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Summary 

Chlorinated organic compounds are ubiquitous in daily life. Chlorohydrocarbons are used as 

solvents in industry (e.g. chlorinated ethenes) and as herbicides in agriculture (e.g. atrazine). 

However, when present in ground- and surface water, they pose a threat to drinking water 

resources. Therefore, investigating and understanding their environmental fate is important 

to guarantee correct pesticide management and to develop successful (bio)remediation 

strategies at contaminated sites. When traditional concentration-based assessments fall short 

because mass balances cannot be closed, a promising approach for tracing the sources of 

contamination and studying the transformation pathways of such contaminants is compound-

specific stable isotope analysis (CSIA). Analyzing changes in natural occurring isotope 

ratios (e.g. 13C/12C, 15N/14N, 37Cl/35Cl) during (bio)chemical transformations allows the 

detection and the assessment of degradation processes. Furthermore, isotopic information 

from more than one element enables the differentiation and even the identification of 

different (bio)chemical reaction mechanisms. 

The first part of this thesis focuses on advancing CSIA of chlorine. In the last years 

instrumental and methodical optimizations continually improved chlorine isotope analysis 

facilitating also the analysis of more complex organic compounds. For accurate chlorine 

isotope analysis, however, in-house referencing and substance-specific working standards 

are critically needed. Ideally two standards of each substance are required that display 

different isotope values to enable a two-point calibration. However, almost all international 

chlorine isotope reference materials have similar isotope values except one which is, 

therefore, very valuable and should not be used for routine analysis. Here, a synthesis route 

was identified resulting in a chloride salt which shows a pronounced negative chlorine 

isotope value. This chloride salt can be used as a second anchor for two-point calibration of 

in-house working standards in the future. Furthermore, it was demonstrated that substance-

specific working standards of more complex organic chlorohydrocarbons (like the herbicides 

acetochlor and S-metolachlor) can be generated easily by using chemical reactions with 

pronounced chlorine isotope effects from organic chemistry. With these synthesis routes 

every laboratory has the opportunity to generate its own in-house standards leading to more 

accurate results in chlorine isotope analysis. 
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The second part of the thesis tackles the question why bioremediation of the chlorinated 

ethenes tetrachloroethene (PCE) and trichloroethene (TCE) often stops at toxic 

cis-1,2-dichloroethene (cis-DCE) or vinyl chloride (VC). By studying dual element isotope 

plots of carbon and chlorine a model study recently identified two different chemical 

mechanisms which are at work during reductive dechlorination of PCE (addition-

elimination) and cis-DCE (addition-protonation). For TCE dechlorination both mechanisms 

could be observed. In this thesis it was investigated whether the same mechanisms can also 

be observed during microbial reductive dechlorination with pure and mixed cultures. Dual 

element isotope trends of carbon and chlorine indeed indicated that bacteria dechlorinating 

cis-DCE or PCE followed the same mechanisms which were identified in the model study. 

Microbial TCE dechlorination followed the addition-protonation pathway if the cultures 

were already adapted to higher chlorinated substrates. If the bacteria were maintained on less 

chlorinated substrates before TCE dechlorination, they followed the addition-elimination 

pathway. Therefore, it was concluded that reductive dehalogenases (RDases, the enzymes 

catalyzing reductive dechlorination) are likely specialized in different chemical mechanisms. 

The fact that some RDases are specifically tailored to the dechlorination of PCE and TCE, 

but are not able to degrade cis-DCE or VC may offer an explanation for the question why 

bioremediation often stalls at cis-DCE or VC. Based on these results, a new classification 

system based on dual element isotope trends (C, Cl) and detected RDases could help to 

identify natural processes at contaminated field sites. 

The third part of this thesis studies chlorine, carbon and nitrogen isotope fractionation during 

microbial atrazine hydrolysis with the pure culture Arthrobacter aurescens TC1 and 

oxidative dealkylation with Rhodococcus sp. NI86/21. Carbon and nitrogen isotope effects 

confirmed that the bacteria followed the pathways which were proposed in previous studies. 

Dual element isotope plots of the measured elements (C/N, Cl/C, Cl/N) allowed a reliable 

distinction of the two pathways. In contrast to nitrogen and carbon isotope effects, chlorine 

isotope effects are not diluted by non-reacting atoms which could turn chlorine isotope 

fractionation into a sensitive indicator for transformation processes. During microbial 

hydrolysis of atrazine unexpected small chlorine isotope effects were observed indicating 

that the cleavage of the C-Cl bond is not the rate-limiting step in this reaction. On the other 

hand, oxidative dealkylation resulted in unexpected large chlorine isotope effects suggesting 

the involvement of enzymatic interactions. Regarding these unexpected results this study 

demonstrated that a complete understanding of chemical mechanisms is very important 
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before applying this new approach to the field. Additionally, triple element isotope analysis, 

not only of atrazine, but also of other chlorohydrocarbons, will improve the source 

identification of contaminants and also the differentiation of degradation pathways. 
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Zusammenfassung 

Chlorierte organische Verbindungen sind im täglichen Leben allgegenwärtig. 

Chlorkohlenwasserstoffe werden in der Industrie als Lösungsmittel (z.B. chlorierte Ethene) 

und in der Landwirtschaft als Herbizide (z.B. Atrazin) verwendet. Kommen sie aber im 

Grund- und Oberflächenwasser vor, stellen sie eine Gefahr für die Trinkwasserressourcen 

dar. Aus diesem Grund ist es wichtig ihr Verhalten in der Umwelt zu untersuchen und zu 

verstehen, um einen korrekten Umgang mit Pestiziden zu gewährleisten und erfolgreiche 

(biologische) Sanierungsstrategien an kontaminierten Standorten zu entwickeln. Wenn sich 

traditionelle konzentrationsbasierte Beurteilungen als unzureichend erweisen, da 

Massenbilanzen nicht geschlossen werden können, ist ein vielversprechender Ansatz um 

Kontaminationsquellen zurückzuverfolgen und Transformationsprozesse zu erforschen, die 

substanz-spezifische stabile Isotopenanalyse (CSIA). Die Untersuchung von Veränderungen 

bei natürlich vorkommenden Isotopenverhältnissen (z.B. 13C/12C, 15N/14N, 37Cl/35Cl) 

während (bio)chemischen Vorgängen erlaubt den Nachweis und die Bewertung von 

Abbauprozessen. Des Weiteren ermöglicht die gleichzeitige Analyse von mehreren 

Elementen die Unterscheidung und die Identifizierung von unterschiedlichen 

(bio)chemischen Reaktionsmechanismen. 

Der erste Teil dieser Doktorarbeit konzentriert sich darauf, die Chlor-Isotopenanalytik weiter 

voran zu bringen. In den letzten Jahren verbesserten instrumentelle und methodische 

Optimierungen die Chlor-Isotopenanalyse und erleichterten dadurch auch die Untersuchung 

von komplexeren organischen Verbindungen. Für exakte Chlor-Isotopenanalysen sind 

allerdings hausinterne Referenz- und substanz-spezifische Messstandards dringend 

erforderlich. Idealerweise werden zwei Standards für jede Substanze benötigt, die 

unterschiedliche Isotopenwerte aufweisen und somit eine Zweipunkt-Kalibrierung 

ermöglichen. Allerdings weisen fast alle internationalen Referenzmaterialien für Chlor 

ähnliche Isotopenwerte auf, außer einem, der daher sehr wertvoll ist und nicht für 

Routineanalysen verwendet werden sollte. Im Rahmen dieser Arbeit wurde ein Syntheseweg 

für ein Chlorid-Salz identifiziert, das einen ausgeprägten negativen Chlorisotopenwert 

besitzt. Dieses Chlorid-Salz kann zukünftig als zweiter Anker bei der Zweipunkt-

Kalibrierung von hausinternen Messstandards verwendet werden. Auch wurde gezeigt, dass 

substanz-spezifische Messstandards für komplexere organische Chlorkohlenwasserstoffe 
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(wie die Herbizide Acetochlor und S-Metolachlor) mit Hilfe von chemischen Reaktionen aus 

der organischen Chemie, die einen ausgeprägten Chlorisotopeneffekt aufweisen, einfach 

hergestellt werden können. Diese Synthesewege bieten jedem Labor die Möglichkeit eigene 

hausinterne Standards herzustellen, was die Exaktheit von Chlorisotopenmessungen 

verbessert. 

Teil Zwei dieser Doktorarbeit beschäftigt sich mit der Frage, warum die biologische 

Sanierung im Fall von Tetrachlorethen (PCE) und Trichlorethen (TCE) oft bei den toxischen 

Zwischenprodukten cis-1,2-Dichlorethen (cis-DCE) oder Vinylchlorid (VC) stoppt. Durch 

die Untersuchung von Doppel-Element Isotopen Plots der Elemente Kohlenstoff und Chlor 

gelang es kürzlich zwei unterschiedliche Reaktionsmechanismen für die reduktive 

Dechlorierung von PCE (Additions-Eliminierung) und cis-DCE (Additions-Protonierung) in 

einer Modellstudie zu identifizieren. Im Fall von TCE konnten beide Mechanismen 

nachgewiesen werden. Im Rahmen dieser Arbeit wurde untersucht, ob dieselben 

Mechanismen auch für die bakterielle reduktive Dechlorierung bei Rein- und Mischkulturen 

verantwortlich sind. Die Trends der Doppel-Element Isotopen Plots für Kohlenstoff und 

Chlor deuteten in der Tat darauf hin, dass die bakterielle Dechlorierung von cis-DCE oder 

PCE auf denselben Abbauwegen erfolgte, die auch in der Modellstudie identifiziert wurden. 

Die bakterielle TCE Dechlorierung verlief nach dem Additions-Protonierungs-Mechanismus, 

wenn die Bakterienkulturen schon an höhere chlorierte Substanzen angepasst waren. Waren 

die Kulturen vor dem TCE Abbau an weniger chlorierte Substanzen angepasst, verlief der 

Abbauprozess nach dem Additions-Eliminierungs-Mechanismus. Daraus wurde gefolgert, 

dass reduktive Dehalogenasen (RDasen, Enzyme, die die reduktive Dechlorierung 

katalysieren) wahrscheinlich auf verschiedene Reaktionsmechanismen spezialisiert sind. Die 

Tatsache, dass einige RDasen speziell für die Dechlorierung von PCE und TCE zuständig 

sind, aber nicht in der Lage sind cis-DCE oder VC abzubauen, könnte eine Erklärung für die 

Frage liefern, warum die biologische Sanierung häufig bei cis-DCE oder VC zum Stoppen 

kommt. Basierend auf diesen Ergebnissen könnte ein neues Klassifizierungssystem, das auf 

Doppel-Element Isotopen Trends (C, Cl) und detektierten RDasen aufgebaut ist, helfen, 

natürliche Prozesse an kontaminierten Standorten zu identifizieren. 

Der dritte Teil dieser Doktorarbeit untersucht die Isotopenfraktionierung von Chlor, 

Kohlenstoff und Stickstoff während dem bakteriellen Abbau von Atrazin mittels Hydrolyse 

mit Arthrobacter aurescens TC1 und mittels oxidativer Dealkylierung mit Rhodococcus sp. 
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NI86/21. Kohlenstoff- und Stickstoffisotopeneffekte bestätigten, dass die bakteriellen 

Abbauwege denen folgten, die schon in früheren Studien beschrieben worden sind. Doppel-

Element Isotopen Plots der analysierten Elemente (C/N, Cl/C, Cl/N) erlaubten eine 

zuverlässige Unterscheidung der beiden Abbauwege. Im Gegensatz zu den Isotopeneffekten 

bei Kohlenstoff und Stickstoff, erfolgt bei den Chlorisotopeneffekten keine Verdünnung 

durch nicht-reagierende Atome, was die Chlorisotopenfraktionierung zu einem sensitiven 

Indikator für Transformierungsprozesse machen könnte. Während der mikrobiellen 

Hydrolyse von Atrazin wurden unerwartet kleine Chlorisotopeneffekte beobachtet, die 

darauf hindeuten, dass die Spaltung der Chlor-Kohlenstoffbindung nicht der 

geschwindigkeitsbestimmende Schritt in dieser Reaktion ist. Anderseits führte die oxidative 

Dealkylierung zu unerwartet großen Chlorisotopeneffekten, was auf eine Involvierung von 

enzymatischen Interaktionen schließen lässt. Die unerwarteten Resultate in diese Studie 

haben gezeigt, dass ein komplettes Verständnis der chemischen Reaktionswege sehr wichtig 

ist, bevor dieser neue Ansatz im Feld erprobt werden kann. Zusätzlich dazu können Triple-

Element Isotopenanalysen, nicht nur von Atrazin, sondern auch von anderen chlorierten 

Kohlenwasserstoffen, dazu beitragen, die Identifizierung von Kontaminationsquellen sowie 

die Unterscheidung von Abbauwegen zu verbessern. 
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General Introduction 

 

1.1 Contamination of Groundwater Resources 

Contamination of groundwater by chemical pollutants is a prominent problem of our times 

which threatens the quality of drinking water resources worldwide1, 2. Although many of 

these contaminants are only present at very low concentrations (microgram to nanogram per 

liter level), they can show negative long-term effects on humans and other living organisms2. 

Most commonly detected contaminants are chlorohydrocarbons. Prominent examples of such 

chlorohydrocarbons are chlorinated ethenes, like tetrachloroethene (PCE) and 

trichloroethene (TCE), originating from industry3, or chlorinated micropollutants, like the 

agricultural herbicide atrazine4. 

