H). Exact mass: 334.0. ESI-MS
(m/z): 332.8, 334.8 [M − H]− (peaks were measured at half-intensity
due to isotopic pattern of bromine).
N-(3-Bromophenyl)-3-nitrobenzamide (28c). According to

general procedure C, 28c was synthesized from 3-bromoaniline and
3-nitrobenzoic acid. All volatiles were evaporated under reduced
pressure to afford 79% yield as an off-white solid. 1H NMR (200 MHz,
DMSO-d6) δ 10.70 (s, 1H), 8.79 (t, J = 1.9 Hz, 1H), 8.50−8.33 (m,
2H), 8.14−8.05 (m, 1H), 7.91−7.70 (m, 2H), 7.42−7.28 (m, 2H).
Exact mass: 320.0. ESI-MS (m/z): 318.8, 320.8 [M − H]− (peaks were
measured at half-intensity due to isotopic pattern of bromine).
N-(3-Bromophenyl)-2-methyl-3-nitrobenzamide (28d). Ac-

cording to general procedure C, 28d was synthesized from 3-
bromoaniline and 2-methyl-3-nitrobenzoic acid. All volatiles were
evaporated under reduced pressure to afford 67% yield as an off-white
solid. 1H NMR (200 MHz, DMSO-d6) δ 10.73 (s, 1H), 8.11−7.97 (m,
2H), 7.85−7.75 (m, 1H), 7.70−7.50 (m, 2H), 7.40−7.26 (m, 2H),
2.44 (s, 3H). Exact mass: 334.0. ESI-MS (m/z): 333.4, 335.4 [M −
H]− (peaks were measured at half-intensity due to isotopic pattern of
bromine).
N-(4-Bromophenyl)-4-nitrobenzamide (28e). According to

general procedure C, 28e was synthesized from 4-bromoaniline and
4-nitrobenzoic acid. All volatiles were evaporated under reduced
pressure to afford 89% yield as a yellow solid. 1H NMR (200 MHz,
DMSO-d6) δ 10.66 (s, 1H), 8.37 (d, J = 8.9 Hz, 2H), 8.17 (d, J = 8.8
Hz, 2H), 7.77 (d, J = 8.9 Hz, 2H), 7.56 (d, J = 8.9 Hz, 2H). Exact
mass: 320.0. ESI-MS (m/z): 319.4, 321.4 [M − H]− (peaks were
measured at half-intensity due to isotopic pattern of bromine).
N-(4-Bromo-3-methylphenyl)-4-nitrobenzamide (28f). Ac-

cording to general procedure C, 28f was synthesized from 4-bromo-
3-methylaniline and 4-nitrobenzoic acid. All volatiles were evaporated
under reduced pressure to afford 89% yield as an off-white solid. 1H
NMR (200 MHz, DMSO-d6) δ 10.59 (s, 1H), 8.36 (d, J = 8.8 Hz,
2H), 8.17 (d, J = 8.8 Hz, 2H), 7.78 (s, 1H), 7.56 (s, 2H), 2.35 (s, 3H).
Exact mass: 334.0. ESI-MS (m/z): 333.4, 335.4 [M − H]− (peaks were
measured at half-intensity due to isotopic pattern of bromine).
N-(3-Bromophenyl)-4-nitrobenzamide (28g). According to

general procedure C, 28g was synthesized from 3-bromoaniline and
4-nitrobenzoic acid. All volatiles were evaporated under reduced
pressure to afford 70% yield as an off-white solid. 1H NMR (200 MHz,
DMSO-d6) δ 10.68 (s, 1H), 8.37 (d, J = 8.8 Hz, 2H), 8.24−8.05 (m,
3H), 7.82−7.67 (m, 1H), 7.41−7.26 (m, 2H). Exact mass: 320.0. ESI-
MS (m/z): 319.4, 321.4 [M − H]− (peaks were measured at half-
intensity due to isotopic pattern of bromine).
N-(4-Bromo-3-methylphenyl)-3-nitrobenzamide (28h). Ac-

cording to general procedure C, 28h was synthesized from 4-bromo-
3-methylaniline and 3-nitrobenzoic acid. All volatiles were evaporated
under reduced pressure to afford 72% yield as an off-white solid. 1H
NMR (200 MHz, DMSO-d6) δ 10.60 (s, 1H), 8.82−8.74 (m, 1H),

8.47−8.33 (m, 2H), 7.89−7.73 (m, 2H), 7.64−7.49 (m, 2H), 2.35 (s,
3H). Exact mass: 334.0. ESI-MS (m/z): 333.3, 335.3 [M − H]− (peaks
were measured at half-intensity due to isotopic pattern of bromine).

3-Amino-N-(4-bromophenyl)benzamide (29a). According to
general procedure D, 29a was synthesized from 28a. Yield: 96%. 1H
NMR (200 MHz, DMSO-d6) δ 10.18 (s, 1H), 7.75 (d, J = 8.9 Hz,
2H), 7.51 (d, J = 8.8 Hz, 2H), 7.23−6.97 (m, 3H), 6.75 (d, J = 7.1 Hz,
1H), 5.33 (s, 2H). Exact mass: 290.0. ESI-MS (m/z): 289.3, 291.3 [M
− H]− (peaks were measured at half-intensity due to isotopic pattern
of bromine).

3-Amino-N-(4-bromophenyl)-2-methylbenzamide (29b). Ac-
cording to general procedure D, 29b was synthesized from 28b. Yield:
93%. 1H NMR (200 MHz, DMSO-d6) δ 10.33 (s, 1H), 7.72 (d, J = 8.7
Hz, 1H), 7.50 (d, J = 8.6 Hz, 1H), 6.98 (t, J = 7.7 Hz, 1H), 6.73 (d, J =
7.9 Hz, 1H), 6.61 (d, J = 7.3 Hz, 1H), 5.07 (s, 1H), 2.05 (s, 2H). Exact
mass: 304.0. ESI-MS (m/z): 303.3, 305.3 [M − H]− (peaks were
measured at half-intensity due to isotopic pattern of bromine).

3-Amino-N-(3-bromophenyl)benzamide (29c). According to
general procedure D, 29c was synthesized from 28c. Yield: 91%. 1H
NMR (200 MHz, DMSO-d6) δ 10.21 (s, 1H), 8.10 (s, 1H), 7.82−7.65
(m, 1H), 7.37−7.00 (m, 5H), 6.76 (d, J = 8.0 Hz, 1H), 5.32 (s, 2H).
Exact mass: 290.0. ESI-MS (m/z): 289.3, 291.3 [M − H]− (peaks were
measured at half-intensity due to isotopic pattern of bromine).

3-Amino-N-(3-bromophenyl)-2-methylbenzamide (29d). Ac-
cording to general procedure D, 29d was synthesized from 28d. Yield:
57%. 1H NMR (200 MHz, DMSO-d6) δ 10.38 (s, 1H), 8.11 (s, 1H),
7.68 (d, J = 6.4 Hz, 1H), 7.35−7.18 (m, 2H), 6.99 (t, J = 7.7 Hz, 1H),
6.75 (d, J = 7.7 Hz, 1H), 6.63 (d, J = 7.3 Hz, 1H), 5.12 (s, 2H), 2.08
(s, 3H). Exact mass: 304.0. ESI-MS (m/z): 303.4, 304.3 [M − H]−

(peaks were measured at half-intensity due to isotopic pattern of
bromine).

4-Amino-N-(4-bromophenyl)benzamide (29e). According to
general procedure D, 29e was synthesized from 28e. Yield: 34%. 1H
NMR (200 MHz, DMSO-d6) δ 9.88 (s, 1H), 7.79−7.65 (m, 4H), 7.48
(d, J = 8.9 Hz, 2H), 6.60 (d, J = 8.6 Hz, 2H), 5.79 (s, 2H). Exact mass:
290.0. ESI-MS (m/z): 289.4, 291.5 [M − H]− (peaks were measured
at half-intensity due to isotopic pattern of bromine).

4-Amino-N-(4-bromo-3-methylphenyl)benzamide (29f). Ac-
cording to general procedure D, 29f was synthesized from 28f. Yield:
80%. 1H NMR (200 MHz, DMSO-d6) δ 9.81 (s, 1H), 7.85−7.65 (m,
3H), 7.63−7.39 (m, 2H), 6.61 (d, J = 8.6 Hz, 2H), 5.78 (s, 2H), 2.32
(s, 3H). Exact mass: 304.0. ESI-MS (m/z): 303.3, 305.4 [M − H]−

(peaks were measured at half-intensity due to isotopic pattern of
bromine).

4-Amino-N-(3-bromophenyl)benzamide (29g). According to
general procedure D, 29g was synthesized from 28g. Yield: 50%. 1H
NMR (200 MHz, DMSO-d6) δ 9.89 (s, 1H), 8.10 (s, 1H), 7.78−7.64
(m, 3H), 7.35−7.14 (m, 2H), 6.61 (d, J = 8.6 Hz, 2H), 5.81 (s, 2H).
Exact mass: 290.0. ESI-MS (m/z): 289.3, 291.3 [M − H]− (peaks were
measured at half-intensity due to isotopic pattern of bromine).

3-Amino-N-(4-bromo-3-methylphenyl)benzamide (29h). Ac-
cording to general procedure D, 29h was synthesized from 28h. Yield:
78%. 1H NMR (200 MHz, CDCl3) δ 8.00 (s, 1H), 7.54 (d, J = 2.0 Hz,
1H), 7.44 (d, J = 8.6 Hz, 1H), 7.35−7.07 (m, 4H), 6.84−6.73 (m,
1H), 3.78 (s, 2H), 2.35 (s, 3H). Exact mass: 304.0. ESI-MS (m/z):
303.3, 305.3 [M − H]− (peaks were measured at half-intensity due to
isotopic pattern of bromine).

3-Acrylamido-N-(4-bromophenyl)benzamide (30a). Accord-
ing to general procedure E, 30a was synthesized from 29a and acryloyl
chloride. Yield: 51%. 1H NMR (200 MHz, CDCl3) δ 8.06−7.96 (m,
1H), 7.90 (d, J = 7.4 Hz, 1H), 7.71−7.51 (m, 4H), 7.51−7.40 (m,
2H), 6.67−6.44 (m, 2H), 6.39−5.98 (m, 2H), 5.80 (dd, J = 10.3, 1.6
Hz, 1H). Exact mass: 344.0. ESI-MS (m/z): 343.5, 345.5 [M − H]−

(peaks were measured at half-intensity due to isotopic pattern of
bromine).

N-(4-Bromophenyl)-2-methyl-3-propionamidobenzamide
(30b). According to general procedure E, 30b was synthesized from
29b and propionyl chloride. Yield: 77%. 1H NMR (200 MHz, DMSO-
d6) δ 10.51 (s, 1H), 9.39 (s, 1H), 7.74 (d, J = 8.5 Hz, 2H), 7.63−7.38
(m, 3H), 7.26 (d, J = 4.4 Hz, 2H), 2.37 (q, J = 7.1 Hz, 2H), 2.21 (s,
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3H), 1.11 (t, J = 7.5 Hz, 3H). Exact mass: 360.0. ESI-MS (m/z): 358.8,
360.8 [M − H]− (peaks were measured at half-intensity due to
isotopic pattern of bromine).
3-Acrylamido-N-(3-bromophenyl)benzamide (30c). Accord-

ing to general procedure E, 30c was synthesized from 29c and acryloyl
chloride. Yield: 48%. 1H NMR (200 MHz, DMSO-d6) δ 10.40 (d, J =
10.5 Hz, 2H), 8.20−8.08 (m, 2H), 7.99−7.90 (m, 1H), 7.81−7.61 (m,
2H), 7.50 (t, J = 7.8 Hz, 1H), 7.39−7.25 (m, 2H), 6.56−6.22 (m, 2H),
5.79 (dd, J = 9.6, 2.5 Hz, 1H). Exact mass: 344.0. ESI-MS (m/z):
343.4, 345.4 [M − H]− (peaks were measured at half-intensity due to
isotopic pattern of bromine).
3-Acrylamido-N-(3-bromophenyl)-2-methylbenzamide

(30d). According to general procedure E, 30d was synthesized from
29d and acryloyl chloride. Yield: 77%. 1H NMR (200 MHz, DMSO-
d6) δ 10.57 (s, 1H), 9.67 (s, 1H), 8.11 (s, 1H), 7.79−7.47 (m, 2H),
7.40−7.21 (m, 4H), 6.68−6.44 (m, 1H), 6.27 (d, J = 16.9 Hz, 1H),
5.78 (d, J = 9.8 Hz, 1H), 2.23 (s, 3H). Exact mass: 358.0. ESI-MS (m/
z): 357.5, 359.5 [M − H]− (peaks were measured at half-intensity due
to isotopic pattern of bromine).
4-Acrylamido-N-(4-bromophenyl)benzamide (30e). Accord-

ing to general procedure E, 30e was synthesized from 29e and acryloyl
chloride. Yield: 60%. 1H NMR (200 MHz, DMSO-d6) δ 10.44 (s, 1H),
10.26 (s, 1H), 7.96 (d, J = 8.7 Hz, 2H), 7.87−7.68 (m, 4H), 7.53 (d, J
= 8.9 Hz, 2H), 6.59−6.18 (m, 2H), 5.81 (dd, J = 9.7, 2.3 Hz, 1H).
Exact mass: 344.0. ESI-MS (m/z): 343.4, 345.4 [M − H]− (peaks were
measured at half-intensity due to isotopic pattern of bromine).
4-Acrylamido-N-(4-bromo-3-methylphenyl)benzamide

(30f). According to general procedure E, 30f was synthesized from 29f
and acryloyl chloride. Yield: 68%. 1H NMR (200 MHz, DMSO-d6) δ
10.44 (s, 1H), 10.19 (s, 1H), 7.95 (d, J = 8.8 Hz, 2H), 7.81 (d, J = 8.7
Hz, 3H), 7.64−7.46 (m, 2H), 6.57−6.21 (m, 2H), 5.81 (dd, J = 9.7,
2.3 Hz, 1H), 2.34 (s, 3H). Exact mass: 358.0. ESI-MS (m/z): 356.8,
358.8 [M − H]− (peaks were measured at half-intensity due to
isotopic pattern of bromine).
4-Acrylamido-N-(3-bromophenyl)benzamide (30g). Accord-

ing to general procedure E, 30g was synthesized from 29g and acryloyl
chloride. Trituration with cold methanol afforded 74% yield. 1H NMR
(200 MHz, DMSO-d6) δ 10.45 (s, 1H), 10.28 (s, 1H), 8.11 (s, 1H),
8.01−7.89 (m, 2H), 7.88−7.69 (m, 3H), 7.38−7.21 (m, 2H), 6.58−
6.22 (m, 2H), 5.81 (dd, J = 9.6, 1.9 Hz, 1H). Exact mass: 344.0. ESI-
MS (m/z): 342.8, 344.8 [M − H]− (peaks were measured at half-
intensity due to isotopic pattern of bromine).
N-(3-Bromophenyl)-3-propionamidobenzamide (30h). Ac-

cording to general procedure E, 30h was synthesized from 29c and
propionyl chloride. Yield: 68%. 1H NMR (400 MHz, DMSO-d6) δ
10.40 (s, 1H), 10.08 (s, 1H), 8.10 (s, 2H), 7.84 (d, J = 8.0 Hz, 1H),
7.77−7.71 (m, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.45 (t, J = 7.9 Hz, 1H),
7.37−7.26 (m, 2H), 2.35 (q, J = 7.5 Hz, 2H), 1.10 (t, J = 7.5 Hz, 3H).
Exact mass: 346.0. ESI-MS (m/z): 344.8, 346.8 [M − H]− (peaks were
measured at half-intensity due to isotopic pattern of bromine).
N-(4-Bromo-3-methylphenyl)-4-propionamidobenzamide

(30i). According to general procedure E, 30i was synthesized from 29f
and propionyl chloride. Yield: 64%. 1H NMR (200 MHz, DMSO-d6) δ
10.15 (s, 2H), 7.98−7.84 (m, 2H), 7.83−7.67 (m, 3H), 7.65−7.47 (m,
2H), 2.44−2.26 (m, 5H) (CH2 and methyl group overlay), 1.09 (t, J =
7.5 Hz, 3H). Exact mass: 360.0. ESI-MS (m/z): 358.8, 360.8 [M −
H]− (peaks were measured at half-intensity due to isotopic pattern of
bromine).
N-(4-Bromophenyl)-3-propionamidobenzamide (30j). Ac-

cording to general procedure E, 30j was synthesized from 29a and
propionyl chloride. Yield: 63%. 1H NMR (200 MHz, DMSO-d6) δ
10.37 (s, 1H), 10.07 (s, 1H), 8.10 (s, 1H), 7.94−7.69 (m, 3H), 7.66−
7.38 (m, 4H), 2.35 (q, J = 7.5 Hz, 2H), 1.10 (t, J = 7.5 Hz, 3H). Exact
mass: 346.0. ESI-MS (m/z): 344.8, 346.8 [M − H]− (peaks were
measured at half-intensity due to isotopic pattern of bromine).
N-(4-Bromophenyl)-4-propionamidobenzamide (30k). Ac-

cording to general procedure E, 30k was synthesized from 29e and
propionyl chloride. Yield: 90%. 1H NMR (200 MHz, DMSO-d6) δ
10.19 (d, J = 13.5 Hz, 2H), 7.92 (d, J = 8.6 Hz, 2H), 7.82−7.68 (m,
4H), 7.52 (d, J = 8.5 Hz, 2H), 2.37 (q, J = 7.6 Hz, 2H), 1.09 (t, J = 7.5

Hz, 3H). Exact mass: 346.0. ESI-MS (m/z): 344.8, 346.8 [M − H]−

(peaks were measured at half-intensity due to isotopic pattern of
bromine).

3-Acrylamido-N-(4-bromophenyl)-2-methylbenzamide (30l).
According to general procedure E, 30l was synthesized from 29b and
acryloyl chloride. Yield: 55%. 1H NMR (200 MHz, DMSO-d6) δ 10.55
(s, 1H), 7.73 (d, J = 8.5 Hz, 2H), 7.52 (d, J = 8.5 Hz, 3H), 7.28 (d, J =
4.5 Hz, 2H), 6.76−6.53 (m, 1H), 6.25 (d, J = 16.0 Hz, 1H), 5.75 (d, J
= 11.2 Hz, 1H), 2.22 (s, 3H). Exact mass: 358.0. ESI-MS (m/z): 358.9,
360.9 [M + H]+ (peaks were measured at half-intensity due to isotopic
pattern of bromine).

3-Acrylamido-N-(4-bromo-3-methylphenyl)benzamide
(30m). According to general procedure E, 30m was synthesized from
29h and acryloyl chloride. Yield: 61%. 1H NMR (200 MHz, DMSO-
d6) δ 10.33 (d, J = 7.0 Hz, 1H), 8.15 (s, 1H), 7.91 (d, J = 7.5 Hz, 1H),
7.77 (s, 1H), 7.68−7.39 (m, 4H), 6.55−6.18 (m, 2H), 5.77 (dd, J =
9.8, 1.7 Hz, 1H), 2.32 (s, 3H). Exact mass: 358.0. ESI-MS (m/z):
357.5, 359.5 [M − H]− (peaks were measured at half-intensity due to
isotopic pattern of bromine).

N-(4-((4-(4-Methyl-2-(methylthio)-1H-imidazol-5-yl)pyridin-
2-yl)amino)phenyl)-3-nitrobenzamide (33). In a round-bottom
flask under dry conditions, m-nitrobenzoic acid (222.2 mg, 1.33 mmol)
was dissolved in 3 mL of thionyl chloride. The reaction mixture was
refluxed for 2 h. The solvent was removed under high vacuum and
compound 32 (230 mg, 0.74 mmol) dissolved in 5 mL pyridine was
added to the reaction mixture and the reaction was stirred at rt for 60
h. The reaction mixture was poured in water (10 mL) finding the
formation of a precipitate. The precipitate was filtered off and purified
by flash chromatography (SiO2, dichloromethane/ethanol, 95:05 to
80:20) to afford 135 mg (40%) of a red solid. 1H NMR (400 MHz,
DMSO-d6) δ 12.29 (br s, 1H), 10.48 (s, 1H), 9.05 (s, 1H), 8.80 (br s,
1H), 8.49−8.34 (m, 2H), 8.10 (d, J = 5.1 Hz, 1H), 7.91−7.78 (m,
1H), 7.72 (d, J = 8.6 Hz, 2H), 7.66 (d, J = 8.9 Hz, 2H), 7.18 (s, 1H),
6.99 (d, J = 5.3 Hz, 1H), 2.56 (s, 3H), 2.46−2.32 (m, 3H); 13C NMR
(101 MHz, DMSO-d6) δ 162.7, 156.3, 147.7, 147.2, 143.1, 139.1,
138.6, 136.5, 134.0, 131.2, 130.1, 127.2, 125.9, 122.3, 121.3, 118.3,
117.9, 111.1, 106.1, 15.5, 11.4. HPLC tR = 7.35 min. ESI-MS: (m/z)
calculated, 461.14 [M + H]+; found: 461.1.

N-(4-((4-(4-Methyl-2-(methylthio)-1H-imidazol-5-yl)pyridin-
2-yl)amino)phenyl)-4-nitrobenzamide (34). In a round-bottom
flask under dry conditions, compound 34 (100 mg, 0.32 mmol) and p-
nitrobenzoyl chloride (71.5 mg, 0.39 mmol) were stirred in pyridine (3
mL) at rt for 48 h. The reaction mixture was poured in water (10 mL)
finding the formation of a precipitate. The precipitate was filtered off
and purified by flash chromatography two times (SiO2, dichloro-
methane/ethanol, 95:05 to 80:20) to afford 70 mg (47%) of a red
solid. 1H NMR (250 MHz, DMSO-d6) δ 12.31 (br s, 1H), 10.44 (s,
1H), 9.04 (s, 1H), 8.47−8.31 (m, 2H), 8.27−8.14 (m, 2H), 8.10 (d, J
= 5.4 Hz, 1H), 7.77−7.68 (m, 2H), 7.68−7.55 (m, 2H), 7.15 (br s,
1H), 6.98 (d, J = 3.9 Hz, 1H), 2.56 (s, 3H), 2.42 (s, 3H); 13C NMR
(101 MHz, DMSO-d6) δ 163.2, 156.3, 149.0, 147.2, 140.8, 138.6,
134.0, 131.3, 129.0, 127.5, 127.1, 123.4, 121.2, 117.9, 116.7, 111.1,
106.0, 15.4, 11.4. HPLC tR = 5.73 min. ESI-MS: (m/z) calculated,
461.14 [M + H]+; found, 461.1.

3-Amino-N-(4-((4-(4-methyl-2-(methylthio)-1H-imidazol-5-
yl)pyridin-2-yl)amino)phenyl)benzamide (35). Compound 35
was synthesized according to general procedure A, using compound
33 (135 mg, 0.29 mmol), EtOH (20 mL), tin(II) chloride (661.5 mg,
2.9 mmol). Yield: 110 mg (87%) of a light yellow solid product. 1H
NMR (250 MHz, DMSO-d6) δ 12.36 (br s, 1H), 9.93 (s, 1H), 9.00 (s,
1H), 8.08 (d, J = 5.6 Hz, 1H), 7.73−7.55 (m, 4H), 7.20−7.02 (m,
4H), 6.97 (d, J = 4.9 Hz, 1H), 6.79−6.63 (m, 1H), 5.29 (s, 2H), 2.55
(s, 3H), 2.42 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 165.7, 156.4,
148.6, 147.1, 143.0, 139.0, 137.9, 136.1, 134.0, 132.1, 128.6, 127.1,
120.9, 117.9, 116.5, 114.6, 112.9, 111.0, 105.9, 15.5, 11.4. HPLC tR =
3.99 min. ESI-MS: (m/z) calculated, 431.17 [M + H]+; found, 431.2.

4-Amino-N-(4-((4-(4-methyl-2-(methylthio)-1H-imidazol-5-
yl)pyridin-2-yl)amino)phenyl)benzamide (36). Compound 36
was synthesized according to general procedure A, using compound
34 (135 mg, 0.29 mmol), EtOH (20 mL), tin(II) chloride (661.5 mg,
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2.9 mmol). Yield: 120 mg (95%) of a light yellow solid product. 1H
NMR (250 MHz, DMSO-d6) δ 12.27 (br s, 1H), 9.62 (s, 1H), 8.92 (s,
1H), 8.07 (d, J = 5.4 Hz, 1H), 7.71 (d, J = 8.3 Hz, 2H), 7.61 (s, 4H),
7.14 (s, 1H), 6.96 (d, J = 5.6 Hz, 1H), 6.59 (d, J = 8.3 Hz, 2H), 5.70
(s, 2H), 2.55 (s, 3H), 2.42 (s, 3H); 13C NMR (101 MHz, DMSO-d6)
δ 164.8, 156.4, 151.8, 147.2, 143.0, 139.0, 137.5, 134.1, 132.6, 129.1,
127.0, 121.4, 120.8, 118.0, 112.5, 110.9, 105.8, 15.5, 11.4. HPLC tR =
1.69 min. ESI-MS: (m/z) calculated, 431.17 [M + H]+; found, 431.4.
Biochemistry. JNK339−402 was expressed and purified as described

previously.34 JNK3-C154A was prepared using the NEB Q5 site-
directed mutagenesis kit. Expression and purification of the C154A
mutant were performed exactly as for wild-type JNK3.
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Maier, J.; Drückes, P.; Köppler, J.; Trappe, J.; Rothbauer, U.; Koch, P.;
Laufer, S. A. Tetra-substituted pyridinylimidazoles as dual inhibitors of
p38α mitogen-activated protein kinase and c-Jun N-terminal kinase 3
for potential treatment of neurodegenerative diseases. J. Med. Chem.
2015, 58, 443−456.
(25) Laufer, S.; Hauser, D.; Stegmiller, T.; Bracht, C.; Ruff, K.;
Schattel, V.; Albrecht, W.; Koch, P. Tri- and tetrasubstituted
imidazoles as p38 alpha mitogen-activated protein kinase inhibitors.
Bioorg. Med. Chem. Lett. 2010, 20, 6671−6675.
(26) Goettert, M.; Graeser, R.; Laufer, S. A. Optimization of a
nonradioactive immunosorbent assay for p38 alpha mitogen-activated
protein kinase activity. Anal. Biochem. 2010, 406, 233−234.
(27) Goettert, M.; Luik, S.; Graeser, R.; Laufer, S. A. A direct ELISA
assay for quantitative determination of the inhibitory potency of small
molecules inhibitors for JNK3. J. Pharm. Biomed. Anal. 2011, 55, 236−
240.
(28) Selig, R.; Schattel, V.; Goettert, M.; Schollmeyer, D.; Albrecht,
W.; Laufer, S. Conformational effects on potency of thioimidazoles
and dihydrothiazolines. MedChemComm 2011, 2, 261−269.
(29) Koch, P.; Gehringer, M.; Laufer, S. A. Inhibitors of c-Jun N-
terminal kinases: an update. J. Med. Chem. 2015, 58, 72−95.
(30) Gehringer, M.; Muth, F.; Koch, P.; Laufer, S. A. c-Jun N-
terminal kinase inhibitors: a patent review (2010 − 2014). Expert
Opin. Ther. Pat. 2015, 25, 849−872.
(31) Karaman, M. W.; Herrgard, S.; Treiber, D. K.; Gallant, P.;
Atteridge, C. E.; Campbell, B. T.; Chan, K. W.; Ciceri, P.; Davis, M. I.;
Edeen, P. T.; Faraoni, R.; Floyd, M.; Hunt, J. P.; Lockhart, D. J.;
Milanov, Z. V.; Morrison, M. J.; Pallares, G.; Patel, H. K.; Pritchard, S.;
Wodicka, L. M.; Zarrinkar, P. P. A quantitative analysis of kinase
inhibitor selectivity. Nat. Biotechnol. 2008, 26, 127−132.
(32) Sterling, T.; Irwin, J. J. ZINC 15 − Ligand discovery for
everyone. J. Chem. Inf. Model. 2015, 55, 2324−2337.
(33) Baell, J. B.; Ferrins, L.; Falk, H.; Nikolakopoulos, G. PAINS:
Relevance to tool compound discovery and fragment-based screening.
Aust. J. Chem. 2013, 66, 1483−1494.
(34) Lange, A.; Günther, M.; Büttner, F. M.; Zimmermann, M. O.;
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S2 

General information 
 
All reagents and (anhydrous) solvents are commercially available and were used without further purification. 
4-(4-(4-Fluorophenyl)-1-methyl-2-(methylthio)-1H-imidazol-5-yl)pyridin-2-amine (31) was synthesized 
according to literature.1 N1-(4-(4-(4-Fluorophenyl)-2-(methylthio)-1H-imidazol-5-yl)pyridin-2-yl)benzene-1,4-
diamine (3) was synthesized according to literature.2  
 
 
NMR: 
1H- and 13C-NMR spectra were obtained with Bruker 200 Avance, Bruker ARX 250, Bruker Avance III HD 300 
NanoBay or with Bruker 400 Avance. The spectra were obtained in the indicated solvent and calibrated against 
the residual proton peak of the deuterated solvent. Chemical shifts (δ) are reported in parts per million (ppm). 
 
Mass Spectrometry: 
Mass spectra were recorded on Advion Expression S ESI-MS coupled with a TLC interface. High-resolution 
mass spectra (FT-ICR-MS) were obtained from the Institute of Pharmaceutical Sciences, Department of 
Pharmaceutical Analytics and Bioanalytics, Eberhard Karls Universität Tübingen. GC/MS analyses were carried 
out on a Hewlett Packard HP 6890 series GC-system equipped with a HP-5MS capillary column (0.25 µm film 
thickness, 30 m x 250 µm) and a HP 5973 mass selective detector (EI ionization). Helium was used as carrier 
gas in the following temperature program: start at 100 °C and hold for 1 min, then increase to 270 °C in 27.3 
min, then increase to 300 °C in 9 min and hold for 2 min. 
 
TLC: 
Analyses were performed on fluorescent silica gel 60 F254 plates (Merck) and visualized under UV illumination 
at 254 nm and 366 nm. 
 
Column chromatography: 
Column chromatography was performed on Davisil LC60A 20-45 micron silica from Grace Davison and 
Geduran Si60 63-200 micron silica from Merck for the pre-column using an Interchim PuriFlash 430 automated 
flash chromatography system. 
 
HPLC: 
The purity of all tested compounds was determined via reverse phase high performance liquid 

chromatography. The purity of all tested compounds is ≥ 95 %. 
In case of compounds 4,5 and 7-22: Hewlett Packard HP 1090 Series II LC equipped with a UV diode array 

detector (DAD, detection at 230 nm and 254 nm); Phenomenex Luna 5u C8 column (150 mm x 4.6 mm, 5 µm); 

35 °C oven temperature; injection volume: 5 µL; gradient (flow: 1.5 mL/min): 0.01 M KH2PO4, pH 2.3 (solvent 

A), methanol (solvent B): 40 % B to 85 % B in 8 min, 85 % B for 5 min, 85% to 40 % B in 1 min, 40 % B for 2 min, 

stop time 16 min. 

In case of compounds 6 and 23: Agilent 1100; XBridgeTM C18 (150 mm x 4.6 mm, 5 µm); 30 °C oven 

temperature; injection volume: 10 µL; gradient (flow: 1.5 mL/min): 0.01 M KH2PO4, pH 2.3 (solvent A), 

methanol (solvent B): 45 % B to 85 % B in 9 min, 85 % B for 6 min, stop time 15 min. 
 
Docking: 
The docking studies were carried out using Schroedinger Glide Docking Tool.3 The presented docking results 
were the best ranked ones. For visualization and generation of pharmacophore models, PyMOL Molecular 
Graphics System, Version 0.99 Schrödinger, LLC4 was used. 
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Schemes S1-S4 

 

Scheme S1. Synthesis of tri-substituted pyridinylimidazole 6.a 

 
aReagents and conditions: (i) 3-propionamidobenzoic acid, PyBOP, DIPEA, DMF, DCM, rt, 18 h. 

 

Scheme S2. Synthesis of tetra-substituted pyridinylimidazole 9.a 

 
aReagents and conditions: (i) Cs2CO3, BrettPhos precatalyst, 1,4-dioxane(abs)/tert-butanol 4:1, 125 °C, 5 h; (ii) Zn, 

ammonium formate, EtOH, reflux temperature, 4 h. 

 

Scheme S3. Synthesis of N1-(4-(4-Methyl-2-(methylthio)-1H-imidazol-5-yl)pyridin-2-yl)benzene-1,4-

diamine (32).a 

 
aReagents and conditions: (i) NH2OH·HCl, NaOH, CH3OH, 0 °C, 2 h; (ii) p-toluenesulfonylchloride, pyridine, 24 h; (iii) a) K, 

EtOH, 0 °C to rt, Et2O, 16h; b) HCl, 50 °C, 4 h; c) KSCN, MeOH, reflux temperature, 4 h; (iv) NaOtBu, MeI, MeOH, 0 °C to 

55 °C; (v) p-phenylenediamine, n-butanol, 1.25 M HCl in ethanol, 160 °C, 18 h.  
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Scheme S4. Synthesis of tri-substituted pyridinylimidazole 23.a 

 
aReagents and conditions: (i) 3-propionamidobenzoic acid, PyBOP, DIPEA, DMF, DCM, rt, 18 h. 
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Experimental procedures 
 
N-(4-((4-(4-(4-Fluorophenyl)-1-methyl-2-(methylthio)-1H-imidazol-5-yl)pyridin-2-yl)amino)phenyl)-3-
nitrobenzamide (S1) 
 

 
 
According to general procedure F, S1 was synthesized from 31 and 28a. Eluent: ethyl acetate/n-hexane 30/70 
 ethyl acetate/n-hexane 60/40. The product containing fractions were unified and all volatiles were 

evaporated under reduced pressure. Yield: 28 %. 1H NMR (200 MHz, DMSO-d6) δ 10.49 (s, 1H), 9.18 (s, 1H), 
8.82 – 8.75 (m, 1H), 8.47 – 8.36 (m, 2H), 8.27 (d, J = 5.6 Hz, 1H), 7.83 (t, J = 8.0 Hz, 1H), 7.66 (s, 4H), 7.53 – 7.41 
(m, 2H), 7.21 – 7.08 (m, 2H), 6.79 – 6.71 (m, 2H), 3.43 (s, 3H), 2.65 (s, 3H). Exact Mass: 554.2; ESI-MS (m/z): 
353.2 [M-H]- 
 
 
1-(2-Chloropyridin-4-yl)propan-1-one oxime (S2). 
 