1.1.1 Chlorinated Ethenes 

In industry the chlorinated ethenes PCE and TCE are extensively used as dry-cleaning 

solvents and metal degreasing agents. Due to improper handling or leakage numerous sites 

were contaminated throughout the United States and Europe. Since PCE and TCE have toxic 

effects on living organisms, (bio)remediation of these sites is of major importance3. Under 

anoxic conditions certain bacteria are able to stepwise dechlorinate PCE and TCE via a 

process called reductive dehalogenation. This process is catalyzed by reductive dehalogenase 
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enzymes (RDases). Unfortunately, only a few bacteria are capable of a complete 

dehalogenation from PCE or TCE down to the non-toxic ethene. Therefore, degradation 

often stalls at the point of the highly toxic cis-1,2-dichloroethene (cis-DCE) or vinyl chloride 

(VC) which is one of the long-standing barriers to successful bioremediation5. 

1.1.2 Atrazine 

In the U.S. atrazine is a widely used herbicide applied in agriculture for broadleaf and weed 

control6, 7. In Germany and in the E.U. it was also intensively used until it was banned in 

Germany in 19918 and in the E.U. in 20049. However, in Germany atrazine and its 

metabolites can still be detected in the groundwater10. Furthermore, its wide-ranging 

presence and accumulation in the environment can have negative effects on living 

organisms11. Therefore, the environmental fate of this herbicide and its monitoring are of 

major concern. 

1.2 Monitoring Strategy – Compound-Specific Stable Isotope Analysis 

(CSIA) 

Monitoring of these chlorohydrocarbons as well as detecting and identifying their 

degradation pathways at contaminated sites is of significant importance since this is the 

fundamental basis for the development of appropriate remediation techniques and strategies. 

With conventional methods it is highly challenging to assess groundwater contaminants in 

natural environments. These methods typically aim to identify degradation by analyzing 

mass balances or measuring parent compound and metabolite concentration over time. 

However, to close mass balances becomes difficult, if additional natural attenuating 

processes like sorption or dilution are at work. Such processes do not affect the metabolite to 

parent compound ratio, which is calculated from the respective concentrations. However, 

since metabolites can be further degraded, also this method often fails to prove degradation 

or to provide information about the degradation mechanisms12, 13. Therefore, a powerful 

approach to get insight into the fate of the contaminants is needed in order to develop and 

optimize bioremediation strategies. 

One approach, that can fulfill this demand, is compound-specific stable isotope analysis 

(CSIA) which has become a promising tool to study groundwater contamination. With this 
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approach, the isotopic signature of environmental contaminants can be determined by 

measuring isotope ratios of certain elements at their natural abundance. Subsequently this 

isotopic signature can help trace the source of contamination since analytes from different 

sources mostly show different isotopic compositions12, 14. On the other hand, it is possible 

not only to detect but also to quantify degradation processes of contaminants in the 

environment12, 15, 16, to differentiate degradation pathways12, 13 and even to identify chemical 

reaction mechanisms17, which will be further discussed in the following sections. 

1.2.1 Principals of CSIA 

Isotope values or isotopic signatures are isotope ratios (heavy vs. light isotopes) of certain 

elements which are determined at their low natural abundance and expressed in the 

δ-notation, e.g. for carbon: 

δ13C = [(13C/12C)Sample - (
13C/12C)Reference] / (

13C/12C)Reference    (1-1) 

The relation to an international reference material, as expressed in Equation 1-1, enables the 

comparison of isotope ratios determined in different laboratories worldwide. Positive 

δ-values indicate an enrichment and negative δ-values indicate a depletion of the heavy 

relative to the light isotope in the sample compared to the reference material. During 

transformation processes isotope fractionation takes place, leading to a change in the isotope 

ratio of the reacting compound. This is based on the fact that heavy and light isotopes behave 

differently during chemical reactions. Chemical bonds with heavy isotopes are slightly more 

stable than bonds with light isotopes. Therefore, molecules containing chemical bonds with 

light isotopes typically react faster than molecules with heavy isotopes (normal kinetic 

isotope effect). This kinetic isotope effect can be expressed by: 

KIE = lk / hk          (1-2) 

Here lk and hk are the reaction rates of light and heavy isotopes. 

Due to this basic principal the remaining substrate of a transformation reaction becomes 

gradually enriched with molecules containing heavy isotopes over time. Such a trend can be 

described by the Rayleigh equation, e.g. for carbon: 

ln [(δ13C + 1) / (δ13C0 + 1)] = ɛc ∙ ln ƒ      (1-3) 
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For this equation, isotopes values have to be determined at a given time (δ13C) and at the 

starting point of the reaction (δ13C0). The enrichment factor ɛ reflects the extent of isotope 

fractionation. The magnitude of this degradation-induced isotope fractionation can be used to 

detect contaminant degradation in the field18-20. 

1.2.2 Instrumentation of CSIA 

Isotope ratios of single compounds in environmental samples can be determined by coupling 

gas chromatography (GC) to isotope ratio mass spectrometry (IRMS). In case of carbon and 

nitrogen isotope analysis, the target compounds are separated via gas chromatography and 

subsequently converted online into an analyte gas (CO2, N2) (see Figure 1-1A and 1-1B). 

Afterwards, the analyte gas is transferred in a helium carrier stream into the IRMS where the 

isotope ratios are measured21. 

Advances in analytical instrumentation have enabled also the online analysis of chlorine 

isotope ratios in organic chlorinated compounds. Here the target compounds are directly 

transferred from the GC to the IRMS (see Figure 1-1C)22. 

For all three elements, target compounds are measured against respective monitoring gases 

which are introduced into the IRMS during measurement (see Figure 1-1A – 1-1C). 

According to Equation 1-1 the resultant isotope ratios are converted to δ-values which are 

relative to an international scale21, 23. 
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Figure 1-1. Instrumentation of compound-specific isotope analysis for (A) carbon, (B) nitrogen and 

(C) chlorine via GC-IRMS (adapted from Elsner et al.20). 

 

1.2.3 Prospects and Challenges of CSIA 

The possibility to analyze more than one element, further strengthens the possibilities of 

CSIA. By combining isotope changes of two elements, dual element isotope plots can be 

formed, e.g. for carbon and nitrogen: 

ΛC/N = Δδ15N / Δδ13C ≈ ɛN / ɛC       (1-4) 

Dual element isotope plots and the corresponding regression slopes Λ are effective indicators 

for the differentiation of chemical reaction mechanisms. A remarkable advantage of such 

regression slopes is that they are insensitive towards masking19, 24. Microbial transformation 

processes often include preceding steps like uptake of the substrate into the cell or binding of 

the substrate to the enzyme. Such processes can mask the isotope fractionation and 
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consequently the observed ɛ-values may be inconclusive because they do not reflect the full 

isotope effect of the underlying chemical mechanism25, 26. To circumvent this problem, 

isotope ratio changes of two elements can be measured. If the preceding steps do not cause 

isotope fractionation, isotope effects of both elements decrease to the same extent meaning 

that the regression slope Λ remains constant19, 24. 

Furthermore, the analysis of additional elements can lead to an even better mechanistic 

understanding of the underlying reaction chemistry. At field sites isotopic information from 

multiple elements could be a more sensitive indication of ongoing natural transformation 

processes and it could improve the ability to identify different sources of contamination27, 28. 

Especially the application of chlorine CSIA has increased a lot in the last years12, 22, 29, 30 and 

recently it became even possible to analyze more complex structured chlorohydrocarbons 

like herbicides31, 32. This ongoing progress could advance chlorine CSIA to the method of 

choice for studying environmental chlorohydrocarbon contamination in the future. However, 

as chlorine CSIA is based on the analysis of unconverted target compounds, the availability 

of certain referencing standards and substance-specific working standards is of highest 

importance to guarantee accurate and comparable results. Additionally, it is even 

recommended to use two standards during analysis enabling a two-point calibration. 

Equation 1-1 leads to accurate results as long as samples and reference material show similar 

values. However, if samples and reference material lie farther apart, it becomes important to 

rely on a second characterized standard, which shows an isotopic shift compared to the first 

standard, to guarantee accurate results20, 23, 33. In case of referencing standards, laboratories 

are instructed to generate their own in-house standards. These in-house standards should be 

characterized against the international referencing materials which are highly valuable34. On 

the other hand, the above-mentioned increasing range of measurable compounds demands 

also substance-specific working standards, which have to be calibrated against the 

referencing standards. These working standards have to be substance-specific since target 

compounds are not converted to an analyte gas. The measurement process of CISA can 

contain steps which alter the chlorine isotope ratios of the target compounds. Therefore, 

substance-specific working standards, which undergo the same processes as the samples, are 

needed to guarantee the trueness of analysis20, 35. 
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1.3 Objectives 

As compound-specific stable isotope analysis is a powerful tool for studying the fate of 

chlorohydrocarbons, this thesis aimed to further advance chlorine isotope analysis 

(Chapter 2) and to investigate underlying transformation processes of chlorinated ethene 

(Chapter 3) and atrazine (Chapter 4) degradation. 

Almost all international referencing standards for chlorine analysis have a similar value of 

approx. 0 ‰. Only the recently synthesized international standard USGS38 shows a 

pronounced negative value of δ37Cl = -87.90 ± 0.24 ‰. With its isotopic shift, it enabled for 

the first time the two-point calibration of working standards36, 37. Consequently, this 

international standard is of a very high value and an easy synthesis route to generate an in-

house referencing standard with a pronounced isotopic shift for routine characterization of 

chlorine isotope working standards is urgently needed. Such a standard has to be 

characterized against the international standard USGS38 and a second international standard 

to pinpoint its δ37Cl-value on the international scale. Therefore, one objective within 

Chapter 2 was the identification of a facile synthesis route for a chloride salt showing a shift 

in its isotope value compared to other international standards. This chloride salt had to be 

characterized, so that it can be used as a second anchor for two-point calibration of in-house 

working standards in the future. Furthermore, the instrumental advances in chlorine isotope 

analysis led to an increasing range of measurable substances, especially in case of more 

complex chlorinated organic compounds, like herbicides38. For such compounds, a strategy 

for the development of substance-specific in-house working standards has to be established. 

Thus, the second objective within Chapter 2 was to demonstrate that substance-specific 

working standards for more complex organic chlorinated micropollutants can be produced 

by certain chemical reactions due to their isotope fractionation effects. Here the herbicides 

S-metolachlor and acetochlor were chosen. 

The work presented in Chapters 3 and 4 focused on exploring insights from chlorine CSIA to 

investigate the environmental fate of chlorinated ethenes and atrazine as most prominent 

chlorohydrocarbons in the environment. 

In Chapter 3 reductive dechlorination pathways of chlorinated ethenes were studied with 

special respect to the question why bioremediation of chlorinated ethene at contaminated 

sites often stalls at the point of toxic cis-DCE or VC. Recently a vitamin B12 model study 



GENERAL INTRODUCTION 
   

8 

 

revealed that two different mechanisms are responsible for dechlorination of chlorinated 

ethenes based on evidence from carbon and chlorine isotope analysis17. Whether these 

mechanisms are also at work during microbial dechlorination is still not known. Therefore, 

in this chapter carbon and chlorine isotope effects during microbial reductive dehalogenation 

of chlorinated ethenes were analyzed. Subsequently, the observed dual element isotope 

trends of carbon and chlorine were compared to the trends observed for the two mechanisms 

identified in the vitamin B12 model study. In addition, the influence of the involved 

predominant RDases was investigated. 

In Chapter 4 chlorine isotope fractionation during atrazine microbial degradation was 

studied. Chlorine isotope fractionation could be a particularly more sensitive indicator of 

natural transformation processes of atrazine since chlorine isotope effects are fully 

represented in the molecular average while carbon and nitrogen isotope effects are diluted by 

non-reacting atoms. Carbon and nitrogen isotope effects of atrazine during microbial 

hydrolysis with A. aurescens TC1 and oxidative dealkylation with Rhodococcus sp. NI86/21 

were analyzed in the past and chemical mechanisms could be proposed corresponding to the 

observed carbon and nitrogen isotope effects39-41. Information from chlorine isotope 

fractionation, in addition, could also optimize pathway distinction and source identification. 

Therefore, the objectives of this chapter were to degrade atrazine via microbial hydrolysis 

with A. aurescens TC1 and oxidative dealkylation with Rhodococcus sp. NI86/21 and 

subsequently analyze carbon and nitrogen and, for the first time, chlorine isotope effects. 

Especially the observed chlorine isotope fractionation was analyzed intensively to get insight 

whether it can be used as a sensitive indicator for natural transformation processes and 

whether it can confirm previously proposed chemical mechanisms for the two microbial 

degradation pathways. 
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2.1 Abstract 

Increasing applications of 

compound-specific chlorine 

isotope analysis (CSIA) 

emphasize the need for chlorine 

isotope standards that bracket a 

wider range of isotope values in 

order to ensure accurate results. 

With one exception (USGS38), 

however, all international chlorine isotope reference materials (chloride and perchlorate 

salts) fall within the narrow range of one per mille. Furthermore, compound-specific 

working standards are required for chlorine CSIA but are not available for most organic 

substances. We took advantage of isotope effects in chemical dehalogenation reactions to 

generate (i) silver chloride (CT16) depleted in 37Cl/35Cl and (ii) compound-specific standards 

of the herbicides acetochlor and S-metolachlor (Aceto2, Metola2) enriched in 37Cl/35Cl. 