 
 
A solution of sodium hydroxide (20%; 10 mL) and hydroxylamine hydrochloride (1.79 g, 25.69 mmol) in water 
(10 mL) was added to a solution of 2-chloro-4-propionylpyridine (3.96 g, 23.25 mmol) in methanol (20 mL) at 
0 °C. After the reaction was stirred for 2 h at 0 °C, the product was extracted by ethyl acetate and the solvent 
was evaporated under reduced pressure to obtain the product as a white-yellowish solid (90 %; 3.56 g). 1H 
NMR (400 MHz, DMSO-d6) δ 11.88 (s, 1H), 8.42 (d, J = 5.1 Hz, 1H), 7.65 (dd, J = 4.4, 5.9 Hz, 2H), 2.72 (q, J = 7.3 
Hz, 2H), 1.02 (t, J = 7.5 Hz, 3H); 13C NMR (101 MHz, DMSO-d6) δ 155.5, 151.0, 150.2, 146.6, 120.2, 119.5, 17.6, 
10.4. GC-MS (m/z) calculated: 184.04 [M]+; found: 184.0. 
 
 
1-(2-Chloropyridin-4-yl)propan-1-one O-tosyl oxime (S3) 
 

 
 

p-Toluenesulfonylchloride (10.58 g, 55.50 mmol) was added to a solution of 2-chloro-4-propionylpyridine 
oxime (S2) (6.81 g, 37.00 mmol) in dry pyridine (40 mL) under argon atmosphere. After the reaction was stirred 
for 24 h at rt, the solution was diluted with ice water (300 mL) and stirred for further 3 h. The water layer was 
extracted with ethyl acetate, washed with water and purified by flash chromatography (SiO2, n-hexane/ethyl 
acetate, 100:00 to 90:10) to get a viscous yellow oil (yield: 83 %; 10.47 g). 1H NMR (400 MHz, DMSO-d6) δ 8.50 
(d, J = 5.1 Hz, 1H), 7.91 (d, J = 7.8 Hz, 2H), 7.64 (s, 1H), 7.56 (d, J = 5.1 Hz, 1H), 7.49 (d, J = 7.8 Hz, 2H), 2.81 (d, 
J = 7.5 Hz, 2H), 2.41 (s, 3H), 0.99 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 166.6, 151.2, 150.8, 145.8, 143.0, 
131.4, 130.1, 128.5, 121.7, 120.5, 21.1, 20.6, 10.4. FABMS: (m/z) calculated: 339.06 [M+H]+; found: 339.1. 
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4-(2-Chloropyridin-4-yl)-5-methyl-1,3-dihydro-2H-imidazole-2-thione (S4) 
 

 
 
The preparation of S4 was performed in three steps: 
1) Solid potassium (1.21 g, 30.92 mmol) was added in pieces to absolute ethanol (50 mL). After the potassium 
was totally dissolved the reaction mixture was cooled to 0 °C and 1-(2-chloropyridin-4-yl)propan-1-one O-tosyl 
oxime (S3) (10.47 g, 30.92 mmol) in absolute ethanol (350 mL) was added dropwise to the solution. After 
completion of the addition the reaction was warmed to rt and stirred for 1 h. The solution was diluted with 
diethyl ether (100 mL) and stirred for 16 h. The precipitate was removed by filtration and washed with diethyl 
ether and the filtrate was concentrated at reduced pressure to obtain a yellow viscous liquid (7.80 g). 
2) Concentrated hydrochloric acid (60 mL) was added to the crude product (7.80 g) obtained in step 1 and 
stirred for 4 h at 50 °C. Then, the solvent was evaporated under reduced pressure and a yellow solid (8.15 g) 
was obtained. 
3) Potassium thiocyanate (15.02 g; 154.60 mmol) was added to the crude product (8.15 g) obtained in step 2 
in methanol (160 mL) and stirred for 4 h at 90 °C. The formed yellow precipitate was filtered, washed with 
water and dried under vacuum to get the product as a yellow solid (4.56 g; 65 % over 3 steps). 1H NMR (400 
MHz, DMSO-d6) δ 12.50 (br. s, 1H), 12.43 (br. s, 1H), 8.43 - 8.27 (m, 1H), 7.59 (s, 1H), 7.51 - 7.40 (m, 1H), 2.27 
(s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 161.5, 151.1, 150.1, 139.1, 126.9, 120.1, 118.8, 118.3, 10.8. HPLC tR 
= 2.67 min, purity: 100% (λ = 254 nm). FABMS: (m/z) calculated: 226.02 [M+H]+; found: 226.1. 
 
 
2-Chloro-4-(4-methyl-2-(methylthio)-1H-imidazol-5-yl)pyridine (S5) 
 

 
 
Sodium tert-butoxide (427 mg, 4.44 mmol) was added to a solution of 40 (500 mg, 2.22 mmol) in absolute 
methanol (20 mL). The reaction mixture was cooled to 0 °C and methyl iodide (147.5 µL, 2.22 mmol) was 
added slowly under argon atmosphere. The reaction mixture was stirred for 30 min at 0 °C and 3 h at 55 °C. 
After cooling to rt, the solvent was removed under vacuum, the residue was dissolved in water, extracted with 
ethyl acetate and dried over Na2SO4. The solvent was evaporated under reduced pressure and the residue 
was purified by flash chromatography (SiO2, dichloromethane/ethanol, 100:0 to 90:10) to obtain the product 
as a yellowish solid (76 %; 404 mg). 1H NMR (400 MHz, DMSO-d6) δ 12.46 (br. s, 1H), 8.32 (d, J = 4.8 Hz, 1H), 
7.62 (br. s, 1H), 7.59 (d, J = 4.8 Hz, 1H), 2.57 (s, 3H), 2.44 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 150.8, 149.8, 
145.6, 140.2, 132.2, 129.3, 118.9, 118.6, 15.2, 11.4. HPLC: tR = 4.6 min. ESIMS: (m/z) calculated: 240.04 
[M+H]+; found: 240.0. 
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N1-(4-(4-Methyl-2-(methylthio)-1H-imidazol-5-yl)pyridin-2-yl)benzene-1,4-diamine (32) 
 

 
 
In a pressure glass tube, compound 41 (100 mg, 0.42 mmol) and p-phenylenediamine (67.7 mg, 0.63 mmol) 
were suspended in n-butanol (5 mL). 1.25 M HCl in ethanol (345 µL, 0.42 mmol) was added and the reaction 
was heated overnight at 160 °C. After cooling to rt, the solvent was removed and the residue was purified 
twice by flash chromatography (SiO2, dichloromethane/ethanol, 90:10) to afford 80 mg (62%) as a brown solid. 

1H NMR (250 MHz, DMSO-d6) δ 12.23 (br. s, 1H), 8.36 (s, 1H), 7.97 (d, J = 5.4 Hz, 1H), 7.33 - 7.13 (m, 2H), 6.97 
(s, 1H), 6.91 - 6.64 (m, 1H), 6.59 - 6.43 (m, 2H), 5.01 - 4.26 (m, 2H), 2.53 (s, 3H), 2.37 (s, 3H); 13C NMR (101 
MHz, DMSO-d6) δ 157.4, 147.3, 143.1, 142.8, 138.8, 134.3, 131.1, 126.8, 121.2, 114.2, 110.0, 104.4, 15.5, 11.3. 
HPLC tR = 1.89 min. ESIMS: (m/z) calculated: 312.42 [M+H]+; found: 312.2.  
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Structure of intermediates 28-30 
 
N-(4-Bromophenyl)-3-nitrobenzamide (28a) 
 

 
 
N-(4-Bromophenyl)-2-methyl-3-nitrobenzamide (28b) 
 

 
 
N-(3-Bromophenyl)-3-nitrobenzamide (28c) 
 

 
 
N-(3-Bromophenyl)-2-methyl-3-nitrobenzamide (28d) 
 

 
 
N-(4-Bromophenyl)-4-nitrobenzamide (28e) 
 

 
 
N-(4-Bromo-3-methylphenyl)-4-nitrobenzamide (28f) 
 

 
 
N-(3-Bromophenyl)-4-nitrobenzamide (28g) 
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N-(4-Bromo-3-methylphenyl)-3-nitrobenzamide (28h) 
 

 
 
3-Amino-N-(4-bromophenyl)benzamide (29a) 
 

 
 
3-Amino-N-(4-bromophenyl)-2-methylbenzamide (29b) 
 

 
 
3-Amino-N-(3-bromophenyl)benzamide (29c) 
 

 
 
3-Amino-N-(3-bromophenyl)-2-methylbenzamide (29d) 
 

 
 
4-Amino-N-(4-bromophenyl)benzamide (29e) 
 

 
 
4-Amino-N-(4-bromo-3-methylphenyl)benzamide (29f) 
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4-Amino-N-(3-bromophenyl)benzamide (29g) 
 

 
 
3-Amino-N-(4-bromo-3-methylphenyl)benzamide (29h) 
 

 
 
3-Acrylamido-N-(4-bromophenyl)benzamide (30a) 
 

 
 
N-(4-Bromophenyl)-2-methyl-3-propionamidobenzamide (30b) 
 

 
 
3-Acrylamido-N-(3-bromophenyl)benzamide (30c) 
 

 
 
3-Acrylamido-N-(3-bromophenyl)-2-methylbenzamide (30d) 
 

 
 
4-Acrylamido-N-(4-bromophenyl)benzamide (30e) 
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4-Acrylamido-N-(4-bromo-3-methylphenyl)benzamide (30f) 
 

 
 
4-Acrylamido-N-(3-bromophenyl)benzamide (30g) 
 

 
 
N-(3-Bromophenyl)-3-propionamidobenzamide (30h) 
 

 
N-(4-Bromo-3-methylphenyl)-4-propionamidobenzamide (30i) 
 

 
 
N-(4-Bromophenyl)-3-propionamidobenzamide (30j) 
 

 
 
N-(4-Bromophenyl)-4-propionamidobenzamide (30k) 
 

 
 
3-Acrylamido-N-(4-bromophenyl)-2-methylbenzamide (30l) 
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3-Acrylamido-N-(4-bromo-3-methylphenyl)benzamide (30m) 
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Selectivity Screen  
 
Compounds 7 and 21 were tested at ProQinase GmbH (Freiburg, Germany) against 410 kinases at 
concentrations of 1 µM, 5 µM and 0.1 µM, 0.5 µM respectively. Activities are specified as residual activities 
(% of control) and values under 50 % are highlighted in orange. 
 
Table S1 

# 
Kinase 
Name 

Kinase 
Family* 

7 
c = 0.1 µM 

7 
c = 0.5 µM 

21 
c = 1 µM 

21 
c = 5 µM 

1 ABL1 E255K TK 106 114 94 88 

2 ABL1 F317I TK 102 102 102 82 

3 ABL1 G250E TK 96 75 88 89 

4 ABL1 H396P TK 99 91 93 71 

5 ABL1 M351T TK 101 80 87 61 

6 ABL1 Q252H TK 101 93 96 65 

7 ABL1 T315I TK 94 93 91 82 

8 ABL1 wt TK 108 109 96 71 

9 ABL1 Y253F TK 105 108 85 64 

10 ABL2 TK 134 113 74 84 

11 ACK1 TK 130 128 100 95 

12 ACV-R1 TKL 107 93 85 54 

13 ACV-R1B TKL 92 91 94 94 

14 ACV-R2A TKL 97 92 81 80 

15 ACV-R2B TKL 88 82 88 68 

16 ACV-RL1 TKL 93 86 74 52 

17 AKT1 aa106-480 AGC 104 87 84 69 

18 AKT2 aa107-481 AGC 108 105 92 78 

19 AKT3 aa106-479 AGC 108 122 95 90 

20 ALK C1156Y (GST-HIS-tag) TK 122 117 86 69 

21 ALK F1174L (GST-HIS-tag) TK 113 106 84 74 

22 ALK F1174S (GST-HIS-tag) TK 132 119 92 72 

23 ALK L1196M (GST-HIS-tag) TK 114 102 72 55 

24 ALK R1275Q (GST-HIS-tag) TK 119 123 85 73 

25 ALK wt (GST-HIS-tag) TK 111 105 98 72 

26 AMPK-alpha1 aa1-550 CAMK 70 62 100 93 

27 ARK5 CAMK 85 91 97 88 

28 ASK1 STE 108 104 92 95 

29 Aurora-A OTHER 97 98 74 34 

30 Aurora-B OTHER 102 103 73 40 

31 Aurora-C OTHER 84 81 86 57 

32 AXL TK 105 102 99 76 

33 BLK TK 101 97 77 81 

34 BMPR1A TKL 96 84 83 88 

35 BMX TK 108 111 106 85 

36 B-RAF V600E TKL 91 103 110 113 

37 B-RAF wt TKL 107 107 96 82 

38 BRK TK 109 125 101 105 

39 BRSK1 CAMK 101 109 107 95 

40 BRSK2 CAMK 98 95 103 85 

41 BTK TK 107 107 101 87 

42 BUB1B OTHER 129 112 95 80 

43 CAMK1D CAMK 99 97 90 75 

44 CAMK2A CAMK 88 81 90 90 

45 CAMK2B CAMK 103 89 97 79 

46 CAMK2D CAMK 101 106 95 92 

47 CAMK2G CAML 68 58 81 54 
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48 CAMK4 CAMK 130 115 110 91 

49 CAMKK1 OTHER 64 66 98 108 

50 CAMKK2 OTHER 123 122 83 86 

51 CCDC6-RET TK 106 98 84 84 

52 CDC42BPA AGC 93 89 102 91 

53 CDC42BPB AGC 90 85 89 82 

54 CDC7/DBF4 OTHER 105 109 94 89 

55 CDK1/CycA2 CMGC 96 116 89 79 

56 CDK1/CycB1 CMGC 98 100 94 77 

57 CDK1/CycE1 CMGC 98 88 90 74 

58 CDK12 R722C/CycK CMGC 90 99 93 66 

59 CDK12/CycK wt CMGC 71 65 82 57 

60 CDK16/CycY CMGC 103 108 88 87 

61 CDK19/CycC CMGC 93 105 72 65 

62 CDK2/CycA2 CMGC 109 98 78 56 

63 CDK2/CycE1 CMGC 105 106 88 62 

64 CDK3/CycC CMGC 105 108 91 74 

65 CDK3/CycE1 CMGC 103 97 98 79 

66 CDK4/CycD1 CMGC 107 115 94 76 

67 CDK4/CycD3 CMGC 124 117 92 83 

68 CDK5/p25NCK CMGC 100 95 77 54 

69 CDK5/p35NCK CMGC 96 98 74 36 

70 CDK6/CycD1 CMGC 106 119 91 87 

71 CDK6/CycD3 CMGC 106 109 93 86 

72 CDK7/CycH/MAT1 CMGC 112 114 89 86 

73 CDK8/CycC CMGC 109 100 67 29 

74 CDK9/CycK CMGC 99 107 85 39 

75 CDK9/CycT1 CMGC 98 93 63 38 

76 CHK1 CAMK 110 100 94 100 

77 CHK2 CAMK 91 93 70 36 

78 CK1-alpha1 CK1 100 85 70 38 

79 CK1-delta CK1 59 20 13 3 

80 CK1-epsilon CK1 87 54 57 21 

81 CK1-gamma1 CK1 97 96 65 31 

82 CK1-gamma2 CK1 81 75 22 5 

83 CK1-gamma3 CK1 92 77 38 12 

84 CK2-alpha1 OTHER 91 91 92 75 

85 CK2-alpha2 OTHER 92 94 80 52 

86 CLK1 CMGC 91 98 67 37 

87 CLK2 CMGC 94 92 81 51 

88 CLK3 CMGC 83 68 98 89 

89 CLK4 CMGC 83 86 46 20 

90 COT STE 92 99 95 103 

91 CSF1-R TK 102 89 106 69 

92 CSK TK 102 96 87 81 

93 DAPK1 CAMK 103 98 100 94 

94 DAPK2 CAMK 76 83 92 78 

95 DAPK3 CAMK 88 84 88 88 

96 DCAMKL2 CAMK 97 101 95 94 

97 DDR2 N456S TK 76 81 88 67 

98 DDR2 T654M TK 79 82 89 70 

99 DDR2 wt TK 92 91 90 76 

100 DMPK AGC 107 97 97 92 

101 DNA-PK ATYPICAL 86 98 92 103 

102 DYRK1A CMGC 122 103 92 70 

103 DYRK1B CMGC 106 102 85 53 

104 DYRK2 CMGC 96 105 72 30 

105 DYRK3 CMGC 101 101 82 39 
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106 DYRK4 CMGC 90 89 90 84 

107 EEF2K ATYPICAL 100 98 91 92 

108 EGF-R d746-750 TK 126 109 115 88 

109 EGF-R d747-749/A750P TK 133 132 101 101 

110 EGF-R d747-752/P753S TK 111 104 85 86 

111 EGF-R d752-759 TK 107 101 88 96 

112 EGF-R G719C TK 68 100 96 75 

113 EGF-R G719S TK 107 104 88 97 

114 EGF-R L858R TK 111 119 95 83 

115 EGF-R L861Q TK 114 98 104 91 

116 EGF-R T790M TK 106 108 91 84 

117 EGF-R T790M/L858R TK 114 110 96 96 

118 EGF-R wt TK 138 125 108 101 

119 EIF2AK2 OTHER 123 129 84 55 

120 EIF2AK3 OTHER 100 94 92 97 

121 EML-ALK TKL 108 107 91 89 

122 EML-ALK F117L TKL 105 106 93 80 

123 EPHA1 TK 105 98 90 63 

124 EPHA2 TK 142 128 92 81 

125 EPHA3 TK 103 92 98 89 

126 EPHA4 TK 99 99 93 78 

127 EPHA5 TK 118 113 94 87 

128 EPHA6 TK 114 105 99 100 

129 EPHA7 TK 106 96 93 89 

130 EPHA8 TK 104 101 96 99 

131 EPHB1 TK 122 116 83 82 

132 EPHB2 TK 108 97 93 78 

133 EPHB3 TK 129 115 106 108 

134 EPHB4 TK 143 131 110 111 

135 ERBB2 TK 111 104 92 94 

136 ERBB4 TK 121 108 93 90 

137 ERK1 CMGC 108 107 101 99 

138 ERK2 CMGC 95 95 96 100 

139 ERK5 CMGC 93 94 83 73 

140 ERK7 CMGC 93 84 66 31 

141 FAK aa2-1052 TK 136 133 106 92 

142 FER TK 114 114 104 93 

143 FES TK 117 110 88 91 

144 FGF-R1 V561M TK 115 123 99 65 

145 FGF-R1 wt TK 116 103 105 87 

146 FGF-R2 TK 136 128 105 87 

147 FGF-R3 G697C TK 141 130 103 83 

148 FGF-R3 K650E TK 128 116 104 79 

149 FGF-R3 K650M TK 116 121 97 72 

150 FGF-R3 wt TK 118 112 98 78 

151 FGF-R4 TK 125 128 88 91 

152 FGR TK 100 113 87 79 

153 FLT3 D835Y TK 90 90 65 32 

154 FLT3 ITD TK 107 107 78 49 

155 FLT3 wt TK 96 105 94 62 

156 FRK TK 104 112 99 75 

157 FYN wt TK 140 132 101 100 

158 GRK2 AGC 94 105 101 88 

159 GRK3 AGC 123 110 94 95 

160 GRK4 AGC 92 88 101 97 

161 GRK5 AGC 87 84 97 94 

162 GRK6 AGC 61 76 88 90 

163 GRK7 AGC 87 84 100 99 
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164 GSG2 OTHER 137 146 84 56 

165 GSK3-alpha CMGC 103 88 90 61 

166 GSK3-beta CMGC 112 111 91 85 

167 HCK TK 117 115 105 88 

168 HIPK1 CMGC 91 84 103 143 

169 HIPK2 CMGC 111 106 100 87 

170 HIPK3 CMGC 91 94 93 90 

171 HIPK4 CMGC 112 104 76 37 

172 HRI OTHER 100 87 85 66 

173 IGF1-R TK 101 95 92 86 

174 IKK-alpha OTHER 109 111 78 57 

175 IKK-beta OTHER 104 93 77 63 

176 IKK-epsilon OTHER 99 94 88 70 

177 INS-R TK 103 97 91 83 

178 INSR-R TK 137 131 81 72 

179 IRAK1 TKL 103 100 50 11 

180 IRAK4 (untagged) TKL 117 123 85 56 

181 ITK TK 120 118 95 81 

182 JAK1 aa583-1154 wt TK 86 101 98 96 

183 JAK2 TK 96 97 80 72 

184 JAK3 TK 96 104 79 54 

185 JNK1 CMGC 84 16 5 1 

186 JNK2 CMGC 27 5 8 1 

187 JNK3 CMGC 20 4 3 0 

188 KIT A829P TK 118 120 68 75 

189 KIT D816H TK 124 121 91 66 

190 KIT D816V TK 129 120 87 55 

191 KIT T670I TK 100 104 107 98 

192 KIT V559D TK 144 138 102 94 

193 KIT V559D/T670I TK 103 109 96 77 

194 KIT V559D/V654A TK 148 145 94 85 

195 KIT V560G TK 137 135 95 67 

196 KIT V654A TK 144 113 103 80 

197 KIT wt TK 138 119 98 101 

198 LCK TK 120 107 85 89 

199 LIMK1 TKL 104 102 72 46 

200 LIMK2 TKL 102 102 90 80 

201 LRRK2 G2019S TKL 102 100 72 52 

202 LRRK2 I2020T TKL 108 96 71 49 

203 LRRK2 R1441C TKL 103 96 80 51 

204 LRRK2 wt TKL 84 92 77 47 

205 LTK TK 131 123 108 99 

206 LYN TK 118 110 99 94 

207 MAP3K1 STE 86 91 100 96 

208 MAP3K10 STE 95 87 27 4 

209 MAP3K11 STE 112 140 28 13 

210 MAP3K7/MAP3K7IP1 STE 96 86 101 77 

211 MAP3K9 STE 89 89 80 45 

212 MAP4K2 STE 100 89 89 50 

213 MAP4K4 STE 100 104 79 55 

214 MAP4K5 STE 74 72 71 49 

215 MAPKAPK2 CAMK 43 38 71 42 

216 MAPKAPK3 CAMK 101 100 100 65 

217 MAPKAPK5 CAMK 87 84 96 97 

218 MARK1 CAMK 107 101 100 88 

219 MARK2 CAMK 109 108 93 84 

220 MARK3 CAMK 105 100 82 92 

221 MARK4 CAMK 92 87 92 99 
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222 MATK TK 146 119 92 111 

223 MEK1 wt STE 98 90 96 113 

224 MEK2 STE 99 98 76 36 

225 MEK5 STE 92 92 87 60 

226 MEKK2 STE 88 88 99 88 

227 MEKK3 STE 92 89 102 103 

228 MELK CAMK 102 95 95 70 

229 MERTK TK 125 118 76 41 

230 MET D1228H TK 113 117 76 65 

231 MET D1228N TK 104 96 89 74 

232 MET F1200I TK 111 111 81 59 

233 MET M1250T TK 117 115 88 65 

234 MET wt TK 106 103 93 78 

235 MET Y1230A TK 108 111 97 85 

236 MET Y1230C TK 108 114 90 76 

237 MET Y1230D TK 112 114 88 73 

238 MET Y1230H TK 97 97 92 72 

239 MET Y1235D TK 113 106 105 86 

240 MINK1 STE 116 107 75 44 

241 MKK4 STE 113 134 71 90 

242 MKK6 S207D/T211D STE 103 85 103 126 

243 MKK7 STE 100 84 45 39 

244 MKNK1 CAMK 120 118 90 55 

245 MKNK2 CAMK 96 93 80 31 

246 MLK4 TKL 105 131 81 59 

247 MST1 STE 119 112 96 80 

248 MST2 STE 106 104 83 69 

249 MST3 STE 85 82 85 89 

250 MST4 STE 111 124 94 97 

251 mTOR ATYPICAL 117 107 88 91 

252 MUSK TK 118 120 74 31 

253 MYLK CAMK 107 96 84 60 

254 MYLK2 CAMK 111 98 83 59 

255 MYLK3 CAMK 104 108 89 68 

256 NEK1 OTHER 85 87 80 64 

257 NEK11 OTHER 103 96 103 87 

258 NEK2 OTHER 102 124 92 78 

259 NEK3 OTHER 111 123 73 50 

260 NEK4 OTHER 111 101 79 51 

261 NEK6 OTHER 109 108 91 92 

262 NEK7 OTHER 76 81 91 95 

263 NEK9 OTHER 107 104 97 73 

264 NIK STE 107 96 91 87 

265 NLK CMGC 107 98 86 37 

266 NPM1ALK TK 108 105 94 96 

267 NPM1ALK F1174L TK 127 105 104 106 

268 p38-alpha CMGC 98 50 90 67 

269 p38-beta CMGC 104 93 93 75 

270 p38-delta CMGC 87 77 91 80 

271 p38-gamma CMGC 114 103 94 87 

272 PAK1 STE 97 100 90 84 

273 PAK2 STE 105 90 99 86 

274 PAK3 STE 98 88 98 83 

275 PAK4 STE 98 98 92 76 

276 PAK6 STE 101 98 92 76 

277 PAK7 STE 98 91 90 67 

278 PASK CAMK 107 99 81 55 

279 PBK OTHER 112 107 141 89 
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280 PDGFR-alpha D842V TK 107 101 68 41 

281 PDGFR-alpha T674I TK 100 118 96 84 

282 PDGFR-alpha V561D TK 104 91 91 68 

283 PDGFR-alpha wt TK 96 104 97 72 

284 PDGFR-beta TK 109 101 74 46 

285 PDK1 AGC 117 91 74 39 

286 PHKG1 CAMK 110 127 80 44 

287 PHKG2 CAMK 104 94 94 96 

288 PIM1 CAMK 103 107 87 67 

289 PIM2 CAMK 74 64 101 69 

290 PIM3 CAMK 97 92 93 82 

291 PKA AGC 102 103 84 66 

292 PKC-alpha AGC 116 114 102 80 

293 PKC-beta1 AGC 121 116 111 106 

294 PKC-beta2 AGC 101 100 103 81 

295 PKC-delta AGC 110 117 84 94 

296 PKC-epsilon AGC 113 95 97 108 

297 PKC-eta AGC 107 106 91 78 

298 PKC-gamma AGC 105 113 88 100 

299 PKC-iota AGC 123 102 80 52 

300 PKC-mu AGC 100 93 68 31 

301 PKC-nu AGC 87 76 44 15 

302 PKC-theta AGC 114 115 97 96 

303 PKC-zeta AGC 102 85 87 86 

304 PKC-zeta wt aa 184-592 (PKM-zeta) AGC 109 108 90 68 

305 PKMYT1 OTHER 95 101 74 56 

306 PKN3 AGC 111 122 79 54 

307 PLK1 OTHER 106 106 98 96 

308 PLK3 OTHER 111 106 103 75 

309 PRK1 AGC 104 104 100 91 

310 PRK2 AGC 110 114 90 76 

311 PRKD2 CAMK 92 92 69 43 

312 PRKG1 AGC 100 91 92 87 

313 PRKG2 AGC 105 97 84 81 

314 PRKX AGC 108 67 86 61 

315 PYK2 TK 107 119 91 96 

316 RAF1 Y340D/Y341D (untagged) TKL 97 97 96 92 

317 RET E762Q TK 121 114 95 78 

318 RET G691S TK 112 119 90 77 

319 RET M918T TK 154 124 97 82 

320 RET R749T TK 121 113 96 76 

321 RET R813Q TK 126 117 98 75 

322 RET S891A TK 114 112 95 74 

323 RET V804L TK 107 105 88 80 

324 RET V804M TK 141 131 98 90 

325 RET wt TK 128 161 87 72 

326 RET Y791F TK 145 123 96 71 

327 RIPK2 TKL 99 97 77 43 

328 RIPK5 TKL 93 95 90 67 

329 ROCK1 AGC 93 100 104 80 

330 ROCK2 AGC 100 111 95 75 

331 RON TK 156 145 92 104 

332 ROS TK 117 109 87 74 

333 RPS6KA1 AGC 85 86 82 64 

334 RPS6KA2 AGC 107 90 88 69 

335 RPS6KA3 AGC 86 77 81 58 

336 RPS6KA4 AGC 84 104 97 94 

337 RPS6KA5 AGC 103 100 94 87 
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338 RPS6KA6 AGC 103 115 88 68 

339 S6K AGC 124 119 105 87 

340 S6K-beta AGC 116 102 87 79 

341 SAK OTHER 103 79 77 57 

342 SGK1 AGC 92 109 49 15 

343 SGK2 AGC 85 84 93 71 

344 SGK3 AGC 122 102 82 76 

345 SIK1 CAMK 107 107 107 102 

346 SIK2 CAMK 98 95 108 90 

347 SIK3 CAMK 109 107 65 47 

348 SLK STE 114 133 102 76 

349 SNARK CAMK 98 99 99 87 

350 SNK OTHER 100 103 86 81 

351 SRC (GST-HIS-tag) TK 123 123 98 86 

352 SRMS TK 107 104 95 92 

353 SRPK1 CMGC 92 106 99 86 

354 SRPK2 CMGC 104 87 82 75 

355 STK17A CAMK 84 78 78 35 

356 STK23 CAMK 115 107 97 101 

357 STK25 STE 86 81 88 95 

358 STK33 CAMK 99 98 76 71 

359 STK39 STE 105 77 100 73 

360 SYK aa1-635 TK 114 110 94 86 

361 TAOK2 STE 107 92 38 16 

362 TAOK3 STE 95 102 95 72 

363 TBK1 OTHER 88 95 84 69 

364 TEC TK 98 96 99 81 

365 TGFB-R1 TKL 96 94 106 92 

366 TGFB-R2 TKL 111 128 53 4 

367 TIE2 R849W TK 87 96 92 107 

368 TIE2 wt TK 136 18 85 81 

369 TIE2 Y1108F TK 128 128 95 96 

370 TIE2 Y897S TK 118 110 85 85 

371 TLK1 AGC 105 112 97 90 

372 TLK2 AGC 92 91 92 83 

373 TNK1 TK 103 111 91 61 

374 TRK-A TK 115 111 81 58 

375 TRK-B TK 96 105 89 81 

376 TRK-C TK 116 110 99 79 

377 TSF1 OTHER 96 93 23 6 

378 TSK2 CAMK 91 87 90 97 

379 TSSK1 CAMK 86 77 76 72 

380 TTBK1 CK1 96 102 102 106 

381 TTBK2 CK1 96 84 94 93 

382 TTK OTHER 107 111 72 34 

383 TXK TK 98 98 87 77 

384 TYK2 TK 97 94 77 46 

385 TYRO3 TK 114 104 100 86 

386 VEGF-R1 TK 106 93 84 66 

387 VEGF-R2 TK 121 110 78 50 

388 VEGF-R3 TK 112 93 73 68 

389 VRK1 CK1 72 70 95 97 

390 VRK2 CK1 101 73 97 83 

391 WEE1 OTHER 113 120 73 79 

392 WNK1 OTHER 127 106 95 81 

393 WNK2 OTHER 74 85 98 78 

394 WNK3 OTHER 120 99 79 67 

395 YES TK 113 100 89 75 
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396 ZAK TKL 98 95 48 15 

397 ZAP70 TK 127 114 88 93 

398 PI4K2A Lipid Kinase 113 113 117 133 

399 PI4K2B Lipid Kinase 113 112 128 120 

400 PI4KB Lipid Kinase 91 92 101 79 

401 PIK3C2A Lipid Kinase 138 152 189 183 

402 PIK3C2B Lipid Kinase 109 139 132 133 

403 PIK3C2G Lipid Kinase 145 155 129 108 

404 PIK3C3 Lipid Kinase 98 99 108 103 

405 PIK3CA/PIK3R1 Lipid Kinase 108 108 118 106 

406 PIK3CB/PIK3R1 Lipid Kinase 132 131 138 166 

407 PIK3CD/PIK3R1 Lipid Kinase 110 108 119 113 

408 PIK3CG Lipid Kinase 109 115 176 156 

409 PIP5K1A Lipid Kinase 94 100 102 44 

410 PIP5K1C Lipid Kinase 114 111 107 102 

Selectivity Score (<50 % residual activity): 0.007 0.015 0.037 0.146 

 
*Classification of protein kinase families:5 
AGC: containing PKA, PKG and PKC families 
CAMK: Calcium/Calmoduline-dependent protein kinases 
CK1: Casein kinase 1-like 
CMGC: containing CDK, MAPK, GSK3 and CLK families 
TK: Tyrosine Kinase 
TKL: Tyrosine Kinase-like 
STE: Homologs of Yeast Sterile 7, Sterile 11, Sterile 20 Kinases  
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Direct enzyme- linked immunosorbent assay (ELISA) for routine screening of p38α MAPK 
and JNK3 inhibitors 
 