Calibration against the international reference standards USGS38 (−87.90 ‰) and ISL-354 

(+0.05 ‰) by complementary methods (gas chromatography – isotope ratio mass 

spectrometry, GC-IRMS, versus gas chromatography – multicollector inductively coupled 

plasma mass spectrometry, GC-MC-ICPMS) gave a consensus value of δ37ClCT16 = −26.82 

± 0.18 ‰. Preliminary GC-MC-ICPMS characterization of commercial Aceto1 and Metola1 

versus Aceto2 and Metola2 resulted in tentative values of δ37ClAceto1 = 0.29 ± 0.29 ‰, 

δ37ClAceto2 = 18.54 ± 0.20 ‰, δ37ClMetola1 = −4.28 ± 0.17 ‰ and δ37ClMetola2 = 5.12 ± 0.27 ‰. 

The possibility to generate chlorine isotope in-house standards with pronounced shifts in 

isotope values offers a much-needed basis for accurate chlorine CSIA. 
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2.2 Introduction 

Isotopes, atomic nuclei that are identical in their chemical properties but show differences in 

their atomic mass, may be present in varying proportions. Stable isotope ratios are typically 

expressed in the δ-notation relative to a common international reference material (see 

Equation 2-1). This has the advantage that values, when measured in different laboratories 

against the same reference material, are comparable on an absolute scale13, 33. 

δhE = [(hE/lE)Sample – (hE/lE)Reference] / (
hE/lE)Reference     (2-1) 

δhE refers to the isotope value of an element E and (hE/lE) to the absolute ratio of the 

respective heavy (h) and light (l) isotopes. Positive delta values imply an enrichment, and 

negative delta values indicate a depletion of heavy relative to light isotopes when compared 

to the international reference standard42, 43. Isotope ratios are used in a wide field of 

applications. In archeology, stable isotope ratios inform about prehistoric lifestyle and diet44; 

in food sciences they serve to test the quality and the origin of foods45. In forensic science, 

isotope analysis can help trace the production site of drugs46 and in competitive sports it can 

reveal doping violations47. Isotope analysis is equally important in the field of environmental 

sciences where environmental contaminants threaten the quality of groundwater resources. 

By analyzing isotope ratios of single compounds, compound-specific isotope analysis 

(CSIA) is able to allocate a contaminant to a certain source12. In addition, CSIA can help to 

detect and quantify isotope fractionation to trace degradation processes of environmental 

contaminants. Since bonds of molecules with heavy versus light isotopes are transformed at 

different rates, isotope ratios change during degradation. Hence, isotope analysis has the 

potential to identify degradation of contaminants even if no metabolites can be detected. As 

isotope effects are reaction-specific, isotope ratio analysis of the parent compound may in 

addition deliver information about chemical transformation pathways, even without 

metabolite analysis13, 43, 48-50. 

Chlorine isotope analysis (37Cl/35Cl) has increased in importance with its role in deciphering 

central geochemical and biological processes. Since chloride is one of the most abundant 

anions in geological fluids, its isotopes were measured early on to obtain information about 

geological processes and about the origin of chlorine found in brines and basalts51, 52. 

Furthermore, chlorine isotope analysis of perchlorate has been used to identify the source of 
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environmental contamination53. “Offline” methods such as the Holt method54 were for a long 

time the only way to accomplish such chlorine stable isotope analysis. They rely on a 

chemical conversion of a compound in sealed glass or metal tubes and complex vacuum 

lines followed by isotope ratio mass spectrometry (IRMS). Hence, to enable isotope analysis 

of single compounds, target substances have to be purified beforehand. Afterward, they must 

be converted into a suitable analyte containing only one chlorine atom such as methyl 

chloride in the case of the Holt method54 or CsCl for thermal ionization mass spectrometry55. 

This approach, however, is rather time, labor, and cost intensive, requires a large sample 

amount54, 56 and is therefore prohibitive for compound-specific isotope analysis (CSIA) of 

organic compounds in trace concentrations. In turn, such chlorine CSIA has recently been 

made possible by advancing and optimizing instrumentation for online chlorine isotope 

analysis. Chromatographic separation of a sample is combined with subsequent isotope ratio 

analysis by a dedicated IRMS57. First instrumental solutions for chlorine CSIA were realized 

by transferring the separated chlorinated compounds in a helium carrier gas stream directly 

to an IRMS with dedicated cup configuration12 or into a quadrupole mass spectrometer 

(qMS)23, 29, 30. In a most recent development, chlorine isotope analysis via GC-MC-ICPMS 

(gas chromatography – multicollector inductively coupled plasma mass spectrometer) has 

even been realized by converting organic compounds into Cl+ ions in an inductively coupled 

plasma and, therefore, offering for the first time an opportunity of universal online chlorine 

CSIA at very low analyte concentrations (2-3 nmol of Cl)31, 32. 

Chlorine CSIA has played a key role in elucidating chlorinated ethene transformation 

mechanisms in lab studies17, 58-62 and is at the verge of becoming a method of choice to study 

the environmental fate of chlorinated hydrocarbons at contaminated sites. Even chlorinated 

compounds with more complex structures like herbicides are getting within reach. At this 

point, however, an issue is becoming increasingly important that is crucial for chlorine CSIA 

on unconverted target compounds and is particularly warranted for comparison of analyses 

by different instrumental approaches: the need for chlorine isotope reference materials and 

compound-specific in-house isotope working standards. 

As expressed by Equation 2-1 isotope reference standards, ideally two standards which 

bracket the isotope values of the samples, are crucial for true isotope measurements23, 33, 63, 64. 

International reference materials are highly valuable, rather expensive, and sometimes even 

available only in limited amounts. Therefore, laboratories are advised to prepare their own 
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in-house reference standards. These standards should be calibrated against the international 

reference standards34. In the case of chlorine, two international reference materials are 

available, ISL-354 (NaCl, δ37Cl = +0.05 ± 0.03 ‰) and NIST SRM 975a (NaCl, 

δ37Cl = +0.01 ‰)36, 37, 65. Additionally, Böhlke et al.37 were able to synthesize and 

characterize the oxygen and chlorine isotope reference materials USGS37 (KClO4, 

δ37Cl = +0.90 ± 0.04 ‰), USGS38 (KClO4, δ
37Cl = -87.90 ± 0.24 ‰) and USGS39 (KClO4, 

δ37Cl = +0.05 ‰) on the international scale for ClO4
- isotopic analysis. Unfortunately, most 

of these standards show very similar chlorine isotope values. Only one perchlorate standard, 

USGS38, shows a large isotopic shift, which has solved the long-standing problem that 

working standards for daily chlorine isotope analysis could be characterized against only one 

international reference standard. The availability of the standard USGS38 with its 

pronounced negative δ37Cl-value enables for the first time a two-point calibration of other 

chlorine standards. Since such international reference materials are very valuable, the next 

logical step is the preparation of in-house standards with a pronounced isotopic shift that can 

be routinely used for calibration on the delta scale. For example, this approach is well-

entrenched for hydrogen and oxygen isotope analysis of water, where laboratories typically 

possess their own in-house standards that have been calibrated against the international water 

standards SLAP (standard light antarctic precipitation) and VSMOW (Vienna standard mean 

ocean water)34. 

A second challenge lies in the upcoming opportunity of chlorine CSIA which, requires sets 

of compound-specific working standards that bracket a suitable range of isotope values. For 

chlorine CSIA these working standards have to be substance-specific since there is no 

combustion to an analyte gas. In accordance with the IT-Principal (principal of identical 

treatment of referencing material and sample), the process of measurement can include 

isotope fractionating steps. Therefore, for each substance, the trueness of analysis has to be 

validated by using chemically identical standards with a known isotope value, which are 

subject to the same reaction conditions as the sample20, 30, 35. Hence, our second objective 

was to create such compound-specific working standards. 

Even though it is well established that isotopologues can be separated by physical properties 

like diffusivity or vapor pressure, the corresponding processes require an extensive number 

of repetitions. To this end, dedicated instrumentation is needed that is beyond the scope of 

typical isotope laboratories. Alternatively, because most chemical reactions are accompanied 
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by larger isotopic fractionation than physical processes, chemical reactions can be used as a 

tool to synthesize standards with a more negative or a more positive isotope value than the 

starting material. To harvest the isotope fractionation of such a chemical reaction, three 

strategies may be pursued (see Scheme 2-1). Strategy 1: a substrate may be converted to a 

large degree, the reaction may be stopped and the remaining substrate may be purified from 

the reaction mixture. Strategy 2: a product may be continuously recovered in the presence of 

a large pool of substrate. Strategy 3: if two products are formed simultaneously, a reaction 

may be brought to completion, and the products may be separated to take advantage of the 

differences in isotope effects to the parallel products. 

 

 

Scheme 2-1. Possible strategies to generate a standard with a shifted chlorine isotope ratio compared to the 

starting material. 

 

The first objective of this study was to identify a synthesis route to easily generate and to 

characterize a chloride salt as chlorine isotope in-house standard. To this end, strategy 3 of 

Scheme 2-1 was pursued to synthesize a chloride in-house standard with a negative isotope 

value. Subsequently, this standard was characterized against the international chlorine 

reference standards USGS38 and ISL-354. 

The second objective of this study was to show that chemical reactions and their 

corresponding isotope fractionation can be used according to strategy 1 to generate in-house 

working standards for chlorine CSIA of specific organic compounds. Since isotope 
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fractionation of micropollutants such as pesticides is receiving increasing attention38, the 

herbicides S-metolachlor and acetochlor were chosen. These compounds are among the most 

commonly used herbicides for the protection of plants against weeds in U.S. agriculture7. In 

the environment they can have toxic effects on living organisms66. Thus, studying the 

environmental fate and the transformation pathways of these herbicides by chlorine CSIA is 

of particular interest. 

2.3 Experimental Section 

2.3.1 Synthesis of the Chlorine Isotope In-House Standard CT16 

Following the protocol of Somsak et al.67, 2,2,2-trichloroethyl acetate (14 mL) was used as a 

starting material. As depicted in Scheme 2-2A, the trichloroethyl group was removed by zinc 

in 90 % aqueous acetic acid (140 mL) via a reductive elimination process under reflux 

conditions at 0 °C. After 24 h, a silver nitrate solution (350 mL, 17 g/L) was added to 

precipitate the formed chloride as silver chloride. After filtering, the pure silver chloride 

(2.61 g) was dried at 40 °C overnight in the dark. Silver chloride decomposes upon exposure 

to light but remains perfectly stable when stored in a desiccator in the dark (brown glass 

bottles wrapped with aluminum foil). Even through its use may, therefore, be limited as a 

reference material, it represents an ideal in-house standard, because it may be directly 

converted to methyl chloride, which is the common measurement gas in chlorine isotope 

analysis. 
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Scheme 2-2. (A) Synthesis route to the silver chloride reference standard CT16 via reductive elimination of Cl- 

and subsequent precipitation with AgNO3. (B) Expected fractionation and the corresponding strategy to recover 

chloride with pronounced changes in chlorine isotope values. 

 

2.3.2 Synthesis of the Chlorine Isotope Working Standards Aceto2 for Acetochlor and 

Metola2 for S-Metolachlor 

Acetochlor and S-metolachlor were purchased in their pure forms (Chemos). As such they 

could be used as primary working standards Aceto1 and Metola1, representing one anchor 

point of the two-point calibration. To generate working standards with an isotopic shift for a 

second anchor point, 18 g of the purchased acetochlor and S-metolachlor, respectively, and 

NaN3 (21.6 g/20.7 g) were dissolved in acetone (500 mL) according to the protocol of Weigl 

& Wünsch68. Like that illustrated in Scheme 2-3A, the solution was heated up to 70 °C under 

reflux. During the reaction, chloride was substituted by an azide group. The progress of the 

reaction was monitored via HPLC analysis. The reactions were stopped when 32.2 % of the 

initial acetochlor (approx. after 40 h) and 29.4 % of initial S-metolachlor (approx. after 94 h) 

were left. By flushing the solution with N2, the solvent was evaporated at room temperature. 

The residue was twice dissolved in diethyl ether (200 mL), and the ether phase was washed 
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three times with H2O (300 mL) and dried over Na2SO4. After filtering and evaporating with 

a rotary evaporator, the unconverted respective chloroacetanilide was purified and recovered 

from the rest of the reaction mixture via silica column chromatography. The eluent was 

n-hexane/ethyl acetate (6/1) for acetochlor, (Rf = 0.36) and n-hexane/ethyl acetate (4/1) for 

S-metolachlor (Rf = 0.447), respectively. In a last step the eluent was removed by rotary 

evaporation. 1.43 g of acetochlor (reddish oil) and 2.53 g S-metolachlor (yellowish oil) were 

obtained. 