Being a natural substrate of both p38α MAP kinase and JNK3, activation transcription factor 2 (ATF-2) 
purchased from ProQinase, Freiburg, Germany (# 0594-0000-2) as full-length protein is adsorbed to the 96 
well assay plates (Nunc Maxisorp®) yielding a concentration of 10 µg/mL.  
Dilution rows of candidate inhibitor are prepared in a kinase buffer containing active p38α MAP kinase or 
activate JNK3 enzyme. The active p38α MAP kinase was obtained from Prof. Dr. J. Schultz (University of 
Tübingen, Germany), whereas the active JNK3 enzyme was purchased from ProQinase, Freiburg, Germany 
(#0900-0000-1). The ATP concentrations used in the respective kinase buffers are adjusted to twice the Km 
value, depending on the kinase. 
The activity of p38α MAP kinase or JNK3 kinase after one hour of incubation at 37°C with the candidate 
inhibitors is measured by the phosphorylation degree of ATF-2, which is directly detected by a monoclonal 
peroxidase-conjugated antibody purchased from Sigma Aldrich (#A6228). The phosphorylation degree 
achieved with the respective kinase in absence of inhibitor is taken as positive control (STIM). Pure kinase 
buffer without kinase serves for detection of non-specific binding (NSB). After staining with 3,3’,5,5’-
tetramethylbenzidine reagent (BD Biosciences Europe) and termination of colour development using 1M 
sulphuric acid, the optical density is read out in an ELISA reader at 450 nm. As phosphorylation is inversely 
correlated with the inhibitor potency, the calculation of inhibition is carried out according to the formula.6, 7 

 

𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛[%] = 100 − (
𝑂𝐷450𝑆𝑎𝑚𝑝𝑙𝑒 − 𝑂𝐷450𝑁𝑆𝐵

𝑂𝐷450𝑆𝑇𝐼𝑀 − 𝑂𝐷450𝑁𝑆𝐵
) × 100 
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Investigation of the covalent bond formation using LC-µESI-QTOF mass spectrometry  
 
Covalent bonding has been verified by LC-µESI-QTOF mass spectrometry of intact JNK3. Potential noncovalent 
interactions have been eliminated by chromatography prior to ESI-ionisation and the employment of a high 
declustering potential (DP) of 230V. This is substantiated by the charge series of intact JNK3 consisting only of 
[M+nH]n+ ions, i.e. only H+ -adduct series has been found. Further evidence is provided by 15, an analogue of 
7 with inactive, non-Michael-reactive warhead. Presumably noncovalent bonding to the ATP-binding site is 
disrupted during chromatography and/or the ESI-process due to application of high declustering potential. 
Results show (s. Figures S3a, S3c and S3e), that inactive species produce the same spectrum like the control 
(unmodified JNK3), confirming that only active ligands result in a mass shift corresponding to the mass of the 
inhibitor (Figures S3b and S3d) by covalent modification of JNK3. 
 
 

a) 

 
b) 

 
Figures S1. Charge series of JNK3. a) Charge series consists exclusively of H+-adducts. Charge states from +30 
to +25 have been used for intact protein mass deconvolution. Charge series deconvolutes to M = 42281.9073 
(1xβME‐JNK3). Calculated M for 1xβME-JNK3 is 42281.8941, mass accuracy 0.3ppm; b) Triplet structure of 
charge series is caused by 1-3 times β-mercaptoethanoylation.  
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Figure S2. Chromatogram of JNK3. First 4 minutes have been switched to waste via valve, effectively 
preventing the reaction buffer from entering the ESI-source. JNK3 eluting at t = 5.2 min. 
 
 
 

a) 

 
b)  
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c) 

 
d) 

 
 e) 

  
 

  
Figures S3. Charge series after 1 h of incubation of JNK3 wt with 5 molar excess of inhibitor. a) Control, only 
JNK3; b) 7, reactive warhead (para/meta substituent), mass shift according to mass of ligand. Small residual 
of unmodified JNK3 present; c) 8, no reactive warhead (saturated counterpart of 7), spectrum identical to 
control, no covalent bonding to JNK3; d) 21, reactive warhead, mass shift according to mass of ligand; e) 23, 
no reactive warhead (saturated counterpart of 21), spectrum identical to control, no covalent bonding to 
JNK3. 
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a) 

 
 b) 

  
  
Figures S4. Charge series after 1 h of incubation of JNK3 wt with 5 molar excess of inhibitor. a) Binding assay 
with 14. For 14, that exhibits some activity in IC50-Assay, binding to some extend was observed, as minor 
charge series denoted by (*). For identification, most intense charge series of [JNK3-3xβME-1x410] was 
chosen, with  m/z-series of 1434.8416; 1484.2622; 1537.2659; 1594.1314; 1655.3635; 1721.6486; 1793.2949; 
for deconvolution. Binding ratio was calculated comparing area in 50mDa corridor around target mass after 
baseline subtraction to 29% bound and 71 unbound. Unmodified [JNK3+3xβME] charge series: 1415.4822; 
1464.2572; 1516.5161; 1572.6461; 1633.0937; 1698.3772; 1769.1009; b) 15, no reactive warhead (saturated 
counterpart of 14), spectrum identical to control, no covalent bonding to JNK3. 
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a) 

 
b) 

 
c) 

 
d) 

 
 

Figure S5. Charge series after 1h of incubation of with Cys154  Ala154-mutant of JNK3 with 5 molar excess 

of inhibitor. a) control; b) 7; c) 21; d) 14; No covalent modification by inhibitors could be observed, precluding 

reactivity with other than target Cys154. Protein was visible as β-ME-adduct-series ranging from 0 to 4 

mercaptoethanoylations. For mass accuracy, the intense 1x β-mercaptoethanol-adduct was chosen (left one 

of each peak doublets) for evaluation. Theoretical charge series of unmodified [CysAla-JNK3-1xβ-ME]: 

1409.3247; 1457.8874; 1509.9188; 1565.8044; 1625.9889; 1690.9882; 1761.4041. 
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Table S2. Calculations of ligand masses from charge series deconvolution. 

 

Cmp # 
Protein Mass Ligand Mass shift 

Calculated Measured error ppm Expected Found 

7 42784.5576 42784.2239 -7.8 578.3280 578.6617 

8 42205.8959 42205.51046 9.1 0 0 

15 42205.8959 42205.9047 0.2 0 0 

21 42690.4710 42690.1030 -8.6 484.2071 484.2071 

23 42205.8959 42206.342 10.5 0 0 

 
All calculations show the covalent binding of the inhibitors could be proved by sub Dalton mass accuracy. 
Inhibitor models without reactive warhead do not show any binding to JNK3.  
Note: Ligand masses are denoted as average masses, as protein mass spectrometry in the mass range of the 
target is performed on average rather than monoisotopic peaks. For easy comparison the deconvoluted 
masses of the protein-ligand adducts have been corrected for mercaptoethanoylation. 
 
 

Materials and Methods 
 
LC-QTOF-µESI-MS of intact JNK3-Ligand adducts 
Analysis was performed on a Sciex (Concord, Ontario, Canada) 5600+ TripleTOF mass spectrometer equipped 
with an Agilent (Waldbronn, Germany) 1290 Series UHPLC and a PAL-xts (CTC, Zwingen, Switzerland) 
autosampler for injection. Chromatographic separation was conducted using a ProsWIFT (Thermo Scientific, 
Waltham, USA) 100 x 0.5 mm monolithic polystyrene-dinvinylbenzene copolymer capillary column. Mobile 
phases consisted of A: H2O, 0.1 % formic acid and B: acetonitrile, 0.1 % formic acid. Gradient profile was 0 - 
1.5 min 20 % B, 1.5 - 4.5 min: 20 – 80 % B, 4.5 - 6 min 95 % B. Flow rate: 50 µl/min. First 4 minutes were 
switched to waste to prevent buffer components from entering the ESI-source. Column temperature was kept 
at 22 °C. Injection volume was 5 µl, corresponding to 5 pmol JNK3 absolute per injection. Acetonitrile and 
formic acid were of Ultra-MS-grade, purchased from Carl Roth (Karlsruhe, Germany). Ultra-MS-grade water 
was produced using an Elga (Veolia Water Technologies, Germany) Purelab Ultra system. 
For µflow-electrospray ionization (µESI) the Sciex Duospray Ionsource was outfitted with a 50 µm I.D. PEEKsil-
stainles steel tip hybrid micro-electrode. Mass spectrometry was done using SCIEX “Intact Protein Mode”-
Script with a detector voltage (CEM) lowered by 100V. MS parameters were as follows: gas1 (nebulizer) 50 
psi, gas2 (drying gas) 40 psi, curtain gas 30 psi, source temperature 400 °C, ion source floating voltage (ISFV) 
5200V. Collision energy (CE) was set to protein mode typical 30V facilitating clearance of Q2 (collision cell). 
Declustering potential (DP) was set to 230V for removal of non-covalent species. Q1 transmission: 100 % at 
1250 m/z. time bins: 100. Positive-TOF-mode mass scan: 500-4000 m/z. 
 
Sequence of recombinant JNK3 (average mass was 42205.8959 Da) 
GGSMSKSKVDNQFYSVEVGDSTFTVLKRYQNLKPIGSGAQGIVCAAYDAVLDRNVAIKKLSRPFQNQTHAKRAYRELVLMK
CVNHKNIISLLNVFTPQKTLEEFQDVYLVMELMDANLCQVIQMELDHERMSYLLYQMLCGIKHLHSAGIIHRDLKPSNIVVKS
DCTLKILDFGLARTAGTSFMMTPYVVTRYYRAPEVILGMGYKENVDIWSVGCIMGEMVRHKILFPGRDYIDQWNKVIEQLG
TPCPEFMKKLQPTVRNYVENRPKYAGLTFPKLFPDSLFPADSEHNKLKASQARDLLSKMLVIDPAKRISVDDALQHPYINVWY
DPAEVEAPPPQIYDKQLDEREHTIEEWKELIYKEVMNSE 
 
Sequence of mutant JNK3 (average mass 42173.8359 Da) 
GGSMSKSKVDNQFYSVEVGDSTFTVLKRYQNLKPIGSGAQGIVCAAYDAVLDRNVAIKKLSRPFQNQTHAKRAYRELVLMK
CVNHKNIISLLNVFTPQKTLEEFQDVYLVMELMDANL(A)QVIQMELDHERMSYLLYQMLCGIKHLHSAGIIHRDLKPSNIVV
KSDCTLKILDFGLARTAGTSFMMTPYVVTRYYRAPEVILGMGYKENVDIWSVGCIMGEMVRHKILFPGRDYIDQWNKVIEQ
LGTPCPEFMKKLQPTVRNYVENRPKYAGLTFPKLFPDSLFPADSEHNKLKASQARDLLSKMLVIDPAKRISVDDALQHPYINV
WYDPAEVEAPPPQIYDKQLDEREHTIEEWKELIYKEVMNSE  
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Binding assay 
Binding assay was performed in 60 mM ammonium acetate. Reaction volume was 200 µl, containing 200 pmol 
of JNK3 and 1 nmol of inhibitor and 0.5 % (v/v) DMSO. Binding reaction was performed at 37 °C for 1h. Samples 
were analyzed immediately afterwards, stored at 4 °C in the autosampler during analysis. 
 

 
  



 
S29 

In vitro reactivity study of inhibitor 7 with glutathione 
 
The in vitro reactivity of covalent inhibitor 7 was determined similar to a protocol published by Schmidt et al.8 
This protocol was adapted by using the conditions of our in house kinase assay (buffer, reaction time and 
temperature). N-Phenylacrylamide (PAA) served as a positive control since it is known that PAA forms adducts 
with glutathione under physiological conditions.9 
 
Buffer:  50 mM Tris [pH 7.5], 10 mM MgCl2, 10mM β-glycerolphosphate, 100 µg/ml BSA, 1 mM dithiothreitol, 

0.1 mM Na3VO4 
 
Table S3. Incubation of compound 7 (10 µM) and PAA (10 µM) with 5 mM glutathione 

 

time [min] cpd 7 [%] PAA [%] 

0 99.9 100 

9 99.2 91.6 

18 98.5 86.1 

27 97.6 81.0 

36 96.8 76.7 

45 96.1 70.5 

54 93.7 66.5 
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In Vitro Metabolism Studies 
 
Pooled human male liver microsomes (HLM) were purchased from Sigma-Aldrich (Steinheim, Germany). These 
microsomes were characterized in protein and cytochrome P-450 content. All incubations were made in the 
presence of an NADPH-regenerating system, consisting of 5 mM Glucose-6-phosphate, 5 U/mL Glucose-6-
phosphate dehydrogenase and 1 mM NADP+. The substrate (100 μM), the NADPH regenerating system and 
3.8 mM MgCl2 x 6 H2O in 0.1 M Tris-buffer (pH = 7.4 at 37 °C) were preincubated for 5 min in a shaking heating 
block at 37 °C and 550 rpm.10 The incubation mix was split into 75 μL aliquots and the reaction was started by 
addition of the HLM. Thereby the microsomal protein content was standardized to 1 mg/mL. To follow the 
course of metabolism, the reaction tubes were quenched at selected time points (0, 10, 20, 30, 45, 60, 130/135 
and 180/190 min; analyte 7/21) by adding 225 μL icecooled internal standard at a concentration of 100 μM 
for 7 and 20 μM for 21 in acetonitrile (ACN). The samples were vortexed for 30 s and centrifuged (19800 
relative centrifugal force/4°C/20 min). The supernatant was directly used for LC-MS analysis. All incubations 
were conducted in triplicates and incubations with heat-inactivated HLM were used to proof that analyte 
reduction results from metabolic degradation only. In all incubations a limit of 1 % organic solvent was not 
exceeded.11 
 
Screening of Metabolites by LC-MS Analysis 
 
Metabolite formation was analyzed with an Alliance 2695 Separations Module (Waters GmbH, Eschborn). 
Samples were maintained at 4 °C, the column temperature was set to 40 °C and injection volume was 10 μL. 
The chromatographic separation of analyte 7 was performed on a Waters Symmetry®C18 (150 x 4.6 mm; 5 
μm); 21 on a Phenomenex Synergi Max RP column (150 x 4.6 mm; 5 μm) with a precolumn of the same 
material, respectively. An isocratic elution of 11.0 min for 7 and 8.0 min for 21 with 63 % solvent A (90 % H2O, 
10 % ACN, 0.1 % formic acid) and 37 % solvent B (ACN, 0.1 % formic acid) at a flow rate of 400 μL/min was 
used. The detection was performed on a Micromass Quattro micro triple quadrupole mass spectrometer 
(Waters GmbH, Eschborn) using the electrospray ionization in the positive-mode. Correspondent to the 
analyte the spray voltage was set to 3.5 - 4.25 kV. The heated capillary operated at 250 °C and the desolvation 
gas flow worked at 500 L/h. 
 

 
Figure S6. Degradation scheme of compound 21 while incubating in HLM for 190 min. 
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Figure S7. Degradation scheme of compound 7 while incubating in HLM for 180 min. 
 
 
 
Table S4. Metabolic stability  

Cmp 

IC50 [nM] 

OxMeta JNK3 p38α 

21 2 1,952 69b 

7 <1 36 87c 

aPercent remaining after incubation with HLM; bincubation time: 190 min; cincubation time: 180 min. 
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Papain-functionalized gold nanoparticles as heterogeneous biocatalyst
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h i g h l i g h t s g r a p h i c a l a b s t r a c t

� An immobilized enzyme reactor was
synthesized with gold nanoparticles
(GNPs) as support.

� Polyelectrolyte layer-by-layer GNP
modification with subsequent papain
coupling.

� Resonant mass measurement tech-
nology for determination of surface
coverage.

� Enhanced catalytic efficiency of
immobilized papain compared to free
papain.