 

 

Scheme 2-3. (A) Synthesis of chlorine isotope working standards of acetochlor Aceto2 and S-metolachlor 

Metola2. (B) Expected fractionation and resultant strategy to recover unreacted acetochlor/S-metolachlor with 

pronounced changes in chlorine isotope values. 
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2.3.3 Monitoring of the Reaction Progress of Acetochlor and S-Metolachlor via HPLC 

For HPLC analysis, 1 mL of reaction solution was sampled and the solvent was evaporated 

by flushing the sample with N2. The residue was dissolved in 1 mL acetonitrile and analyzed 

on a Shimadzu UHPLC-20A system. To this end, samples were diluted (1:200) with 

Milli-Q/acetonitrile (80/20). A C18 column [Purospher STAR, RP-18 end-capped (5 µm), 

LiChroCART 125-2, Merck] was used together with acetonitrile and a KH2PO4 buffer 

(0.1 mM) as eluents. A volume of 5 µL was injected, and the oven temperature was set to 

40 °C. Separation was accomplished by gradient elution at a flow rate of 0.3 mL/min starting 

with 40 % acetonitrile and 60 % buffer. For separation of acetochlor and acetoazide, a linear 

gradient to 70 % acetonitrile within 33 min was used, whereas S-metolachlor and 

S-metolaazide were separated in a linear gradient to 60 % acetonitrile within 22 min. The 

respective final conditions were maintained isocratic for 4 and 3 min, respectively, before a 

subsequent gradient led back to the initial conditions of 40 % acetonitrile within 1 and 

0.5 min, respectively. Subsequent equilibration was for 5 min (acetochlor) and 7.5 min 

(S-metolachlor). Compound detection took place by UV absorbance at a wavelength of 

216 nm for acetochlor and at 214 nm for S-metolachlor. Quantification was performed by 

the software “Lab Solutions”. 

2.3.4 Conversion of the International Reference Standard ISL-354 (NaCl) to Silver 

Chloride 

The conversion of ISL-354 (NaCl (56 mg) dissolved in 50 mL Milli-Q) was accomplished 

by precipitation with 30 mL of silver nitrate solution (20.3 mg/mL). The precipitated silver 

chloride was washed twice with methanol and once with acetone. Afterward, it was dried at 

room temperature in the dark. 

2.3.5 Conversion of the International Reference Standard USGS38 (KClO4) to Silver 

Chloride 

Following the protocol of Böhlke et al.37 KClO4 (2.5 mg) was filled into quartz glass 

ampules which were then evacuated and sealed with an oxygen torch. After heating the 

ampules to 720 °C for 20 min in a preheated oven, they were cracked and the Cl- that was 

formed from decomposed ClO4
- was dissolved in 2 mL warm Milli-Q water. Silver chloride 
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was precipitated by adding 0.1 mL of silver nitrate solution (83.3 mg/mL). The silver 

chloride was then washed twice with methanol and once with acetone and dried at room 

temperature in the dark. 

2.3.6 Conversion of Silver Chloride to Methyl Chloride 

A method for the conversion of silver chloride to methyl chloride was modified from Holt et 

al.54. Silver chloride (300 µg) was weighted into 10 mL headspace vials and flushed for 20 s 

with N2 gas. Methyl iodide (150 µL) which was filled into 1.5 mL quartz glass inserts was 

added. Afterward, the vials were closed and tightly crimped with PTFE coated septa (Carl 

Roth) and put into the oven at 80 °C for 48 h. 

2.3.7 Chlorine Isotope Analysis via GC-IRMS (Munich) 

The method for chlorine isotope analysis was adapted from Shouakar-Stash et al.22. 

Measurements were performed on a gas chromatograph (Thermo Scientific, Trace GC Ultra) 

coupled to an isotope ratio mass spectrometer (Thermo Scientific, Finnegan MAT 253 

IRMS) equipped with a direct transfer line so that the methyl chloride samples were directly 

transferred from the GC to the IRMS in a He carrier stream. There, the compounds were 

ionized and fragmented for isotope ratio analysis at the masses m/z of 50/52. To achieve 

optimal separation, a Vocol column (Supelco, 30 m × 0.25 mm, 1.5 µm film thickness) was 

used. Samples from the headspace (250 µL) were injected into the GC at a split ratio of 1:50. 

The GC oven temperature program started at 40 °C (1 min), increased to 100 °C at 

30 °C/min, and was held for 2 min. Methyl chloride reference gas pulses were injected via a 

dual inlet system at the beginning and at the end of each measurement as described in 

Bernstein et al.23. Two-point calibrations were performed with the international reference 

standards ISL-354 (δ37Cl = +0.05 ‰)36 and USGS38 (δ37Cl = -87.90 ‰)37 to convert 

measurements to δ37Cl values relative to standard mean ocean chloride (SMOC). 

2.3.8 Chlorine Isotope Analysis via GC-MC-ICPMS (Leipzig) 

Measurements were performed according to the protocols described in Horst et al.31 and 

Renpenning et al.32. Samples were separated using a gas chromatograph (Thermo Scientific, 

Trace 1310) equipped with a Zebron ZB-1 column (Phenomenex Inc., 60 m × 0.32 mm, 
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1 µm film thickness). A heated transfer line coupled the GC to a multicollector inductively 

coupled plasma mass spectrometer (MC-ICPMS, Thermo Fisher Scientific, Neptune). For 

analysis of methyl chloride, 80 µL of gaseous sample were manually injected into a 

split/splitless injector at a temperature of 280 °C. For achieving chromatographic separation 

of methyl chloride and methyl iodide, the GC started at 30 °C (8 min) followed by a gradient 

of 10 °C/min to 100 °C. The transfer line was kept at 160 °C. A constant column flow of 

2 mL/min with a split ratio of 1:10 was applied. For the analysis of acetochlor and 

S-metolachlor the pure substances were diluted in acetone to a final concentration of 2 ppm. 

Three microliters of liquid sample were manually injected into the same injector kept at a 

temperature of 250 °C. The GC started at a temperature of 100 °C, and after 3 min it 

increased to 240 °C at 20 °C/min, followed by an increase to 300 °C at 5 °C/min where the 

temperature was held for 5 min. The transfer line had a temperature of 280 °C. A constant 

column flow of 2 mL/min with a split ratio of 1:10 was applied. In-house referencing 

standards “TCE-2” (-2.54 ± 0.13 ‰) and “MeCl” (4.49 ± 0.10 ‰) were calibrated against 

methyl chloride from ISL-354 and USGS38 and subsequently used for preliminary 

characterization of acetochlor and S-metolachlor. In addition, further compounds 

(acetochlor, S-metolachlor, and atrazine) were purchased and calibrated in the same way. 

For results see Table 6A-S1 (Appendix). 

2.4 Results and Discussion 

2.4.1 Synthesis Route to a Chlorine Isotope In-House Standard on the International 

Scale 

Reductive dehalogenation of 2,2,2-trichloroethyl acetate by zinc powder produced 

1,1-dichloroethene (not analyzed) and chloride, which could be precipitated and isolated as 

AgCl. The pure silver chloride in-house reference standard was given the name “CT16”. For 

chlorine isotope analysis, it was subsequently converted to methyl chloride in order to 

facilitate isotopic characterization by GC-MC-ICPMS and GC-IRMS against international 

reference standards treated in the same way. 

Figure 2-1 shows that the synthesized CT16 in-house chlorine isotope reference standard 

was adequately bracketed by the international reference standards ISL-354 and USGS38. A 

first characterization of CT16 via GC-IRMS in September 2017 resulted in a value of 
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δ37ClCT16 = -26.82 ± 0.17 ‰ (see Figure 2-1A). These measurements were repeated in 

February 2018, yielding a value of δ37ClCT16 = -26.88 ± 0.28 ‰ that was identical to the first 

one within the analytical uncertainty (see Figure 2-1B). In a third approach CT16 was 

characterized via GC-MC-ICPMS giving even more precise values (δ37ClCT16 = -26.75 

± 0.08 ‰) which were in accordance with the GC-IRMS results (see Figure 2-1C). 

Consequently, the mean value over all measurements, δ37ClCT16 = -26.82 ± 0.18 ‰ (n = 16), 

is considered as a “true” consensus value for this in-house standard. As intended, this value 

shows a relatively large shift when compared to most international chlorine isotope reference 

standards which center on an isotope value of 0 ‰36, 37, 65. 

This strong negative value can be explained by the isotope effect of the reaction. During the 

reductive elimination depicted in Scheme 2-2A, chlorine isotope fractionation is expected to 

take place according to Scheme 2-2B. Bonds containing heavy isotopes are slightly more 

stable than bonds containing light isotopes so that bonds with light isotopes break faster13, 58. 

Consequently, 35Cl is preferentially cleaved off from 2,2,2-trichloroethyl acetate meaning 

that the produced chloride in solution is expected to contain less 37Cl per 35Cl. This leads to 

isotope values that are strongly negative compared to the formed 1,1-dichloroethene, 

compared to the original substrate, and also compared to most available reference materials 

to date. 

Identifying this synthesis route provides every laboratory the opportunity to create materials 

with negative chlorine isotope values. This represents a significant advance for future 

characterization of chlorine isotope standards: in-house working standards can be calibrated 

against two different reference standards, against one reference standard with an isotope 

value close to 0 ‰ and against a negative reference standard like CT16. By covering a wider 

range of isotope values, also results for the characterization of secondary in-house chlorine 

working standards will become more accurate which will consequently propagate into the 

precision and trueness of daily chlorine isotope measurements of samples. With regard to 

interlaboratory comparability, characterization against two reference standards leads to very 

accurate result relative to the international SMOC scale which will improve the quality and 

the international comparability of the obtained chlorine isotope values23, 33, 63. 
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Figure 2-1. Characterization of the synthesized silver chloride reference standard CT16 against the 

international reference standards ISL-354 (δ37Cl = +0.05 ‰) and USGS38 (δ37Cl = -87.90 ‰). (A, B) CT16 

measured via GC-IRMS in Munich at two different time points in (A) September 2017 and (B) February 2018, 

and (C) CT16 measured via GC-MC-ICPMS in Leipzig in February 2018. (The mean is given as value and as 

red line, while standard deviations are given as values and as black lines). 
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2.4.2 Candidate Compounds for Compound-Specific Chlorine Isotope Working 

Standards 

Reactions of acetochlor and S-metolachlor with sodium azide were stopped when ∼70 % of 

the substrates were converted to sodium chloride and acetoazide and metolaazide, 

respectively. The remaining substrates were named “Aceto2” and “Metola2”. Together with 

the original substances, which were named “Aceto1” and “Metola1”, the isolated Aceto2 and 

Metola2 were measured via GC-MC-ICPMS. 

Figure 2-2 shows that the synthesized working standards Aceto2 and Metola2 exhibit 

significantly more positive chlorine isotope values than the initial substances Aceto1 and 

Metola1. For acetochlor, the initial substance Aceto1 was characterized to have an isotope 

value of δ37ClAceto1 = 0.29 ± 0.29 ‰ tentatively determined by GC-MC-ICPMS. The 

synthesized working standard Aceto2 shows an isotope value of δ37ClAceto2 = 18.54 ± 0.20 ‰ 

corresponding to an isotopic shift of ∼18 ‰ (see Figure 2-2A). Measurements of 

S-metolachlor resulted in an isotopic shift of ∼9 ‰. By the same GC-MC-ICPMS analysis 

Metola1, the initial substance, was attributed a chlorine isotope value of δ37ClMetola1 = -4.28 

± 0.17 ‰ and the synthesized working standard, Metola2, a value of δ37ClMetola2 = 5.12 

± 0.27 ‰ (see Figure 2-2B). 

 



TOWARD IMPROVED ACCURACY IN CHLORINE ISOTOPE ANALYSIS 
   

24 

 

 

Figure 2-2. Characterization of (A) the acetochlor working standards Aceto1 and Aceto2 and (B) the 

S-metolachlor working standards Metola1 and Metola2. (The mean is given as value and as red line, while 

standard deviations are given as values and as black lines). 

 

The change in chlorine isotope values for each of the two substances happened due to the 

isotope effect of the underlying second order nucleophilic chemical substitution reaction 

(SN2, Scheme 2-3A). As illustrated in Scheme 2-3B, owing to the leaving group isotope 

effect associated with chloride substitution, the remaining substrate got enriched in heavy 

relative to light chlorine isotopes leading to a more positive chlorine isotope value compared 

to the value of the original substrate before the start of the reaction. 

These results illustrate that organic chemistry can be used to generate substance-specific 

working standards with pronounced shifts in chlorine isotope values. Thus, working 

standards for other chlorinated complex organic compounds may also be generated in the 
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future so that stable chlorine isotope analysis of these compounds will help to further 

illuminate sources and transformation (pathways). 