� Successful digestion of human IgG
with papain-GNP verified by HPLC-
mESI-QTOF-MS in intact protein
mode.
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a b s t r a c t

Surface-modified gold nanoparticles (GNPs) were synthesized via layer-by-layer process with alternating
cationic polyallylamine and anionic poly(acrylic acid) polyelectrolyte layers leading to a highly hydro-
philic biocompatible shell supporting colloidal stability. Afterwards, papain was covalently immobilized
on the modified GNPs via amide coupling between the amino groups on papain and the terminal car-
boxylic groups of the modified GNPs by using N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide and N-
hydroxysulfosuccinimide sodium as coupling agents. The resultant papain-functionalized gold nano-
particles were characterized by surface plasmon resonance, dynamic light scattering and zeta potential
measurements. The new technology resonant mass measurement was applied for determining the
average number of papain molecules immobilized per GNP by measurement of the single nanoparticle
buoyant mass in the range of femtograms. The activity of the immobilized enzyme was estimated by
determination of the kinetic parameters (Km, Vmax and kcat) with the standard chromogenic substrate Na-
benzoyl-DL-arginine-4-nitroanilide hydrochloride. It was found that Km of immobilized and free enzyme
are in the same order of magnitude. On contrary, turnover numbers kcat were significantly higher for
GNP-conjugated papain. Further, the gold nanobiocatalyst was applied for digestion of polyclonal human
immunoglobulin G to yield protein fragments. The resultant fragment mixture was further analyzed by
high-performance liquid chromatography-microelectrospray ionization-quadrupole-time-of-flight mass
spectrometry, which demonstrated the applicability of the bioreactor based on papain functionalized

Abbreviations: GNP, gold nanoparticle; papain-GNP, papain-functionalized GNP; DLS, dynamic light scattering; SPR, surface plasmon resonance; RMM, resonant mass
measurement; EDC, N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide; Sulfo-NHS, N-Hydroxysulfosuccinimide sodium; PAH, Poly(allylamine hydrochloride); PAA, Poly(-
acrylic acid, sodium salt); BApNA, Na-Benzoyl-DL-arginine-4-nitroanilide hydrochloride; z-potential, zeta potential; IMER, immobilized enzyme reactor.
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GNPs. The immobilized papain not only has higher catalytic activity and better stability, but also can be
easily isolated from the reaction medium by straightforward centrifugation steps for reuse.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Enzymes with a number of excellent properties (high activity,
selectivity and specificity) are extensively used to catalyze a wide
range of commercially important processes [1]. However, some
limitations exist for the applications of enzymes, such as low sta-
bility and high sensitivity to the employed conditions. Therefore,
immobilization techniques of enzymes (leading to immobilized
enzyme reactors, IMERs) emerged as a powerful strategy to over-
come some of these limitations [2e10]. They received particular
interest due to some advanced properties such as high catalytic
efficiency, improved stability, elimination of self-digestion, flexible
control of the reaction, easy removal after reaction, no contami-
nation of the product with enzyme and repetitive usage [4,11e14].
Enzymes immobilized on nanomaterials possess considerable
prospect in various fields, because the catalytic properties of en-
zymes can be flexibly combined with the unique features of
nanomaterial structures [12,15e19].

Silica nanoparticles [20], polystyrene [4] and magnetic nano-
particles [21] have been frequently utilized for the enzyme
immobilization by covalent binding, entrapment, adsorption, ionic
binding, affinity binding and so on [22e24]. A growing number of
studies suggested that immobilizing enzyme on nanomaterials can
enhance reaction rates while improving enzyme stability [25e28].
Amongst the nanomaterials, gold nanoparticles (GNPs) have
received great attention in biology, biochemistry and biomedical
research areas due to controlled geometrical, excellent optical and
flexible surface chemical properties [29]. GNPs can be synthesized
in a straightforward and low-cost method by reduction of gold (III)
chloride. Due to the chemical inertness of gold they possess
excellent chemical stability and due to charged capping groups on
their surface also a high colloidal stability. They can be easily
further functionalized with appropriate organic or biological li-
gands which form the basis for their extremely broad applications.
Like for other metal nanoparticles, a surface plasmon resonance
(SPR) band can be observed in the visible spectrum which is the
result of the collective oscillation of electrons in the conduction
band of gold nanoparticles in resonance with a specific wavelength
of incident light [30]. For gold nanoparticles it results in a strong
absorbance band in the visible region (around 525 nm). The exact
wavelength maximum as well as width of the absorption band
depends on the nanoparticle size and shape, size distribution, and
morphological uniformity of GNPs [31,32]. SPR measurement is
therefore a straightforward and useful tool to characterize GNPs
and monitor the success of surface modification as well as to
evaluate the aggregation status of GNP suspensions. If a second
peak can be observed in the red-shifted region of the UV-VIS
spectrum, it implies that aggregation of GNPs occurred. The large
surface-to-volume ratio of GNPs provides considerable promise for
the bioconjugation with various receptor molecules (e.g. proteins,
DNAs, aptamers, antibodies, or lectins) [33]. The bioconjugation
chemistries used for the immobilization are generally derived from
the protein labeling chemistries by using various commercial
crosslinkers based on maleimides, succinimidyl esters and so on. In
addition, carboxylic and amino groups of proteins are widely used
as the reactive sites for conjugation through amide bond formation
[34].

Papain, a cysteine protease with broad specificity present in the
latex of Carica papaya, catalyzes the hydrolysis of peptide, ester and
amide bonds. Therefore, it is extensively employed in food, phar-
maceutical, biology and biomedical researches [35e40]. In recent
years, preparing Fab fragments with papain via specific digestion
above the hinge region (the site of the disulfide bonds which
connect the two heavy chains) of the whole antibody attracted
some attention. The Fab fragment is a monovalent antibody
structure harboring the CDR (complementarity-determining re-
gion) without Fc portion. It can still specifically recognize and bind
to antigens. In biopharmaceuticals research and quality control, Fab
fragments are prepared to characterize the protein on an inter-
mediate level instead of the whole intact immunoglobulin (middle
up and middle down). Middle-up refers to the analysis of an anti-
body after its cleavage into large fragments, e.g. by reduction or
limited proteolytic cleavage. Proteins of such smaller size are easier
to analyze than larger proteins like intact antibody and can be
detected with better sensitivity. Middle-down refers to the mass
measurement of the gas phase fragmentation of antibody frag-
ments, in analogy to the mass measurement of the gas phase
fragmentation of intact protein in top-down analysis [41]. An
antibody digested by papain generates two Fab fragments (about
50 kDa) and one Fc fragment (also about 50 kDa). Pure Fab fragment
can be obtained after purification of digests by affinity chroma-
tography (with protein A to remove the Fc part), ion exchange, and
size exclusion chromatography [39,40]. The main goal of this study
was to prepare stable immobilized papain on GNPs for use in
sample preparation protocols of antibody analytics. For this pur-
pose, it is necessary that the obtained immobilized papain nano-
biocatalyst has sufficient colloidal stability and satisfactory
bioactivity to yield useful Fab fragments for analytical character-
ization by mass spectrometry via enzyme digestion. In this
research, surface-modified GNPs with highly hydrophilic and
biocompatible shell were first prepared from oppositely charged
polyelectrolytes via their alternating deposition by a layer-by-layer
process (LBL) onto citrate stabilized GNPs [42e44]. The immobili-
zation process was carried out by using cross-linker agents to link
the carboxylic group on the surface of carboxy-modified GNPs with
the amino group on papain [42e44]. The covalent (instead of
adsorptive) bonding was selected for irreversible immobilization to
avoid enzyme leaching from the support surface [45]. The number
of immobilized papain molecules on GNPs is an important figure
for the determination of the immobilization efficiency. Resonant
massmeasurement (RMM)was applied herein tomeasure themass
increase of the nanoparticles upon immobilization of papain and
determine the surface coverage [46]. It is well-known that papain,
like other proteases, is prone to auto-digestion. The resultant
peptides will cause the contamination of the protein digestion
products. Therefore, immobilization of proteases like papain on a
solid support is a good solution to eliminate this kind of contami-
nation produced by auto-digestion [47]. In addition, the papain-
functionalized GNPs can be easily removed from the reaction so-
lution by a simple centrifugation process, which also terminates the
digestion. Therefore, using immobilized papain makes it easy to
control the reaction time without using any stop reagents which
normally introduce contamination to the product solution.
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2. Experimental

2.1. Materials

Papain (EC 3.4.22.2) was purchased from Acros Organics (Geel,
Belgium). Human immunoglobulin G (Gammanorm) (h-IgG) was
obtained from Octapharma (Heidelberg, Germany). The lot
employed in this study was already expired. Gold (III) chloride
trihydrate (HAuCl4$3H2O), trisodium citrate, poly(acrylic acid, so-
dium salt) solution (PAA, Mw. ~ 15,000, 35% in H2O), poly(allyl-
amine hydrochloride) (PAH, Mw.~17,500), N-(3-
dimethylaminopropyl)-N'-ethylcarbodiimide (EDC), N-hydrox-
ysulfosuccinimide sodium (sulfo-NHS), sodium phosphate mono-
basic dihydrate, sodium carbonate anhydrous, sodium hydroxide,
K-Na-tartrate (potassium sodium tartrate), N-benzoyl-DL-arginine-
4-nitroanilide hydrochloride (BApNA) and p-nitroaniline, copper
(II) sulfate, Folin & Ciocalteu's phenol reagent glycerol, 2-amino-2-
(hydroxymethyl)-1,3-propanediol (Tris base), acrylamide/bis-
acrylamide (30% solution), glycerol, and a ProteoSilver TM silver
staining kit were obtained from Sigma-Aldrich (Munich, Germany).
Ammonium persulfate was from AppliChem (Darmstadt, Ger-
many). HPLC-grade acetonitrile was purchased from JT Baker
Chemical Co. (Deventer, The Netherlands). Double deionized water
(produced by Elga Purelab Ultra ELGA, System LabWater, Celle,
Germany) was used throughout synthesis of functionalized GNPs
and analytical procedures including LC-MS.

2.2. Preparation of papain-functionalized GNPs

Gold nanoparticles were prepared according to the Turkevich-
Frens method with some modifications [48]. In brief, 25.25 mg
HAuCl4 were dissolved in 50mLwater (with a final concentration of
1.14 mM) and then heated at 170 �C under reflux and constant
stirring for 10 min. Afterwards 6.25 mL trisodium citrate (2.28 mM)
were added and heated for another 10 min under reflux and con-
stant stirring. Then the colloidal solution was kept stirring without
heating for an additional 60min to cool down to room temperature.
The obtained citrate-GNP solution was stored at 4 �C for further
usage.

The surface modification of GNPs was realized via the layer-by-
layer process (LDL) reported by Schneider and Decher [49]. In brief,
citrate-stabilized GNP suspensions were first centrifuged
(12,000 rpm, 10 min), the supernatant discarded and the pellet
washed with water to remove citrate from the supernatant. After-
wards 10 mL citrate-GNP suspension were added dropwise to the
same volume of PAH solution (20 mg mL�1, 10 mL) under contin-
uous vigorous stirring, and then kept gently stirring for 30 min at
room temperature in the dark. To remove excess PAH, the reaction
mixture was centrifuged (12,000 rpm, 15 min), the supernatant
discarded and the pellet washed twice with 10 mL water. The
second layer coating process was performed according to the first
coating step but PAH was replaced by PAA (20 mg mL�1). After
removal of the supernatant and two washing steps performed as
above, the modified GNPs (GNP/PAH/PAA) were resuspended in
20 mM phosphate buffer (pH 6.8). Subsequently, 20 mL EDC
(12 mM) and 20 mL sulfo-NHS (60 mM) solutions in water were
added into 760 mL GNP/PAH/PAA suspension to yield activated
carboxylic groups in the form of sulfo-NHS esters which were
further coupled with amino groups on the surface of papain. For
this purpose, 800 mL activated GNP/PAH/PAA suspension was
added dropwise into 200 mL papain solution with four different
concentrations (1 mg mL�1, 2 mg mL�1, 5 mg mL�1, 10 mg mL�1)
under continuous vigorous stirring. The reaction mixture was then
stirred gently for 2 h, and allowed to stand for 12 h at room tem-
perature. To remove excess papain, the obtained papain-GNP

suspension was centrifuged (12,000 rpm, 15 min), the supernatant
discarded and the pellet washed with water. The wash procedure
was repeated two times and finally the pellet was resuspended in
20 mM phosphate buffer (pH 6.8). The papain-GNP solution was
stored at 4 �C prior to use.

2.3. Characterization

After each step of surface modification, SPR bands of GNPs were
measured in the wavelength range between 300 nm and 800 nm
with a UV-1600PC spectrophotometer (from VWR, Darmstadt,
Germany) to determine the size changes as well as nanoparticle
dispersion and aggregation status. Size and size distribution of
GNPs were studied by dynamic light scattering (DLS) based on the
Brownian motion of the particles using a Zetasizer Nano ZS from
Malvern Instruments (Herrenberg, Germany). The stability of the
GNP dispersions was determined by zeta potential (z-potential)
measurements before and after each modification step with the
Zetasizer Nano ZS. The Zetasizer Nano ZS was equipped with a
HeeNe laser and each measurement was performed at 173 �C
backscatter detection mode. Each sample was diluted with water
(1:5; v/v) before detection and measured in triplicate. Each re-
ported value represents the mean of at least 15 subruns.

2.4. Quantitative determination of the immobilized papain

RMM using the Archimedes instrumentation from Malvern In-
struments was employed to determine the amount of immobilized
papain on nanoparticles. All the samples were diluted with water
(1:5; v/v) before each measurement. Before measurements, (mass)
calibration of the microchip was performed with 1 mm latex stan-
dard. The microchannel was then flushed with purified water
before analysis, and the impurities in the systemwere subsequently
removed by sneezing steps. The limit of detection was set to
0.030 Hz, which was well above the noise level and optimal for
detection of nanoparticles. Each measurement was carried out at
room temperature, and the determination numbers of particles
were set to 2000 to ensure satisfactory statistics of the nanoparticle
distributions. The density of gold was 19.320 g mL�1, and the
density of fluid was 1 g mL�1. With these conditions, the average
buoyant masses of particles before and after immobilization of
papain were measured. The average real masses (drymass) of
papain-GNPs were obtained from the conversion of buoyant mass.

2.5. Assays of papain activity

In order to determine the activity of both free papain and
immobilized papain, N-benzoyl-DL-arginine-4-nitroanilide hydro-
chloride (BApNA) was selected as a substrate for the kinetic assays.
In principle, BApNA was cleaved by papain to produce p-nitroani-
line which was measured with the Versa max microplate reader
(from Molecular Devices LLC, Biberach, Germany) at an absorbance
of 410 nm. A concentration series of BApNA was digested with
papain (free papain and immobilized papain, respectively) in
20 mM phosphate buffer (pH 6.8) at 37 �C. For the digestion with
papain, different volumes of BApNA stock solutions in phosphate
buffer (2 mM) and 50 mL enzyme solution (2 mg mL�1) were added
to the 96 wells, and different volumes of phosphate buffer were
filled to obtain the final volume of 100 mL. Digestionwas performed
at 37 �C controlled by the microplate reader, and the absorbance of
all the samples were recorded every twominutes with kinetics scan
mode. For the digestion with papain-GNP, 50 mL papain-GNP so-
lution in 20 mM phosphate buffer (pH 6.8) were added and
digestion was performed as described above for 10 min. After
stopping the digestion by immediate centrifugation, the
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supernatant was analyzed with microplate reader in endpoint
mode. The Michaelis-Menten plot and Lineweaver-Burk plot were
built based on the calculated initial velocity. Finally, the kinetic
parameters (Km, Vmax and kcat) were calculated by using the
Lineweaver-Burk equation. All experiments were performed in
triplicate.

2.6. Antibody digestion with papain-functionalized GNPs

For the antibody digestion, immunoglobulin G solutions were
first digested with papain-functionalized GNPs. For digestion,
10 mg mL�1 IgG solution was diluted with water to 0.5 mg mL�1

and used as stock solution. Subsequently, 100 mL of above solution
of immobilized papain on GNPs wasmixedwith 100 mL IgG solution
(0.5 mg mL�1), and incubated at 50 �C with gentle shaking at
450 rpmwith a Thermoshaker (Peqlab, Erlangen, Germany) for 4 h,
8 h and 24 h, respectively. After digestion, the GNP-based nano-
biocatalyst was easily separated from the crude digest by a
centrifugation step (12,000 rpm,10min). Finally, the clear digestion
solution (supernatant) was analyzed by sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) and high-
performance liquid chromatography-microelectrospray ioniza-
tion-quadrupole-time-of-flight mass spectrometry (HPLC-mESI-
QTOF-MS) in intact protein mode (vide infra).

2.7. SDS-PAGE

A Mini-PROTEAN 3Cell with Mini-PROTEAN 3 PowerPac 300
system (200/240 V) obtained from Bio-Rad Laboratories (Munich,
Germany) was applied for the SDS-PAGE. The Precision plus protein
mix (from Bio-Rad Laboratories) was used as the standard protein
marker. A ten percent Tris-HCl gel with a thickness of 0.75 mm and
10 sample wells was prepared according to the product technical
information from Bio-Rad Laboratories. All the samples were mixed
with non-reducing sample buffer in a ratio of 1:1 (v/v) before
application of 7.5 mL into each well. 2 mL of the protein standard
were applied. After development of the gel, the protein bands were
stained with a Proteosilver Plus Silver Stain Kit from Sigma-Aldrich
(Munich, Germany) according to the product technical information.

2.8. HPLC-mESI-QTOF-MS method for determination of IgG masses
before and after digestion

An Agilent Technologies (Waldbronn, Germany) 1290 Series
UHPLC and a PAL-xts (CTC, Zwingen, Switzerland) autosampler
were used for chromatographic separation and injection, respec-
tively. A ProSwift RP-4H monolithic capillary column (500 mm
ID� 10 cm) from Thermo Scientific (Waltham, Massachusetts, USA)
was applied for protein separation. The LC gradient is shown in
Table 1. Solvent A consisted of ultrapure water (from Elga Purelab
Ultra ELGA) with 0.1% (v/v) formic acid, and solvent B consisted of

acetonitrile with 0.1% (v/v) formic acid. The flow rate was set to
50 mL/min and injection volume was 3 ml.

Detection was carried out with a Triple TOF 5600þ quadrupole
time-of-flight mass spectrometer from AB Sciex (Concord, Ontario,
Canada) equipped with a DuoSpray source operated in positive
mode using a 50 mm ID microelectrospray ionization (mESI) needle
(from Sciex). The source temperature was set to 400 �C and the
ionspray voltage floating was 5100 V. Nebulizer gas (GS1) was set to
50 psi, drying gas (GS2) to 40 psi, and curtain gas to 30 psi. Finally,
the declustering potential (DP) was set to 230 V, and the collision
energy (CE) to 30 V. TOF-MS scan ranged from 500 to 4000 Da. For
intact protein detection Sciex's Intact-Protein script was activated,
Q1 transmission was set to 100% at 1250 m/z, and sensitivity was
increased by summing 60 time bins. PeakView from Sciex con-
taining the Bio Tool Kit software package was used for data pro-
cessing and identification of the proteins by a deconvolution
procedure.

3. Result and discussion

3.1. Preparation of papain functionalized GNPs

For analytical and bioapplications, the GNPs should support the
property of colloidal stabilization in physiological medium as well
as provide a large surface for a high bioconjugation capacity with
receptor molecules or, in present case, enzymes [50]. To cope with
this goal a LBL activation of the GNP surface was employed before
bioconjugation of the enzyme. The schematic presentation for the
preparation process of the functionalized GNPs is shown in Fig. 1.
First, citrate stabilized GNPs were prepared according to the
Turkevich-Frens method [48]. In this reaction, citrate played the
role as both reducing and stabilizing reagent. Capping citrate an-
ions on the GNP surface provide them with negative charges and
give them colloidal stability due to electrostatic repulsion of the
particles precluding their van der Waals driven aggregation.
Modification with charged polymer reagents (i.e. polyelectrolytes)
was supposed to further increase the colloidal stability of GNPs by
formation of soft shells on the GNP surface based on electrostatic
repulsion and steric hindrance. Moreover, the coated poly-
electrolytes provide sufficient anchor groups for covalent bonding
of protein. This biocompatible and highly hydrophilic shell was
obtained by an alternating deposition of oppositely charged poly-
electrolytes on the nanoparticle surface. For the first layer, PAH
with multiple positive charges was adsorbed onto the surface of
negatively charged GNPs based on electrostatic interactions. Af-
terwards, addition of the positively charged PAH/GNPs to the
negatively charged PAA solutions caused the formation of a second
stabilized layer on the surface of GNPs with negative charge. After
each modification step, two washing steps were performed to
remove unbound polyelectrolyte as well as coexisting particles
formed by the nanoaggregation of PAH with PAA [51]. Immobili-
zation of papain on the LBL-modified GNPs was performed by using
EDC and sulfo-NHS as activation reagents for amide coupling be-
tween carboxylic groups on the surface of the LBL-modified GNPs
and amino groups of papain. Immobilization of papain on the first
cationic PAH polyelectrolyte layer failed, because the single-layered
and positively charged PAH/GNPs were easily aggregated in phos-
phate buffer (20 mM, pH 6.8) which was commonly used for the
immobilization and digestion with papain.

3.2. Characterization of functionalized GNPs

In order to monitor the quality of the modified GNPs, various
physicochemical characterizations were performed after each sur-
face modification step with analytical techniques such as visible

Table 1
The LC gradient profile for HPLC-mESI-TOF-MS. Solvent A consisted of water with
0.1% (v/v) formic acid, and solvent B consisted of acetonitrile with 0.1% (v/v) formic
acid.

Step Total Time (min) Flow Rate (mL/min) %A %B

0 0.0 50 80.0 20.0
1 2.0 50 80.0 20.0
2 12.0 50 65.0 35.0
3 13.0 50 5.0 95.0
4 17.0 50 5.0 95.0
5 17.5 50 80.0 20.0
6 20.0 50 80.0 20.0
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spectroscopy measuring the absorbance maximum (lmax) of the
SPR band, DLS for measuring particle size distributions (i.e. hy-
drodynamic diameters) and electrophoretic light scattering for z-
potential determinations [52].

The characterization results of the various synthesized nano-
particles with regard to their SPR band are shown in Fig. 2. It be-
comes evident that lmax of the SPR band of citrate-stabilized GNPs
(527 nm) and the LBL-modified GNP/PAH/PAAs are essentially
identical while it is obviously shifted for the papain-functionalized
GNPs (papain-GNPs) towards longer wavelength (543 nm).
Furthermore, the broader peak width of papain-GNPs in compari-
son to GNP/PAH/PAAs and citrate-GNPs reveals that papain has

been successfully immobilized. Due to absence of a strong red
shifted absorption band at l > 600 nm, it can be concluded that no
significant aggregation of papain-GNPs occurs. During the func-
tionalization process, four different concentrations of papain (0.2,
0.4, 1, and 2 mg mL�1, respectively) in the reaction mixture were
used to prepare four batches of papain-GNPs with different sizes
and protein-coating thicknesses. Even though a longer wavelength
and broader peak shape has been found after immobilization of
papain from 0.2 mg mL�1 papain reaction solution, it can be
interestingly seen from Fig. 2b that negligible SPR band shifts result
among the four batches of papain-GNP solutions prepared from
differently concentrated papain solutions. Therefore, these results
imply that SPR is not sensitive enough for detecting these further
size and size distribution changes. Therefore, another character-
ization method, DLS, has been used to reveal the size differences
between the four batches of papain-GNPs.

Hydrodynamic diameters (dh) and z-potentials of the different
stages of modification are shown separately in Fig. 3a and b. The
citrate-capped GNPs were first prepared with mean diameter of
36.4 ± 0.3 nm and a z-potential value of �35.7 ± 0.3 mV. After first
layer modification, the size greatly increased to 127.6 ± 5.7 nmwith
the z-potential changing from the negative value of �35.7 ± 0.3 mV
to the positive value of 69.6 ± 3.6 mV. The results confirmed suc-
cessful modificationwith PAH. After second layer modificationwith
PAA, the z-potential of the nanoparticles changed to a negative
value of �44.4 ± 1.0 mV with an average size of 126.3 ± 6.3 nm
according to DLS measurements. It is striking that the size does not
change significantly although effective deposition of the anionic
polyelectrolyte PAA is evident from the zepotential. The internal
repulsive electrostatic interactions between PAH polymer chains
which lead to an increase of the shell thickness after first layer
deposition appear to be effectively attenuated when the oppositely
charged PAA polyelectrolyte is applied on the surface. This might
lead to a condensation of the shell thickness so that there is actually
not much difference in dh compared to the stage before. After
functionalization with four different concentrations of papain (0.2,
0.4, 1, and 2 mg mL�1, respectively), the hydrodynamic radius dh
grew significantly from 176.2 ± 5.2 nm (for 0.2 mg mL�1) to
1315 ± 136 nm (for 2 mg mL�1). Since severe aggregation was not
found in the visible spectra (Fig. 2b), the increase in the hydrody-
namic diameters with more papain in the reaction mixture was
(largely) attributed to the increased amount of papain on the GNPs.

The z-potentials of all these four batches of papain-GNPs still
remained highly negatively charged, which indicated that a good
colloidal stability persisted. Moreover, it is worth noting that ab-
solute values of the z-potential decreased with increasing amounts
of immobilized papain. Papain (pI ~ 8.75) which carries a net pos-
itive charge in the employed phosphate buffer (pH 6.8) partly
compensates negative charges of the 2-step LBL-modified GNPs
which might compromise their colloidal stability.

In conclusion, DLS measurements confirm the successful
immobilization of papain and that the amount of papain covalently

Fig. 1. Schematic presentation of the GNP functionalization process with papain. The surface modification of the GNPs was performed by a layer-by-layer (LBL) polyelectrolyte
deposition strategy, and finally carboxylic acid moieties stemming from PAA were functionalized with papain by activation of carboxylic acid groups of the LBL-modified GNPs with
EDC and sulfo-NHS as coupling agents and subsequent amide coupling with amino groups of papain. (PAHþ, polyallylamine hydrochloride; PAA�, polyacrylic acid sodium).
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Fig. 2. Characterization of nanoparticles via surface plasmon resonance band. (a) Vis
spectra of GNPs after each step of synthesis and surface functionalization. (b) Vis
spectra of GNPs after functionalization with four different concentrations of papain in
the reaction mixture (0.2, 0.4, 1 and 2 mg mL�1, respectively).
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bonded on the GNPs can be readily increased by higher concen-
trations of papain used during protein coupling reaction. ELS
measurements, on the other hand, reveal that z-potentials of these
nanobioconjugates are large enough to support their colloidal
stability.

3.3. Loading amount of immobilized papain

RMM was recently introduced as an innovative technology for
accurately measuring the mass of nano- and microparticles with
detection limits in the range of femtograms to attograms
[46,53e55]. It allows convenient particle classification in the size
range of 50 nm to 5 mm if a sufficient number of particles is counted.
Therefore, RMM was envisaged as a useful tool in our study for the
determination of the average number of papain molecules immo-
bilized on GNPs by using an Archimedes instrument. This instru-
ment accommodates a sensor chip with a microfluidic channel
(having a dimension of 8 � 8 mm2) in which a resonant structure is
embedded inside. When a nanoparticle passes through this
microchannel, a shift of the resonant frequency occurs because the
resonant structure senses the density difference between the par-
ticle (rparticle) and the transport fluid (rfluid). Information on the
buoyant mass of the nanoparticles can be derived from the reso-
nant frequency shift [46].

The number of particles measured was set to 2000. The average
buoyant mass (MB [fg]) of this nanoparticle population was calcu-
lated by conversion from the resonant frequency shift (Df [s�1])
according to Eq. (1).

MB ¼ Df � S (1)

wherein S [fg s] represents themicrochannel resonator's sensitivity.
It is a fixed value for each resonator, which reflects a simple linear
relationship over the entire range of measurable particles, and has
to be determined by a simple calibration procedure. From the
buoyant mass the dry mass M [fg] can be calculated for a defined
chemically homogeneous particle according to Eq. (2) [46,56].

M ¼ MB�
1� rfluid

.
rparticle

� (2)

However, in the present case we are dealing with a composite
material i.e. a shell particle in which gold core and protein shell
have distinct densities which needs to be considered in the calcu-
lations. Hence, a modified version of Eq. (2) has been utilized. By
comparing the average buoyant mass changes of GNPs before and
after functionalization (DMB), the average mass of immobilized
papain on a single GNP (M(papain shell)) can be approximated by Eq. 3

Mðpapain shellÞ ¼
DMB�

1� rfluid

.
rshell

� (3)

wherein rshell is the density of the papain shell. The density of the
fluid (water) used was 1 g mL�1 in all calculations, and the density
of the papain shell on the GNP surface was calculated to be
1.43 g cm�3 from the exponential function reported by H. Fischer
[57]. Hence, the average mass of immobilized papain was obtained.
More importantly, with the calculated average mass of a papain
molecule from the known molecular weight of papain (23,406 Da),
the average number of papain molecules immobilized on each
nanoparticle was finally obtained [46]. The particle buoyant mass
distributions of LBL-modified GNPs (GNP/PAH/PAA) and papain-
GNPs (0.2 mg mL�1 and 1 mg mL�1) are shown in Fig. 4. The
graph in Fig. 4a shows a relatively narrow buoyant mass distribu-
tion of GNP/PAH/PAA nanoparticles. Surface functionalization with
0.2 mg mL�1 papain yielded a slight, but insignificant shift of the
average buoyant mass from 3.14 ± 0.06 to 3.42 ± 0.31 fg (Fig. 4b and
Table 2). On the other hand, for GNPs functionalized with
1 mg mL�1 papain solution, a significant shift of the distribution
towards a larger average buoyant mass (27.30 ± 2.25 fg) with a
broader width indicative for increased polydispersity can be
observed (Fig. 4c and Table 2).

Therefore, with this technology the average mass of papain per
GNP, the concentration of nanoparticles, the concentration of
immobilized papain and the number of papain molecules per GNP
can be calculated (shown in Table 2). Such knowledge is of
importance for the calculation of the turnover numbers (kcat) of the
immobilized enzyme nanobioreactors. It can be seen that the
average mass increase due to papain immobilization (with
0.2 mg mL�1) on GNP/PAH/PAA corresponds to the mass of
2.39 ± 2.14 � 104 papain molecules per single GNP. By using the
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Fig. 3. Characterization of nanoparticles after each step of modification by (a) DLS and (b) z-potential measurement (n ¼ 3) (note, the indicated concentrations refer to the final
papain concentrations in the reaction mixture).
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same calculation for the papain-GNPs (from 1 mg mL�1), the
average mass increase corresponds to 2.06 ± 0.19 � 106 molecules
of papain immobilized per GNP. The factor 100 increase in surface
coverage upon a factor 5 increase of the papain concentration in the
reaction mixture is unexpected. However, it is confirmed by the
more than proportional size increase as measured by DLS and may
have to do with the specific conformational arrangement and
morphology, respectively, of the polyelectrolyte coating. Calcula-
tions based on the approximately available surface area of GNP/
PAH/PAA with a diameter of 126 nm for papain adsorption and the
hydrodynamic diameter of papain as estimated by DLS leads to the
conclusion that the papain shell is formed by a multilayer bonding
on the GNPs. One could imagine bonding of multiple papain mol-
ecules on loosely adsorbed loops of the outer PAA polymer chains
yielding elevated protein surface coverage.

Furthermore, it can be clearly seen from Table 2 that the
nanoparticle concentrations in the suspension continuously
decline. The GNP/PAH/PAA solution showed the highest concen-
tration of 1.06 � 10�11 mol L�1, but the concentration decreased
after functionalization with papain, which is due to the loss of
nanoparticles during reaction. In conclusion, the RMM technology
is an effective tool for measuring the average mass of immobilized
protein on each nanoparticle.

3.4. Determination of kinetic parameters of immobilized and free
papain

The enzyme activity of free papain and of the four distinct
papain-GNP bioconjugates was evaluated at 37 �C and pH 6.8 by
investigating the hydrolysis of BApNA as the substrate [48]. In
principle, BApNA is cleaved in the presence of papain to produce
chromogenic p-nitroaniline (pNA) which exhibits strong absor-
bance at the wavelength of 410 nm (Suppl. Fig. S1). Thus, the ac-
tivity of papain can be conveniently measured by the released pNA

with a photometric assay. To obtain the Michaelis-Menten param-
eters (Km, Vmax, kcat; see also Suppl. Material), the activities of free
and immobilized papain for various concentrations of BApNAwere
measured and the obtained data were plotted in the form of
Lineweaver-Burk plots, as shown in Fig. 5a. These plots document a
good linear relationship between 1/[S] and 1/V0 for both free and
immobilized papain. Km and Vmax values of free and immobilized
papain were calculated from the intercepts on x- and y-axes,
respectively, and the results are summarized in Table 3.

The Michaelis constant Km is the substrate concentration at
which half of the maximal reaction rate (Vmax/2) can be achieved. In
free solution, it is independent of the enzyme concentration. Upon
immobilization, the enzyme conformation might change, thus
negatively (or even positively) influencing enzyme-substrate
complex formation. Furthermore, the access of the substrate to
the active site might be altered upon immobilization. Both of these
properties might change in dependence of the surface coverage. For
instance, at low surface concentrations the active site might be
better accessible than at high coverage for which sterically hin-
dered and limited access to the enzyme's catalytic site might
compromise the rate constant for association and thus affect or
alter Km. The data in Table 3, however, reveal that Michaelis con-
stants Km remain in the same order of magnitude when different
concentrations of papain are immobilized on GNPs, ranging be-
tween 1.4 and 2.6 mM (mean ¼ 2.0 ± 0.6 mM; the slight fluctua-
tions represent experimental uncertainties which are in a similar
order as for the repetitive experiments with free papain) (see also
Suppl. Fig. S2). A comparison of this mean with Km of free solution
reaction reveals that there is no statistically significant difference in
Km. Hence, binding affinity is not compromised upon immobiliza-
tion of papain [58].

Vmax of enzyme reactions reflects how fast the biocatalyst can
catalyze the biotransformation. Vmax rises linearly with the enzyme
concentration in free solution reactions. This is also observed for
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Table 2
Summary of the experimental results from RMMmeasurements comprising mean buoyant mass, concentration of nanobeads, mean mass of papain per GNP, concentration of
immobilized papain and mean number of papain molecules per GNP (n ¼ 3).