2.5 Conclusion 

Specific synthesis routes were identified to generate five standards, the in-house anchor 

CT16 and the working standards Aceto1 / Aceto2 and Metola1 / Metola2, for stable chlorine 

isotope analysis. In particular, the synthesis route to silver chloride (CT16) provides an 

opportunity to generate much-needed in-house standards for chlorine isotope analysis. The 

possibility to use two standards which differ in their chlorine isotope value will optimize 

future characterization results of secondary chlorine working standards. More accurate in-

house working standards will in turn optimize the precision and trueness of daily chlorine 

isotope measurements. In addition, the synthesis of the working standards for acetochlor 

(Aceto1 and Aceto2) and S-metolachlor (Metola1 and Metola2) showed that organic 

synthesis can generate substance-specific isotope working standards also of more complex 

chlorinated organic compounds. These working standards become even more important as 

GC-qMS methods for stable chlorine isotope analysis of acetochlor and S-metolachlor were 

recently developed by Ponsin et al.69. However, two of the working standards show a 

chlorine isotope value larger than 0 ‰ (δ37ClAceto2 = 18.54 ± 0.20 ‰ and δ37ClMetola2 = 5.12 

± 0.27 ‰). Therefore, future work has to strive for synthesis routes to generate AgCl in-

house standards with a more positive chlorine isotope value that would optimize the 

characterization process of secondary in-house working standards even further. The ongoing 

development of new calibration standards together with the advancement of stable chlorine 

isotope analysis now offers a suite of accurate methods for chlorine isotope analysis (offline 

DI-IRMS, online GC-MS and GC-IRMS, offline and online MC-ICPMS). By using these 

synergistic effects, the development of stable isotope analysis of chlorine can be further 

accelerated which will open up new perspectives to study environmental contaminants and to 

characterize commercial products in the future. 
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3.1 Abstract 

Tetrachloroethene (PCE) and 

trichloroethene (TCE) are 

significant groundwater 

contaminants. Microbial 

reductive dehalogenation at 

contaminated sites can produce 

nontoxic ethene but often stops 

at toxic cis-1,2-dichloroethene 

(cis-DCE) or vinyl chloride 

(VC). The magnitude of 

carbon relative to chlorine isotope effects (as expressed by ΛC/Cl, the slope of δ13C versus 

δ37Cl regressions) was recently recognized to reveal different reduction mechanisms with 

vitamin B12 as a model reactant for reductive dehalogenase activity. Large ΛC/Cl values for 

cis-DCE reflected cob(I)alamin addition followed by protonation, whereas smaller ΛC/Cl 

values for PCE evidenced cob(I)alamin addition followed by Cl− elimination. This study 

addressed dehalogenation in actual microorganisms and observed identical large ΛC/Cl values 

for cis-DCE (ΛC/Cl = 10.0 to 17.8) that contrasted with identical smaller ΛC/Cl for TCE and 

PCE (ΛC/Cl = 2.3 to 3.8). For TCE, the trend of small ΛC/Cl could even be reversed when 

mixed cultures were precultivated on VC or DCEs and subsequently confronted with TCE 

(ΛC/Cl = 9.0 to 18.2). This observation provides explicit evidence that substrate adaptation 

must have selected for reductive dehalogenases with different mechanistic motifs. The 

patterns of ΛC/Cl are consistent with practically all studies published to date, while the 

difference in reaction mechanisms offers a potential answer to the long-standing question of 

why bioremediation frequently stalls at cis-DCE. 
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3.2 Introduction 

Chlorinated ethenes such as tetrachloroethene (PCE) and trichloroethene (TCE), are among 

the most frequent groundwater pollutants at contaminated sites worldwide3. Under anoxic 

conditions they may be reductively dechlorinated by microorganisms in a process known as 

organohalide-respiration. Chloroethenes act as electron acceptors so that their C-Cl bonds 

are reduced to C-H bonds (sequential hydrogenolysis) leading to nontoxic ethene as final 

product (see Figure 3-1)5. While this reaction stoichiometry is straightforward, the exact 

nature of the underlying biochemical reaction mechanism has been elusive. 

 

 

Figure 3-1. Reductive dechlorination of PCE to ethene with different end-points for two bacterial cultures. 

 

Transformation frequently stalls at the stage of cis-1,2-dichloroethene (cis-DCE) or vinyl 

chloride (VC) constituting one of the long-standing barriers to successful bioremediation of 

these ubiquitous priority pollutants. Only specialized degrader strains, bacteria belonging to 

the class Dehalococcoidia (e.g., certain Dehalococcoides mccartyi and Dehalogenimonas 

strains), were found to be capable of complete dechlorination to harmless ethene70-77. In 

contrast, other microorganisms, such as Geobacter lovleyi, cannot dechlorinate beyond 

cis-DCE71 (see Figure 3-1). Pinpointing the underlying mechanistic reasons, however, has 

remained an elusive goal. Even though the catalytic site of all known reductive 

dehalogenases (RDases) contains cobalamin as an essential Co(I)-containing corrinoid 

cofactor, these enzymes occur in a great structural variety5, 71, 78-80. Very few dehalogenase 

protein structures have been solved yet78, 79, and no reductive dehalogenase has been 

uniquely characterized for its underlying biochemical transformation mechanism (i.e., bond 

cleavage and formation). Consequently, critical research gaps in the chemistry of reductive 

dechlorination exist. Is the mechanism the same for all substrates? Does the mechanism 
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correlate with a given substrate? Or do mechanisms vary with the observed variety of 

reductive dehalogenases and organisms? 

With reduced vitamin B12 as a chemical model system, we recently achieved a breakthrough 

in understanding reaction mechanisms in vitro17. Our evidence suggests that cob(I)alamin 

acts as a supernucleophile and adds to the double bond in chlorinated ethenes so that a 

carbanion complex is formed. If the free electron pair of this complex faces two vicinal Cl 

substituents (as in the reaction of PCE) one of them will be in the anti-position, leading to 

fast elimination of Cl- and producing a cobalamin chlorovinyl complex as short-lived 

intermediate (Scheme 3-1). In contrast, if there is only one vicinal Cl substituent (as in the 

reaction of cis-DCE) the molecular conformation is unfavorable for subsequent elimination 

so the carbanion is protonated instead. This results in a slower reaction pathway involving an 

intermediate chloroalkyl complex (Scheme 3-1). If there can be either one or two vicinal Cl 

substituents (as in the reaction of TCE) the addition-protonation pathway is favored at low 

pH, whereas the addition-elimination pathway is favored at high pH (Scheme 1). In contrast, 

the number and position of geminal Cl substituents does not seem to have an effect on the 

reaction mechanism. 

 

 

Scheme 3-1. Reaction mechanisms for the reductive dehalogenation of chlorinated ethenes via addition 

protonation or addition elimination (adapted from Heckel et al.17). 
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Both TCE dechlorination pathways eventually produce cis-DCE as the respective 

hydrogenolysis product (Scheme 3-1) so that the different mechanisms are difficult to 

distinguish from product analysis alone. Additional experimental evidence is, therefore, 

warranted to determine whether the mechanistic dichotomy identified with vitamin B12 is 

also at work in reductive dehalogenases or in dehalogenating organisms. 

Compound-specific stable isotope effect analysis offer precisely such a complementary line 

of evidence. Gas-chromatography (GC) coupled to isotope ratio mass spectrometry (IRMS) 

measures carbon (13C/12C)81, 82 and chlorine (37Cl/35Cl) isotope ratios at natural isotopic 

abundance22, 23, 57. Measured isotope ratios are expressed in the δ-notation; for example, for 

carbon: 

δ13C = [(13C/12C)Sample – (13C/12C)Reference] / (
13C/12C)Reference    (3-1) 

where (13C/12C)Reference is the isotope ratio of an international reference material to ensure 

comparability between laboratories42, 43. An analogous equation applies to chlorine. When 

correlating these isotope values of two elements relative to each other the regression slope 

ΛC/Cl = (δ13C - δ13C0) / (δ
37Cl - δ37Cl0) ≈ εC/εCl     (3-2) 

reflects the magnitude of the underlying compound-specific isotope effects during a 

reaction13. Here δ-values express the isotope ratios of carbon and chlorine at a given time 

and at the beginning of the reaction (δ13C0 and δ37Cl0), respectively. Carbon and chlorine 

enrichment factors (ɛC and ɛCl, respectively) reflect compound-specific isotope effects13 that 

express by how much molecules with heavy isotopes react slower than molecules with light 

isotopes43, 83. A value of ε = -10 ‰, for example, corresponds to a compound-specific 

isotope effect of 12k/13k = 1.01 (for the experimental evaluation of ε see Equation 3-3 below). 

Our vitamin B12 study demonstrated that the slope ΛC/Cl can provide a sensitive indicator of 

the underlying reaction mechanisms in reductive chlorinated ethene dehalogenation with 

vitamin B12
17. Values of ΛC/Cl were much larger in the addition-protonation mechanism, 

reflecting the fact that no C-Cl bond was cleaved in the initial step so that chlorine isotope 

effects were small. In contrast, values of ΛC/Cl were smaller in the addition-elimination 

mechanism, reflecting the larger chlorine isotope effect associated with C-Cl bond cleavage. 

The objective of this study was to analyze carbon and chlorine isotope effects during 

reductive dehalogenation of chloroethenes with different bacterial cultures. The resulting 

ΛC/Cl values were compared with the ΛC/Cl values of two mechanistic trends recently 
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observed in a vitamin B12 model system. To this end, we investigated in particular whether 

the isotope fractionation trends in microbial dechlorination of cis-DCE and PCE correlate 

with trends of the addition-protonation and the addition-elimination mechanism observed 

with vitamin B12, respectively. For TCE dechlorination both mechanisms were observed in 

the vitamin B12 study depending on pH. To test whether evidence of both mechanisms may 

be observed for TCE in living bacteria as well, microbial dechlorination of TCE was studied 

in seven different experiments, either varying in precultivation substrate or in the type of 

predominant RDases inside the bacteria. Finally, the isotopic data of the dechlorination 

experiments of this study were compared with the literature data of available C/Cl isotope 

studies to test whether the picture of a mechanistic dichotomy is consistent with published 

evidence to date. 

3.3 Materials and Methods 

3.3.1 cis-DCE and TCE Dechlorinating Cultures 

Dehalogenation experiments with cis-DCE were carried out using Dehalococcoides mccartyi 

strain 19573 and the highly enriched Dehalococcoides mccartyi strain BTF08 culture75, 84. 

Dehalogenation experiments with TCE were conducted with a single pure culture 

(Geobacter lovleyi strain KB-1) and six mixed cultures (KB-1/1,2-DCA, KB-1/VC, 

KB-1/cDCE, WBC-2/tDCE, KB-1 RF and Donna II) (see Table 3-1 for further details). 

G. lovleyi strain KB-1, KB-1/1,2-DCA, KB-1/VC, KB-1/cDCE and KB-1 RF were derived 

from KB-1, a commercially available enrichment culture, which is specialized in the 

dehalogenation of chlorinated ethenes. It contains G. lovleyi strain KB-1 and a minimum of 

three strains of Dehalococcoides as well as non-dechlorinating bacteria such as acetogens 

and methanogens85-89. Prior to the experiment the cultures were enriched on different 

maintenance substrates for many years (see Table 3-1). 
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Table 3-1. Summary of precultivation conditions, RDases and compound-specific isotope enrichment factors of carbon and chlorine. 

Substrate for 

Dehalogenation 

and Isotope 

Analysis 

Culture Dechlorinators 

Precultivation 

Substrate 

(electron donor) 

Most abundant functional 

rdhA Genes* Slope 

ΛC/Cl** 
ɛCl [‰]** ɛC [‰]** Duration 

before after 

cis-DCE 
D. mccartyi 

195 
D. mccartyi 195 (pure culture) cis-DCE (hydrogen) tceA 90 tceA 90 10.0 ±0.4 -2.3 ±0.4 -23.2 ±4.1 

no lag period, cis-DCE 

dehalogenation completed after 
one month 

cis-DCE 
D. mccartyi 

BTF08 
D. mccartyi BTF08 
(enrichment culture) 

cis-DCE (hydrogen) tceA 74 tceA 74 17.8 ±1.0 -1.7 ±0.4 -31.1 ±6.3 

no lag period, cis-DCE 

dehalogenation completed after 

one month 

TCE 
G. lovleyi 

KB-1 
G. lovleyi KB-1 (pure culture) PCE (acetate) Geo-pceA 91 Geo-pceA 91 3.1 ±0.1 -3.3 ±0.3 -10.3 ±0.8 

no lag period, TCE dehalogenation 

completed within one day 

TCE KB-1 RF 
multiple D. mccartyi strains 

(enrichment culture; no Geobacter) 
TCE (methanol) vcrA 91 vcrA 91 2.7 ±0.2 -3.3 ±0.3 -9.6 ±0.5 

no lag period, TCE dehalogenation 

completed within one day 

TCE Donna II 
D. mccartyi 195 (mixed culture; 

only one strain of D. mccartyi) 
TCE (butyrate) tceA 92 tceA 92 2.3 ±0.1 -5.7 ±0.4 -13.5 ±0.6 

no lag period, TCE dehalogenation 

completed within one day 

TCE 
KB-1/1,2-

DCA 
multiple D. mccartyi strains 

(enrichment cultures) 
1,2-DCA (methanol) tceA 93 tceA, vcrA 4.5 ±0.8 -1.2 ±0.3 -5.4 ±1.5 

long lag period (30-40 days), 

TCE dehalogenation completed 

after 70-100 days 

TCE KB-1/VC 
multiple D. mccartyi strains 

(enrichment cultures) 
VC (methanol) vcrA 91 vcrA 18.2 ±4.3 -0.5 ±0.6 -10.6 ±9.3 

long lag period (30-40 days), 
TCE dehalogenation completed 

after 70-100 days 

TCE KB-1/cDCE 
multiple D. mccartyi strains 

(enrichment cultures) 
cis-DCE (methanol) bvcA vcrA 91 vcrA (tceA) 11.8 ±2.4 -0.7 ±0.2 -8.3 ±3.4 

long lag period (30-40 days), 

TCE dehalogenation completed 
after 70-100 days 

TCE 
WBC-

2/tDCE 

Dehalogenimonas sp., D. mccartyi 

(enrichment culture) 

trans-DCE 

(lactate/ethanol) 

tdrA (Dhgm), 

vcrA (Dhc) 76 

vcrA 

(tceA, tdrA) 
9.0 ±1.1 -0.7 ±0.3 -7.0 ±1.9 

long lag period (30-40 days), 

TCE dehalogenation completed 
after 70-100 days 

* The abundance of specific rdhA genes known to be present in the cultures was used as a way to track which of multiple strains grew in the mixed culture; rdhA genes in brackets were only detected in minor 

abundance; the KB-1 enrichments were selected because each harbored a different dominant expressed RDase initially. 

** ±95 % confidence intervals 
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3.3.2 Biotic Dechlorination of cis-DCE under Anoxic Conditions with D. mccartyi Strain 

195 and Strain BTF08 

D. mccartyi strain 195 was cultivated as described in Cichocka et al.94 and Maymo-Gatell et 

al.73 with addition of butyrate pellets. D. mccartyi strain BTF08 was cultivated following the 

protocol of Cichocka et al.75 and Schmidt et al.95. For each strain a set of 23 serum bottles 

(50 mL) was filled with 25 mL anoxic medium and flushed with N2 and CO2 (70/30 %). 

After closing the bottles by crimping with Teflon-lined grey butyl rubber stoppers they were 

sterilized for 40 min at 120 °C. Next, they were spiked with cis-DCE (500 µM) as electron 

acceptor and equilibrated overnight. On the next day, the bottles were inoculated with a 

culture grown on cis-DCE (2.5 % v/v for strain 195, 5 % v/v for strain BTF08). For each set, 

three non-inoculated bottles with substrate served as the negative control. The bottles were 

complemented with hydrogen as electron donor (0.5 bar overpressure). All cultures were 

incubated in the dark without shaking at 20 °C (BTF08) or 30 °C (195). Progress of substrate 

dehalogenation was monitored by concentration measurements with gas chromatography 

paired with flame ionization detection (GC-FID). At different levels of dechlorination bottles 

were sacrificed for analysis by stopping the dechlorination reaction with 1 mL acidic sodium 

sulfate solution (280 g/L, pH ≈1) following the protocol of Cichocka et al.94. Samples were 

stored at 4 °C in the dark for later carbon and chlorine isotope analysis via gas 

chromatography – isotope ratio mass spectrometry (GC-IRMS). 

3.3.3 Biotic Dehalogenation of TCE under Anoxic Conditions with G. lovleyi Strain 

KB-1, KB-1/1,2-DCA, KB-1/VC, KB-1/cDCE and WBC-2/tDCE 

A total of 200 mL defined mineral medium96 and 55 μL resazurin (0.4 %) were filled in glass 

bottles (250 mL). Subsequently they were capped with Mininert valves (Supelco) and purged 

for 40 min with a N2/CO2 gas mixture (80/20 %). Each bottle of G. lovleyi strain KB-1 was 

complemented with 50 μL of acetate (1 M) and 9 μL of TCE, whereas each bottle of 

KB-1/VC, KB-1/cDCE, and KB-1/1,2-DCA was complemented with 20 μL of methanol and 

9 μL of TCE and each bottle of WBC-2/tDCE was complemented with 22 μL of lactate 

solution (75 g/L), 44 μL of ethanol and 9 μL of TCE. All substances and solutions for 

complementation were taken from anoxic stocks. Afterwards all bottles were continuously 

agitated on an orbital shaker at 60 rpm at room temperature for 24 h for equilibration. Biotic 
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dehalogenation started by inoculating each bottle with 20 mL of active culture. To eliminate 

the carryover of volatile organic compounds the active cultures had been purged for 1 h with 

a N2/CO2 gas mixture (80/20 %). The bottles were prepared in triplicates for each culture. 

Furthermore, for each culture, non-inoculated bottles with substrate served as negative 

control and were monitored alongside the experimental bottles. A total of 5 min after 

inoculation, the first samples were taken. The next samples were taken in intervals 

throughout the dehalogenation process. At each sampling point, 7 mL of liquid were 

removed from all the bottles. The sample of 7 mL was then divided into 1 mL aliquots that 

were distributed into seven glass vials (1.5 mL each) and closed with PTFE-lined screw-top 

caps. All samples were fixed with 50 μL NaOH (1 M) to stop biological activity. One of the 

seven vials was used for instant concentration analysis that was performed on a GC-FID. 

The other six vials were frozen upside down for later isotope analysis of carbon and chlorine 

performed via GC-IRMS97, 98. Preparation of the cultures (except the purging with N2/CO2) 

and taking of the samples was conducted in a glovebox containing an anoxic atmosphere 

(80 % N2, 20 % H2). 

3.3.4 Biotic Dehalogenation of TCE under Anoxic Conditions with KB-1 RF and 

Donna II 

The whole experiment was conducted in a glovebox containing an anoxic atmosphere 

(80 % N2, 10 % H2, 10 % CO2). Glass bottles (260 mL) were filled with 200 mL (KB-1 RF) 

or 210 mL (Donna II) of defined mineral medium96 and inoculated with 20 mL (KB-1 RF) or 

10 mL (Donna II) active culture. Beforehand, the cultures were purged with a N2/CO2 gas 

mixture for 30 min to eliminate carryover of volatile organic compounds. Triplicate 

experimental bottles were capped with Mininert valves (Supelco) and complemented by 

adding 20 µL of methanol (KB-1 RF), 8.75 µL of butyrate (Donna II) and 9 µL of TCE. 

Furthermore, for each culture non-inoculated bottles with substrate and killed control bottles 

(sterilized before TCE addition) served as negative control and were monitored alongside the 

experimental bottles. All replicates were continuously shaken at 350 rpm at room 

temperature (24 °C). At each time point, headspace samples were removed first for 

concentration measurements via GC-FID and then for carbon isotope analysis via GC-IRMS. 

Subsequently 4 mL liquid samples were removed and split into 1 mL aliquots. Liquid 

samples were acidified to a pH of < 2 with 50 µL of 1 M H2SO4 and closed with PTFE-lined 
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screw-top caps and then frozen upside down in 1.5 mL glass vials for later chlorine isotope 

measurements via GC-IRMS97, 98. Sample volumes removed were compensated with 

identical volumes of glovebox atmosphere to maintain a constant pressure within the bottle. 

Septa inside the stopper of the Mininert vials were replaced after every second piercing to 

minimize leakage. 

3.3.5 Concentration Measurements and Carbon and Chlorine Isotope Analysis 

Concentration measurements via GC-FID and compound-specific isotope analysis of carbon 

and chlorine via GC-IRMS were performed according to defined protocols (see Appendix). 

3.3.6 Evaluation of Carbon and Chlorine Isotope Fractionation 

Carbon and chlorine enrichment factors (ɛC and ɛCl) of cis-DCE and TCE dechlorination 

were calculated according to the Rayleigh equation (Equation 3-3) using Sigma-Plot. The 

Rayleigh equation describes the gradual enrichment of the residual substrate fraction f with 

molecules containing heavy isotopes13, 43; for example, for carbon: 

ln [(δ13C+1) / (δ13C0+1)] = ɛC ∙ ln ƒ       (3-3) 

The isotope ratios of carbon refer to certain time points, with one of them at the beginning of 

an experiment (δ13C0). By plotting values of δ13C versus δ37Cl (see Equation 3-2), dual 

element isotope plots were obtained. These processes are also illustrated in Figure 3-2. 

95 % confidence intervals (CI) show the uncertainties of the calculated slopes ΛC/Cl 

(Δδ13C/Δδ37Cl). In chemical reactions, isotope effects occur predominantly at the reacting 

position. Therefore, in many cases, a position-specific apparent kinetic isotope effect (AKIE) 

may be estimated under the assumption that there are no isotope effects at the other positions 

according to 

AKIEposition-specific = 1 / (n ∙ ɛreacting position + 1)      (3-4) 

where n is the number of atoms in intramolecular competition13. However, for chlorinated 

ethene reduction our mechanistic picture (Scheme 3-1) suggests that the situation is more 

complex because isotope effects occur in different steps of the reaction sequence, and they 

may occur at different positions of the molecule17, 58. In addition, from IRMS measurements 

alone, intramolecular isotope effects are difficult to resolve. Thus, in this study, we decided 
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not to estimate position-specific isotope effects but instead to report compound-specific 

isotope effects in the form of ɛ-values. 

3.3.7 qPCR Analysis of KB-1/1,2-DCA, KB-1/VC, KB-1/cDCE and WBC-2/tDCE 

Quantitative polymerase chain reaction (qPCR) analyses were conducted after the 

completion of the TCE experiment. An 8.5 mL sample of each culture was collected and, 

subsequently, 1.5 mL of 50 % glycerol were added. The samples were stored at -80 °C after 

freezing in liquid nitrogen. For qPCR analysis, 8 mL of each thawed sample were filtered 

through a sterile 0.22 μM Sterivex filter (Millipore) using an Air Cadet vacuum/pressure 

pump 400-1902 (Barnant Company). After filtration, the Sterivex filters were immediately 

frozen at -80 °C. The filters were removed from the filter casing, sliced into small pieces 

with a sterile surgical blade, and then transferred to a bead-beating tube. For DNA extraction 

the PowerSoil DNA isolation kit (Mo Bio Laboratories Inc.) was used. The DNA was 

extracted by following the manufacturer's protocol for maximum yields except that DNA 

was eluted in 50 μL of sterile UltraPure distilled water (Invitrogen) rather than in the eluent 

provided with the kit. Using a spectrophotometer (NanoDrop ND-1000; NanoDrop 

Technologies) the DNA concentration and quality were assessed. Afterwards, the DNA 

samples were 10 times diluted with sterile UltraPure distilled water. All subsequent steps 

were performed in a PCR cabinet (ESCO Technologies). qPCR reactions were run in 

triplicates in which each run was calibrated by constructing a standard curve using known 

plasmid DNA concentrations containing the gene insert of interest. The standard curve was 

run with eight concentrations ranging from 10 to 108 gene copies per microliter. qPCR 

reaction solutions (20 µL) were prepared in sterile UltraPure distilled water containing 10 μL 

of EvaGreen Supermix, 0.5 μL of each primer (forward and reverse, each from 10 μM stock 

solutions) and 2 μL of diluted template (DNA extract or standard plasmids). The qPCR 

reactions were conducted using a CFX96 real-time PCR detection system with a C1000 

Thermo Cycler using SsoFast EvaGreen supermix (Bio-Rad Laboratories). The 

thermocycling program started with the initial denaturation at 95 °C for 2 min, followed by 

40 cycles of denaturation at 98 °C for 5 s, annealing for 10 s (see Table 6B-S1 in the 

Appendix for annealing temperatures), and a plate read. A final melting curve analysis was 

conducted at the end of the program. The following genes were targeted by qPCR using the 

defined primer sets (see Table 6B-S1 in the Appendix): the phylogenetic 16S rRNA genes of 
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Dehalococcoides and Dehalogenimonas; the functional genes vcrA, tceA, bvcA and tdrA; as 

well as the 16S rRNA genes of total bacteria and total archaea. 

3.4 Results and Discussion 

3.4.1 Starkly Contrasting Carbon and Chlorine Isotope Effects in Microbial 

Dechlorination of cis-DCE and PCE 

To take advantage of compound-specific isotope effects and evaluate whether the 

mechanistic dichotomy observed in vitro can also be identified in pure strains of living 

organisms, we began with a comparison between PCE and cis-DCE. Carbon and chlorine 

isotope values of cis-DCE were measured in dehalogenation experiments with the strictly 

anaerobic organism D. mccartyi strain 19573 and the highly enriched D. mccartyi strain 

BTF08 culture75, 84. Results were compared with our previous data on reductive 

dechlorination of PCE by Desulfitobacterium sp. strain Viet158. Figure 3-2 shows the 

changes in carbon and chlorine isotope ratios with decreasing fraction of respective substrate 

and the corresponding enrichment factors. Combining the isotope ratios of panel A (carbon) 

and B (chlorine) leads to a dual element isotope plot as illustrated in panel C. 
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Figure 3-2. Carbon and chlorine isotope effects in reductive dehalogenation of cis-DCE by D. mccartyi BTF08 

(grey) and D. mccartyi 195 (black) and PCE by Desulfitobacterium sp. Viet1 (red) (data from Cretnik et al.58), 

resulting in a dual element isotope plot. (The 95 % confidence intervals are given as values and as black lines 

next to the regression slopes). (A) Carbon isotope fractionation and corresponding carbon enrichment 

factors ɛC. (B) Chlorine isotope fractionation and corresponding chlorine enrichment factors ɛCl. (Both ɛ-values 

were evaluated according to Equation 3-3). (C) Resulting dual element isotope plots (δ13C versus δ37Cl) 

indicate the occurrence of different underlying transformation mechanisms corresponding to mechanisms 

observed with cis-DCE (shaded in grey) and PCE (shaded in pink) by model reactions with vitamin B12
17. 
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The dual element isotope trends with bacteria reproduced the trends obtained with 

vitamin B12 and were reflected on the level of compound-specific carbon and chlorine 

isotope effects, illustrated by ɛC and ɛCl. The dechlorination of cis-DCE was associated with 

large carbon and small chlorine isotope effects (D. mccartyi 195: ɛC = -23.2 ± 4.1 ‰, 

ɛCl = -2.3 ± 0.4 ‰; D. mccartyi BTF08: ɛC = -31.1 ± 6.3 ‰, ɛCl = -1.7 ± 0.4 ‰) resulting in 

large dual element isotope slopes Λ195 = 10.0 ± 0.4 and ΛBTF08 = 17.8 ± 1.0. In contrast, 

dechlorination of PCE was associated with pronounced isotope effects in both elements 

(ɛC = -19.0 ± 0.9 ‰, ɛCl = -5.0 ± 0.1 ‰) giving rise to a smaller dual element isotope slope 

ΛDesulfitobacterium = 3.8 ± 0.2. This large chlorine isotope effect is even more striking when one 

considers that it is averaged over four chlorine atoms in PCE (of which only one is cleaved 

off), while in cis-DCE the average is taken over only two chlorine atoms. Hence, kinetic 

isotope effects of PCE and cis-DCE at the reacting position (after correcting for the dilution 

by non-reacting chlorine atoms) would show even greater differences19. The same would be 

true for dual element isotope slopes ΛC/Cl. Our results therefore provide key lines of evidence 

suggesting that cis-DCE and PCE must be dechlorinated via different mechanisms, and that 

they exemplify the pattern observed for addition-protonation versus addition-elimination 

pathways (Scheme 3-1 and Figure 3-2)17. 