Nanobeads Mean buoyant
mass [fg]

Concentration of nanobeads
[mol L�1]

Mean mass of papain per
GNP [fg]

Concentration of immobilized papain
[mol L�1]

Mean number of papain
per GNP

GNP/PAH/PAA 3.14 ± 0.06 1.06 � 10�11 e e e

Papain-GNPs
[0.2 mg mL�1]

3.42 ± 0.31 7.74 � 10�12 0.93 ± 0.83 1.85 ± 1.65 � 10�7 2.39 ± 2.14 � 104

Papain-GNPs
[1 mg mL�1]

27.30 ± 2.25 1.43 � 10�12 80.2 ± 7.3 2.95 ± 0.27 � 10�6 2.06 ± 0.19 � 106
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the papain-GNP conjugates varying in papain surface concentra-
tions (Fig. 5b). Vmax values of immobilized papain range from
6.00 ± 0.27 � 10�5 mM s�1 (0.2 mg mL�1 papain in reaction
mixture) to 7.12 ± 0.17 � 10�4 mM s�1 (2.0 mg mL�1) (Table 3). The
corresponding reaction with free papain reached a Vmax of
2.03 ± 0.57 � 10�4 mM s�1, respectively. A faster reaction with
immobilized enzyme is clearly evident. This, in turn, has also the
advantage that less enzyme could be used to reach the same
maximum reaction rate if it is immobilized to the GNP carrier. This
is highly relevant in biocatalytic industrial applications with
precious enzymes and those of limited availability. For instance, the

same Vmax as with 1 mg mL�1 papain in free solution can be ach-
ieved with papain-GNP conjugated biocatalyst prepared from only
0.54 mg mL�1 in the reaction mixture (equivalent concentration
Ceq) (Fig. 2b). Thus, a factor of almost 2 less enzyme would be
consumed if the supernatant after reaction is discarded and
disposed. Actually, since only a small fraction of the enzyme is
bonded to the GNPs, the unbound enzyme can be easily recycled
from the reaction mixture after centrifugation. For instance, in the
reaction with papain-GNP conjugate prepared from 1 mg mL�1 the
acutal papain concentration in the digestion is only 21.3 mg mL�1

(2.9 mg mL�1 in the digestion with bioconjugate prepared from
0.2 mg mL�1). Thus, the savings of enzyme are even more pro-
nounced (about factor 100), making this approach with nano-
particulate heterogeneous biocatalysts most attractive for precious
enzymes.

A better figure to define and compare the reaction rate of a se-
ries of biocatalysts is the turnover number kcat. It is the number of
substratemolecules converted to product per enzymemolecule per
second. By using the known concentrations of free papain and
immobilized papain calculated from RMM, the kcat values were
finally calculated to be 4.75 ± 1.33 � 10�3 s�1 (free), 0.20 ± 0.02 s�1

(conjugated from 1 mgmL�1) and 0.65 ± 0.03 s�1 (conjugated from
0.2 mg mL�1), respectively. It becomes striking that the reaction is
accelerated by a factor of 137 when free solution enzyme reaction
and heterogeneous nanobiocatalysis with papain-GNP conjugate
prepared from 1 mg mL�1 are compared. Local accumulation of
substrate on the surface of the nanobiocatalyst or close to it, thus
forming a concentration gradient to the adjacent solution (like in a
double layer model) might be invoked as an explanation for this
increased reaction rates. Furthermore, the ratio kcat/Km, a charac-
teristic parameter, was calculated to describe the catalytic effi-
ciency of the immobilized papain in comparison to free papain. It
was found that immobilized papain had amuch higher ratio kcat/Km

compared to the free papain, which means that the immobilized
papain exhibited significantly higher catalytic efficiency. Therefore,
from above results it can be concluded that the immobilized
enzyme with many additional advantages provides the higher
catalytic efficiency compared to the free papain. Besides accelera-
tion of reaction rates, immobilization on nanoparticulate carriers
might be a viable strategy to safe precious enzymes in industrial
applications.

3.5. SDS-PAGE for monitoring antibody digestion

The primarily intended application of the papain-modified
nanoparticles is fragmentation of IgG into smaller fragments
which facilitate their MS analysis (middle-down and middle-up)
[41]. In the present case, a therapeutic protein, human IgG, was
utilized to verify the bioactivity and digestion performance of

Fig. 5. a) Lineweaver-Burk diagrams for BApNA hydrolysis at pH 6.8 catalyzed by
papain-GNP bioconjugates obtained from reaction mixtures with different papain
concentrations, and for comparison by free (1 mg mL�1) papain, and (b) effect of
different surface coverages (as obtained from different papain concentrations in the
reaction buffer) on maximal reaction rates Vmax (indicated values are mean values of
three experiments, n ¼ 3, and error bars represent the standard deviations; note, the
indicated concentrations refer to the final papain concentrations in the reaction
mixture; Ceq represents the equivalent papain concentration needed in the reaction
buffer for immobilization to obtain GNP-conjugated papain with the same Vmax as a
1 mg mL�1 free papain solution).

Table 3
Summary of the kinetic parameters (Km, Vmax, kcat) calculated by Lineweaver-Burk plots for both free papain and immobilized papain (0.2mgmL�1 and 1mgmL�1, respectively)
(Values represent mean ± standard deviation of 3 replicate experiments; n.d., not determined).

Parameter Papain-GNP
(0.2 mg mL�1)a

Papain-GNP
(0.4 mg mL�1)a

Papain-GNP
(1 mg mL�1)a

Papain-GNP
(2 mg mL�1)a

Free papain
(1 mg mL�1)b

Km [mM] 1.41 ± 0.05 2.32 ± 0.04 1.61 ± 0.03 2.62 ± 0.15 2.71 ± 0.98
Vmax [mM s�1] 6.00 ± 0.27 � 10�5 2.28 ± 0.06 � 10�4 2.91 ± 0.03 � 10�4 7.12 ± 0.17 � 10�4 2.03 ± 0.57 � 10�4

kcat [s�1] 0.65 ± 0.03 n.d. 0.20 ± 0.02 n.d. 4.75 ± 1.33 � 10�3

kcat/Km [mM�1 s�1] 0.46 ± 0.01 n.d. 0.12 ± 0.03 n.d. 1.8 ± 0.2 � 10�3

Regression equation Y ¼ 23499X þ 16,693 Y ¼ 10155X þ 4382.1 Y ¼ 5530.9X þ 3432.9 Y ¼ 3671.5X þ 1404.7 Y ¼ 13096X þ 5248.1
R2 0.9988 0.9997 0.9667 0.9980 0.9998

a The concentrations refer to the papain concentration used for the immobilization, the final concentration in the digestion solution are 9.25 � 10�8 mol L�1 and
1.48 � 10�6 mol L�1 for papain-GNP (0.2 mg mL�1 and 1 mg mL�1), respectively (see Table 2).

b The concentration refers to the final papain concentration in the digestion solution.
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papain-functionalized GNPs (prepared from 0.2 mg mL�1 papain in
the reaction mixture) in comparison to in-solution digestion
(1 mg mL�1 papain). By taking advantage of the heterogeneous
biocatalyst, the papain-GNPs can be readily removed after diges-
tion, avoiding the contamination of enzyme into the fragment
products. IgG digests obtained from GNP-conjugated and free
papain were characterized by SDS-PAGE under non-reducing con-
ditions using silver staining for detection (providing detection
limits around 0.25e0.5 ng of protein). The resultant gel is shown in
Fig. 6. It is evident that new bands (at around 50 kDa) appeared in
the samples (lanes B,C,D and F,G,H) after digestion. The molecular
weight of these protein bands corresponds to the expected IgG
fragments. Papain cleaves the intact IgG above the Hinge region to
yield three fragments of similar size, two Fab fragments (around
50 kDa each) and one Fc fragment (around 50 kDa as well). In
addition, bands around 100 kDa and 25 kDa were also found in the
digested samples. It seems that the employed papain does not have
enough specificity for the cleavage of IgG just above the Hinge re-
gion, but also the F (ab’)2 and Fc/2 fragments are obtained. In sharp
contrast, in the non-digested IgG solution (lane A), only intact IgG
(around 150 kDa) and aggregated forms (ca. 300 kDa) rather than
the fragments were found (the large quantities of aggregates can be
explained by the fact that the h-IgG used in this study was already
expired for a long time). These results clearly indicate that IgG was
efficiently digested with papain-functionalized GNPs.

To test for possible bleeding of papain from the nanoparticulate
carrier, a suspension of papain-functionalized GNPs was allowed to
stand in 10 mM phosphate buffer pH 6.8 overnight. Afterwards the
suspension was spinned down and the supernatant was also
applied as sample to the gel (lane E). It can be clearly seen that there
is no band (E) at the position where papain is expected (ca. 23 kDa
region). This implies that, after their removal by centrifugation,
papain-GNP conjugates do not cause any background interferences
in the gel and that papain is not bleeding from the nanoparticulate
carrier due to covalent attachment. From these results it can be
derived that the new nanobioreactor is suitable for practical
applications.

3.6. HPLC-mESI-QTOF-MS method for characterization of lgG
fragments after digestion

The generated fragments of human IgG were finally analyzed by
HPLC-mESI-QTOF-MS to document the practical applicability of the

nanoparticulate enzyme reactor. High resolution-MS using a QTOF
equipped with a mESI sprayer and a ProSwift column for separation
of proteins were used for the characterization of intact IgG and the
fragments digested with papain-GNPs. Detection limits for smaller
proteins like IgG fragments are around 500 fg on-column with this
mESI setup. Fig. 7a shows the total ion chromatogram of the intact
IgG before digestion, and Fig. 7b shows the deconvoluted mass
spectrum of the peak with tR 14.66 min corresponding to IgG with a
mass of around 150 kDa (note, this is not amonoclonal antibody but
human IgG isolated from plasma). After digestion, the deconvo-
luted mass of IgG (150 kDa) disappeared, and meanwhile the
fragments (Fab and Fc), eluting at ca. 9.6 min could be detected
(Fig. 7c). The deconvoluted TOF-MS spectrum in Fig. 7d for the peak
at 9.6 min shows several peak groups in the range of 50e55 kDa
corresponding to Fab and Fc, respectively. It can be explained by the
fact that human IgG is a collection of immunoglobulin molecules,
and therefore a mixture of similar fragments with slightly different
masses can be expected for the digested IgG as well.

The TIC chromatogram in Fig. 7c, like the gel, shows some
additional peaks. The first two peaks (between tR 7.7 and 8.5 min)
could not be assigned to a reasonable mass. However, the decon-
voluted peak (tR between 8.8 and 9.5 min) showed fragment
masses of around 25 kDa, which correspond to the Fc/2 fragments
(Fig. 7e). In addition, a peak at tR of 14.63 min was detected in the
digest and it was initially assumed that this peak corresponds to
intact human IgG due to incomplete digestion. However, the
deconvoluted TOF-MS spectrum of the peak at 14.63 min actually
corresponds to a 100 kDa F(ab’)2 fragment of human IgG (Fig. 7f)
while the intact IgG (150 kDa) was not detected at all. This finding
clearly confirms the successful and complete digestion. It seems
that the employed papain does not have enough specificity for
cleaving the IgG just above the Hinge region, but produces also a
F(ab’)2 fragment in significant amounts besides Fab. Overall, the LC-
MS results clearly document that the new nanoparticulate enzyme
reactor has adequate bioactivity and catalytic efficiency for enzy-
matic IgG fragmentation. The limited specificity of papain both in
free and immobilized forms, however, explains why nowadays IdeS
(immunoglobulin G-degrading enzyme of Streptococcus pyogenes, a
bacterial cysteine protease which specifically cleaves IgGs under
their hinge region [41]) is mainly used for middle-down charac-
terization of IgGs by LC-MS. It is obvious that this highly specific
enzyme should be immobilized in the same way to afford a highly
specific, highly efficient immobilized enzyme reactor which can be
easily removed and reused for IgG fragmentation.

4. Conclusion

In the present study, GNPs were functionalized with papain by a
layer-by-layer strategy producing an efficient heterogeneous bio-
catalyst. Characterization with SPR, DLS and z-potential measure-
ments revealed the successful immobilization of papain. The higher
amount of papain used in the reaction mixture for immobilization
has led to bigger particle sizes than expected. With the RMM
technology, the concentration and average buoyant mass of the
GNP biocatalyst was obtained, and the number of papain molecules
immobilized on one GNP was calculated. The results implied that
GNPs activated with polyelectrolyte layers provided a high loading
capacity for papain due to its large surface to volume ratio and the
specific surface modification with polyelectrolyte chains. In com-
parison with free papain, the immobilized papain provides the
higher catalytic efficiency with the advantages of easy removal and
flexible control of reaction. SDS-PAGE and HPLC-mESI-QTOF-MS
characterization proved the successful digestion of IgG with
papain-modified GNPs as heterogeneous biocatalyst which indeed
shows great potential in bioanalysis. The limited specificity of

Fig. 6. SDS-PAGE (gel: 10%-Tris-HCl) for non-reduced human IgG digestion samples
with silver staining for protein visualization. (M) protein marker; (A) IgG in phosphate
buffer (10 mM, pH 6.8); (BeD) IgG digested with papain-GNPs for 4 h (B); for 8 h (C);
for 24 h (D); (E) suspension of papain-GNPs after centrifugation; (FeH) IgG digested
with free papain for 4 h (F); for 8 h (G); for 24 h (H); (I) free papain in phosphate buffer
(10 mM, pH 6.8) (note, usually 0.25e0.5 ng of protein are considered as limit of
detection for silver staining).

S. Liu et al. / Analytica Chimica Acta 963 (2017) 33e43 41



papain could be overcome by use of IdeS as an enzyme for
immobilization.
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Determination of kinetic parameters of immobilized and free papain 

     The enzyme activity of free and immobilized papain was evaluated at 37 ˚C at pH 6.8 by 

investigating the hydrolysis of BApNA as the substrate (Figure S1). To determine the kinetic 

parameters (Km, Vmax, kcat) the reaction was carried out at variable substrate concentrations 

with free papain and immobilized papain-GNP conjugates obtained from different 

concentrations of papain in the reaction mixture. The kinetic parameters were derived from 

the Lineweaver Burk plots and the results are given in Figure 5 and Table 3 of the main 

document along with corresponding data of a reaction with 1 mg mL-1 free papain. 

 

 

Figure S1. Reaction scheme for the hydrolysis of the substrate BApNA by papain. The activity 

of papain can be measured by the released p-nitroaniline (pNA) at an absorbance 

wavelength of 410 nm.  

 

This single-substrate enzyme reaction can be described by the following equation (eq. S1) 

 (S1) 

Wherein E, S, ES, P and EP represent the enzyme, substrate, enzyme-substrate complex, product and 

enzyme-product complex concentrations, k1 and k-1 are the rate constants for enzyme-substrate 

association and dissociation, respectively, and kcat is the rate constant for product formation (also 

termed turnover number). The kinetics of this reaction is usually investigated by measuring the initial 

pH 6.8

BApNA

Papain

p-nitroaniline

410nm
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velocities v0 in dependence of the substrate concentration. The results are then evaluated in terms of 

the Michaelis-Menten equation (eq. S2) 

 
 
 SK

SV
v

m 


 max

0  (S2) 

wherein Vmax is the maximal reaction rate achieved when all enzyme is saturated with substrate 

([ES]=[E]t; with [E]t being the total enzyme concentration in the reaction i.e. [E] + [ES]). Km is the 

Michaelis constant which is defined by (eq. S3) 

 
1

1

k

kk
K cat

m


   (S3) 

As mentioned above, the data have been evaluated in the linearized form, i.e. the Lineweaver-Burk 

plot (eq. S4) 

 
  maxmax VSV

K

v
m 11

0




  (S4) 

 

In a reaction with free enzyme Km does not change with enzyme concentration in the reaction 

mixture. Upon immobilization of enzyme, Km might change with enzyme concentration immobilized 

on the carrier because the conformation of the enzyme and steric access of the binding site might be 

altered in dependence of the enzyme’s surface concentration. For instance, at low surface 

concentrations the active site might be better accessible than at high coverage for which limited 

access to the enzyme’s catalytic site might compromise the rate constant for association. 

Figure S2 shows a plot of Km values in dependence of distinct papain concentrations in the reaction 

mixture during bioconjugation. It becomes evident that Km is in the same order of magnitude for all 4 

bioreactors (Figure S2). Hence, it can be concluded that access to active sites is not compromised at 

higher papain surface concentrations. 
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Figure S2:  Michaelis-Menten constant versus papain concentration in the reaction mixture in the 

course of preparation of papain-GNP bioconjugate. 

 

In sharp contrast, Vmax changes linearly with the enzyme concentration in accordance to eq. S5 

 tcat EkV ][max   (S5) 

 

Figure S3:  Vmax in dependence of the papain concentration in the reaction mixture in the course of 

preparation of papain-GNP bioconjugate (Standard Error of Est. = 0.0000734; P-value intercept = 

0.7548; P-value slope =  0.0237). 
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This is also found for a series of enzyme reactions performed with the bioreactors having distinct 

papain coverages (Figure S3). Higher enzyme concentrations in the incubation mixture due to use of 

papain-GNP conjugates with higher surface coverages (which result from higher papain 

concentrations in the reaction mixtures during protein coupling step) accelerate the conversion. 

Eq. S5 can be used to calculate kcat , the turnover number, which is a better figure to define the 

reaction rate. In this work kcat has been calculated for free papain and two bioconjugates with 

distinct surface coverage of papain (see Table 3 of main document). Finally, the ratio of kcat/Km, 

termed specificity constant or catalytic efficiency, is a measure of how efficiently an enzyme converts 

substrates into products and is given in Table 3 of the main document as well. 

 

 

 

 

 

 

 