3.4.2 Dual Element Isotope Trends in TCE Dechlorination by Pure Cultures: Indication 

of an Addition-Elimination Mechanism 

In an in vitro study using vitamin B12 as model system, TCE was recently observed to be 

dechlorinated via two different reaction mechanisms depending on pH (see Figure 3-3A and 

Scheme 3-1). To probe which mechanism would be observed for TCE in vivo with bacterial 

pure cultures, a Geobacter subculture (Geobacter lovleyi KB-1) of the mixed consortium 

KB-1 that had been cultivated to purity was investigated and compared with previously 

observed trends for Geobacter lovleyi SZ and Desulfitobacterium hafniense Y5198 

(Figure 3-3B). The dual element isotope slopes of the pure cultures correspond to the dual 

element isotope slopes of the vitamin B12 study at high pH values, indicating that in vivo 

TCE is dechlorinated via the addition-elimination pathway. 
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Figure 3-3. Carbon and chlorine isotope effects in TCE reductive dehalogenation (A) by vitamin B12 at 

different pH values and (B) with pure cultures resulted in similar dual element isotope plots. (The 95 % 

confidence intervals are given as values and as black lines next to the regression slopes). (A) TCE reductive 

dehalogenation at low (green/yellow) and high (purple/blue) pH values (adapted from Heckel et al.17). (B) TCE 

reductive dechlorination with the pure culture G. lovleyi KB-1 (dark blue, this work) and the pure cultures 

G. lovleyi SZ (yellow) and D. hafniense Y51 (blue) (adapted from Cretnik et al.98). 

 

3.4.3 Precultivation of Bacteria on Less Chlorinated Ethenes and TCE Dual Element 

Isotope Trends: Indication of an Addition-Protonation Mechanism 

To investigate whether a different reaction mechanism can nonetheless be observed for TCE 

when using precultivation conditions to select for organisms with a different substrate 

preference, we conducted another set of experiments. Mixed cultures, Donna II and 

KB-1 RF, were precultivated on PCE or TCE for years (see Table 3-1), meaning that they 

were already adapted to TCE (substrate or daughter product of PCE dechlorination). 
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However, we maintained another set of cultures on less chlorinated precultivation substrates: 

three subcultures of the dechlorinating consortium KB-1 RF that were maintained on 

cis-DCE (KB-1/cDCE), VC (KB-1/VC) and 1,2-DCA (KB-1/1,2-DCA) for at least two years 

and a fourth mixed culture that was enriched on trans-DCE (WBC-2/tDCE) for many years. 

As expected, cultures precultivated on TCE and PCE started to dechlorinate TCE 

immediately and the dechlorination was completed within one day (see Table 3-1). In 

contrast, the set of cultures enriched and precultivated on less chlorinated ethenes showed a 

lag period of 30-40 days before they started to dechlorinate TCE and dechlorination took 

70-100 days for completion. 

 

 

Figure 3-4. Dual element isotope trends indicate a mechanistic divide between TCE dechlorination by cultures 

precultivated on PCE (G. lovleyi KB-1, blue) and TCE (KB-1 RF, brown and Donna II, cyan) vs. cultures 

precultivated on VC (KB-1/VC, light green), cis-DCE (KB-1/cDCE, purple), and trans-DCE (WBC-2/tDCE, 

light blue). Shaded areas show the corresponding trends observed with cis-DCE (grey, pH 6.5) and TCE (green, 

low pH/blue, high pH) in the vitamin B12 model17. (95 % confidence intervals are given as values and as black 

lines next to the regression slopes). 

 

Figure 3-4 shows that precultivation affected the carbon and chlorine isotope effects. A clear 

divide appears between two dual element isotope trends depending on precultivation 

conditions. Cultures precultivated on less chlorinated ethenes such as VC (KB-1/VC), 

cis-DCE (KB-1/cDCE) and trans-DCE (WBC-2/tDCE) showed large carbon isotope effects 

in combination with small chlorine isotope effects corresponding to ΛC/Cl values between 9.0 



MECHANISTIC DICHOTOMY IN BACTERIAL TCE DECHLORINATION 
   

43 

 

and 18.2 (ΛKB-1/VC = 18.2 ± 4.3, ΛKB-1/cDCE = 11.8 ± 2.4 and ΛWBC-2/tDCE = 9.0 ± 1.1). In 

contrast the cultures G. lovleyi strain KB-1, KB-1 RF, and Donna II, precultivated on TCE or 

PCE, showed significantly smaller ΛC/Cl values of 2.3 to 3.1 (ΛDonna II = 2.3 ± 0.1, 

ΛKB-1 RF = 2.7 ± 0.2, ΛG. lovleyi KB-1 = 3.1 ± 0.1) indicative of larger chlorine isotope effects. 

These results are similar to the dual element isotope slopes ΛC/Cl observed for an addition-

elimination mechanism with vitamin B12. In contrast, cultures precultivated on less 

chlorinated substrates [cis-DCE (KB-1/cDCE), VC (KB-1/VC), and trans-DCE (WBC-

2/tDCE)] resulted in ΛC/Cl values of TCE dechlorination that correspond to an addition-

protonation pathway with vitamin B12. 

Our observations suggest that in the bacterial cells a similar mechanistic dichotomy of 

cob(I)alamin addition-elimination versus cob(I)alamin addition-protonation took place as in 

the model reaction with vitamin B12 at different pH (Scheme 3-1). In experiments with 

bacterial cells, however, both the medium and the inside of the cells were buffered so that 

catalysis of the different pathways must be effectuated by functional groups inside the 

enzymes’ catalytic sites rather than by a different pH in bulk solution. We therefore 

hypothesize that the enzyme architecture of RDases is tailored to different specific reaction 

mechanisms, possibly due to the presence/absence of amino acids with specific protonation 

functionalities. 

3.4.4 Mechanism-Specific Dual Element Isotope Trends of TCE: Lack of Correlation 

with RDase Predominance 

Given that we observed evidence of different reaction mechanisms in bacterial reductive 

dehalogenation of TCE, we further explored whether this mechanistic dichotomy could be 

correlated with the predominance of specific reductive dehalogenases. Therefore, three 

different bacterial cultures, which had been adapted to TCE and for which the predominance 

of different RDases can be inferred (see Table 3-1), were compared. G. lovleyi strain KB-1 

has been shown to harbor only one RDase, Geo-PceA91. For the mixed culture KB-1 RF, the 

RDase VcrA is considered to be responsible for dechlorination91. In the mixed culture 

Donna II, D. mccartyi strain 195 is the organism responsible for dechlorination, and the 

RDase TceA was identified as the most prominent dechlorinating enzyme92. 

The key outcome of this approach was that the dual element isotope plot of these three 

cultures shows similar regression slopes (ΛDonna II = 2.3 ± 0.1, ΛKB-1 RF = 2.7 ± 0.2, 
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ΛG. lovleyi KB-1 = 3.1 ± 0.1, see Table 3-1 and Figure 6B-S2) for all three experiments, 

indicating that TCE was dechlorinated via a similar chemical mechanism, irrespective of the 

type of RDase (Geo-PceA versus VcrA versus TceA). The three slopes agree with those at 

high pH in the vitamin B12 study17, suggesting that in all three cases, a sequence of addition-

elimination was the predominant reaction pathway. 

Subsequently, quantitative polymerase chain reaction (qPCR) analysis was applied to detect 

changes in the reductive dehalogenase gene (rdhA) composition when cultures that had been 

precultivated on less chlorinated ethenes were adapting to TCE reductive dechlorination (see 

Table 3-1). qPCR analysis indicated a significant shift in the culture KB-1/cDCE after 

changing the electron acceptor from cis-DCE to TCE. Typically, KB-1/cDCE is dominated 

by the RDase BvcA when precultivated on cis-DCE91. After the TCE dechlorination 

experiment, however, the rdhA gene bvcA was no longer detected in the qPCR analysis. 

Instead, the rdhA gene vcrA was most abundant, indicating that TCE dechlorination was 

likely performed by a vcrA-containing strain of Dehalococcoides. For the WBC-2/tDCE 

culture, only minor changes in the RDase composition were observed. Here the vcrA and 

tdrA genes were predominant before76 and after the experiment. WBC-2/tDCE contains 

Dehalogenimonas sp., which expresses TdrA for the dechlorination of trans-DCE to VC76. 

Additionally, after the TCE dechlorination experiment, a small number of tceA genes were 

detected by qPCR. In case of KB-1/VC, no changes in the rdhA gene composition were 

discernible. Before91 and after the TCE dechlorination experiment with KB-1/VC, vcrA was 

the most abundant RDase gene analyzed. The information obtained from the qPCR data 

therefore suggests that the maintenance on one specific precultivation substrate has a 

significant influence on the microbial community and the prevalence of RDase genes93. 

Nevertheless, isotope effects of all cultures still gave evidence of the same addition-

protonation mechanism (see Table 3-1 and Figure 6B-S2) suggesting that the reaction 

mechanism was conserved in precultivated cultures even though shifts in the dominantly 

expressed RDase were observed. 

Finally, a comparison of Figure 3-4 and the qPCR data on predominant RDases (see 

Table 3-1 and Figure 6B-S2) suggests that there can be different mechanisms at work 

(ΛKB-1 RF = 2.7 ± 0.2 versus ΛKB-1/VC = 18.2 ± 4.3) even though the same nominal RDase 

gene (vcrA) was predominant. One possibility is that the VrcA dehalogenase complex in 

organisms adapted to less chlorinated substrates is different from those enriched on TCE. 
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Kublik et al.99 showed that in Dehalococcoides, the reductive dehalogenase is part of a 

complex containing a variety of proteins. Potentially, these other electron transport proteins 

may affect the enzyme and its isotope fractionation. In addition, the role of corrinoid 

prosthetic groups, which can affect dechlorination80, 100, has to be further investigated 

because it was unclear what types of corrinoids were produced in the mixed cultures. 

Another possibility is that the RDase catalyzing the dechlorination in the non-TCE-adapted 

cultures is not VcrA, even though the strains contained that gene. Quantitative polymerase 

chain reaction can only reveal that the vcrA gene became more abundant after switching 

the electron acceptor, but qPCR cannot provide direct information about whether 

the RDase was actually expressed. For example, Heavner et al.101 described that in all 

Dehalococcoides spp., particularly in KB-1, a specific RDase (DET 1545 homologue) shows 

elevated expression upon stress. 

The observation that the predominance of nominal RDases did not correlate with isotope 

effect trends therefore highlights the need for a complementary approach to classify 

degradation in natural and engineered systems: a classification based not only on the 

metagenomic detection of RDase genes but also on dual element (C, Cl) isotope 

fractionation as indicator of underlying (bio)chemical transformation mechanisms. For the 

transformation of TCE with different pure corrinoid cofactors, dual element isotope slopes 

between 3.7 and 4.5 were recently observed61, which we may now interpret as indicative of 

an addition-elimination mechanism. 

3.4.5 Previously Observed Stable Isotope Fractionation: Consistency with the 

Mechanistic Dichotomy Observed in This Study 

Figure 3-5 shows our data in the context of previously reported dual element isotope trends 

ΛC/Cl in reductive dehalogenation by bacteria58-60, 62, 98, 102-104, in enzyme extracts61 and by 

pure cofactors61, 98 or model systems17, 98. To account for the potential effect of masking, 

these values of ΛC/Cl are plotted against the corresponding carbon isotope enrichment 

factors ɛC. Pronounced negative ɛC-values indicate that intrinsic isotope effects are strongly 

expressed meaning that the influence of masking is small. Vice versa, only slightly negative 

ɛC-values (corresponding to data points Figure 3-5, region shaded in green) indicate that 

intrinsic isotope effects were strongly masked meaning that observable ΛC/Cl values did not 

necessarily reflect the intrinsic biochemical reaction. Data points located in this putative 
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masking-dominated domain are derived from microbial degradation of PCE (ΛC/Cl values of 

0.7 to 2.8 and slightly negative ɛC-values of -0.7 ‰ to -5.6 ‰)59-61, as well as from the TCE 

dechlorinating culture KB-1/1,2-DCA (ɛC = -5.4 ± 1.5 ‰ and ΛKB-1/1,2-DCA = 4.5 ± 0.8) of 

this study. These smaller dual element isotope slopes potentially do not reflect the chemical 

bond conversion but rather a preceding step (e.g., mass transfer into the cell, substrate-

enzyme binding, etc.)61 and are, therefore, not discussed further here. 

Pronounced negative ɛC, together with moderate ΛC/Cl values (Figure 3-5, region shaded in 

yellow) are indicative of the addition-elimination mechanism17 brought forward in this study. 

Indeed, the microbial data in this domain58, 59, 98, 102-104 originate almost exclusively from the 

dechlorination of PCE and TCE, including this study’s data with cultures adapted to TCE 

(ΛDonna II = 2.3 ± 0.1, ΛKB-1 RF = 2.7 ± 0.2 and ΛG. lovleyi KB-1 = 3.1 ± 0.1). Similar trends were 

observed in transformation of TCE with enzymatic extracts61 and purified cofactors61, 98 in 

which all values fell in a rather narrow experimental range (ΛC/Cl = 3.7 - 5.3), indicating that 

the predominance of an addition-elimination mechanism can be traced down to the enzyme 

level17. An exception is a former cis-DCE degradation study (ΛC/Cl = 4.5). The nature of this 

degradation with field sediment rather than bacterial cultures was, however, little 

constrained, so general conclusions are difficult104. 

In contrast, data points corresponding to pronounced negative ɛC, together with large 

ΛC/Cl values (Figure 3-5, region shaded in grey) are indicative of the addition-protonation 

mechanism17. Indeed, all data are derived from either cis-DCE dechlorination (this and 

previous62, 104 studies), or from TCE reductive dechlorination at low pH in the vitamin B12 

model system17 or by cultures precultivated on less chlorinated ethenes (this study). Taken 

together, the regions of Figure 3-5 confirm that also all dual element isotope trends reported 

so far are consistent with the mechanistic dichotomy observed in this study. 
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Figure 3-5. Carbon isotope fractionation factors ɛC and dual element isotope regression slopes ΛC/Cl in 

reductive chlorinated ethene dehalogenation by bacteria58-60, 62, 98, 102-104, in enzyme extracts61, by pure 

cofactors61, 98 or model systems17, 98 observed in this study (filled symbols) and reported from previous studies 

(empty and half-filled symbols). Reductive dechlorination of PCE is depicted by red triangles, of TCE by blue 

squares and of cis-DCE by black circles. (Error bars show 95 % confidence intervals of respective values). 

Shaded areas illustrate regions which indicate that intrinsic isotope effects are masked (green) or that they 

follow an addition-elimination mechanism (yellow) or an addition-protonation mechanism (grey). 

 

3.5 Environmental Significance 

Available dual element isotope data reveal a surprising dichotomy in reductive 

dechlorination chemistry of microbial communities. These results suggest that for 

dehalogenation of chlorinated ethenes catalyzed by RDases two different reductive 

dechlorination mechanisms exist, which are mimicked by the addition-elimination versus 

addition-protonation pathways identified in a recent vitamin B12 study17. The evidence that 

reductive dehalogenases may be optimized to catalyze fundamentally different mechanisms, 

despite an identical net reaction (hydrogenolysis), offers an explanation why some RDases 

can be specialized in the dechlorination of PCE and TCE but cannot dechlorinate cis-DCE or 

VC. These results, therefore, hold promise to potentially resolve a fundamental challenge to 

our understanding of reductive dechlorination that has been a long-standing barrier to 

successful bioremediation in the field: why dechlorination of chlorinated ethenes often stops 

at cis-DCE or VC. A new RDase classification system based on catalyzed mechanisms may, 
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therefore, represent a transformative advance to the field in the future. Finally, this study 

highlights the potential of dual element compound-specific stable isotope analysis as an 

enabling technology with which to overcome these long-standing dilemmas of organic 

(bio)chemistry: to bridge the gap between in vitro and in vivo, to probe for reaction 

mechanisms in organisms, and to directly observe a change of the involved RDases by 

detecting underlying dechlorination mechanisms at contaminated sites. 

 

 

 



CHLORINE ISOTOPE FRACTIONATION IN BIODEGRADATION OF ATRAZINE 
   

49 

 

 

 

 

 

 

 

4  

Compound-Specific Chlorine Isotope Fractionation in 

Biodegradation of Atrazine 

 

 

 

 

 

 

 

 

 

 

 

Lihl, C.; Heckel, B.; Grzybkowska, A.; Dybala-Defratyka, A.; Ponsin, V.; Torrentó, C.; 

Hunkeler, D.; Elsner, M.; Environmental Science: Processes & Impacts 2020, 22 (3), 792-

801. 



CHLORINE ISOTOPE FRACTIONATION IN BIODEGRADATION OF ATRAZINE 
   

50 

 

4.1 Abstract 

Atrazine is a frequently 

detected groundwater 

contaminant. It can be 

microbially degraded by 

oxidative dealkylation 

or by hydrolytic 

dechlorination. Compound-specific isotope analysis is a powerful tool to assess its 

transformation. In previous work, carbon and nitrogen isotope effects were found to reflect 

these different transformation pathways. However, chlorine isotope fractionation could be a 

particularly sensitive indicator of natural transformation since chlorine isotope effects are 

fully represented in the molecular average while carbon and nitrogen isotope effects are 

diluted by non-reacting atoms. Therefore, this study explored chlorine isotope effects during 

atrazine hydrolysis with Arthrobacter aurescens TC1 and oxidative dealkylation with 

Rhodococcus sp. NI86/21. Dual element isotope slopes of chlorine vs. carbon isotope 

fractionation (ΛArthro
Cl/C = 1.7 ± 0.9 vs. ΛRhodo

Cl/C = 0.6 ± 0.1) and chlorine vs. nitrogen 

isotope fractionation (ΛArthro
Cl/N = -1.2 ± 0.7 vs. ΛRhodo

Cl/N = 0.4 ± 0.2) provided reliable 

indicators of different pathways. Observed chlorine isotope effects in oxidative dealkylation 

(ɛCl = -4.3 ± 1.8 ‰) were surprisingly large, whereas in hydrolysis (ɛCl = -1.4 ± 0.6 ‰) they 

were small, indicating that C-Cl bond cleavage was not the rate-determining step. This 

demonstrates the importance of constraining expected isotope effects of new elements before 

using the approach in the field. Overall, the triple element isotope information brought 

forward here enables a more reliable identification of atrazine sources and degradation 

pathways. 
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4.2 Introduction 

The herbicide atrazine has been used in agriculture to inhibit growth of broadleaf and grassy 

weeds6. In the U.S. atrazine was the second most commonly used herbicide in 2012 and is 

still in use today7. In the European Union atrazine was banned in 20049, but together with its 

metabolites it is still frequently detected at high concentrations in groundwater10, 105. The 

massive and widespread use has led to a wide-ranging presence of atrazine in the 

environment, which can have harmful effects on living organisms and humans11. Therefore, 

the environmental fate of atrazine is of significant concern and much attention has been 

directed at detecting and enhancing its natural biodegradation. However, assessing microbial 

degradation of atrazine in the environment is challenging with conventional methods like 

concentration analysis. Sorption and remobilization of the parent compound and its 

metabolites, as well as further transformation of the metabolites inevitably lead to 

fluctuations in concentrations39, 40, 106, 107, which make it difficult to assess the net extent of 

atrazine degradation in the field. 

In recent years, compound-specific isotope analysis (CSIA) has been proposed as an 

alternative approach to detect and quantify the degradation of atrazine108-110. 

In contrast to, and complementary to traditional methods, CSIA informs about 

transformation without the need to detect metabolites. The reason is that during 

(bio)chemical transformations molecules with heavy isotopes are typically enriched in the 

remaining substrate since their bonds are more stable and, therefore, usually react slower 

than molecules containing light isotopes (normal kinetic isotope effect). The ratios of heavy 

to light isotopes (e.g. 13C/12C for carbon) in the remaining substrate, therefore, change during 

transformation. Observing such changes can be used as direct (and concentration-

independent) indicator of degradation12, 13. 

Isotope values are reported in the δ-notation relative to an international reference material, 

e.g. for carbon12, 13: 

δ13C = [(13C/12C)Sample – (13C/12C)Reference] / (
13C/12C)Reference    (4-1) 

The magnitude of the degradation-induced isotope fractionation depends on different factors, 

which can make isotope ratios of specific elements particularly attractive to observe 

degradation-induced isotope fractionation. To this end, first, an element needs to be directly 
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involved in the (bio)chemical reaction. For example, a carbon isotope effect would be quite 

generally expected in organic molecules, whereas a chlorine isotope effect would be 

primarily expected if a C-Cl bond is cleaved. Second, isotope fractionation depends on the 

underlying kinetic isotope effect (see above), but also on the extent to which this effect is 

represented in the molecular average isotope fractionation described by the enrichment 

factor ɛ (see below). Atrazine, for example, contains only one chlorine atom but eight carbon 

and five nitrogen atoms. Hence, chlorine isotope effects at the reacting position are fully 

represented in the molecular average, whereas position-specific carbon and nitrogen isotope 

effects are diluted by non-reacting atoms12, 13. 

Most of the publications studying the chemical mechanisms of abiotic and microbial atrazine 

degradation have focused on the analysis of carbon (13C/12C) and nitrogen (15N/14N) isotope 

fractionation. Thereby, ɛ-values in the range of -5.4 ‰ to -1.8 ‰ for carbon and -1.9 ‰ to 

3.3 ‰ for nitrogen were observed39-41, 111. Chlorine isotope effects for microbial atrazine 

degradation were so far not reported due to analytical challenges48: Until recently32, 69, 

suitable methods were not available for chlorine isotope analysis of atrazine. However, from 

the magnitude of chlorine isotope effects observed for dechlorination of trichloroethenes  

(-5.7 ‰ to -3.3 ‰, where intrinsic isotope effects are diluted by a factor of three112), very 

large chlorine enrichment factors ɛCl (-8 ‰ to -10 ‰ or even larger) could potentially occur 

for a C-Cl bond cleavage in atrazine. For example, enzymatic hydrolysis of the structural 

homologue ametryn (atrazine structure with a -SCH3 instead of a -Cl group) yielded a sulfur 

isotope enrichment factor ɛS of -14.7 ± 1.0 ‰111. If the cleavage of carbon-chlorine bonds is 

involved in the rate-determining step of a (bio)transformation, chlorine isotope effects could, 

therefore, enable a particularly sensitive detection of natural transformation processes by 

compound-specific (i.e., molecular average) isotope analysis. 

The measurement of chlorine isotope fractionation is attractive for yet another reason –

 multiple element isotope analysis bears potential for a better distinction of sources and 

transformation pathways. From isotope analysis of one element alone, it is difficult to 

distinguish sources of a particular compound, or competing transformation pathways that 

may lead to metabolites of different toxicity13. For example, two different microbial 

transformation pathways can lead to the degradation of atrazine in the environment. 

Hydrolysis forms the nontoxic dehalogenated product 2-hydroxyatrazine (HAT) whereas 

oxidative dealkylation degrades atrazine to the still herbicidal products desethyl- (DEA) or 
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desisopropyl-atrazine (DIA)113, 114. Prominent examples for microorganisms catalyzing these 

pathways are Arthrobacter aurescens TC1 and Rhodococcus sp. NI86/21 (see Figure 4-1). 

A. aurescens TC1 was directly isolated from an atrazine-contaminated soil115. By expressing 

the enzyme TrzN, it is capable of performing hydrolysis of atrazine115, 116. Rhodococcus sp. 

NI86/21 uses a cytochrome P450 system for catalyzing oxidative dealkylation of atrazine117. 

 

 

Figure 4-1. Microbial degradation of atrazine by Arthrobacter aurescens TC1 and Rhodococcus sp. NI86/21 

(adapted from Meyer et al.39 and Meyer & Elsner40). 

 

For these two pathways, carbon isotope fractionation was very similar, but significant 

differences were observed in nitrogen isotope effects39-41, 111. Plotting the changes of isotope 

ratios of these two elements relative to each other results in the regression slope Λ for carbon 

and nitrogen19, 24 

ΛC/N = Δδ15N / Δδ13C ≈ ɛN / ɛC       (4-2) 

Hence, dual element (C, N) isotope trends for oxidative dealkylation of atrazine with 

Rhodococcus sp. NI86/21 (ΛRhodo
C/N = 0.4 ± 0.1)41 were significantly different compared to 

hydrolysis with A. aurescens TC1 (ΛArthro
C/N = -0.6 ± 0.1)39 offering an opportunity to 

distinguish atrazine degradation pathways in the field. However, in environmental 

assessments it is advantageous to have isotopic information of as many elements as possible 

in order to distinguish degradation pathways and sources at the same time27, 118, 119. 

Therefore, information from a third element, chlorine, would be highly valuable. Also on the 
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mechanistic end, information gained from a change in the chlorine isotope value could lead 

to a more reliable differentiation of transformation pathways and contribute to a better 

mechanistic understanding of the underlying chemical reaction27. Along these lines, triple 

element (3D) isotope analysis was already accomplished for chlorinated alkanes27, 28 and 

alkenes17, 103. 

Until now, however, compound-specific chlorine isotope analysis has not been accessible so 

that chlorine isotope ratio changes for hydrolysis of atrazine have only been analyzed in 

abiotic systems or via computational calculations120, 121. For oxidative dealkylation, chlorine 

isotope effects have, so far, not been studied. Recently a GC-qMS method for chlorine 

isotope analysis of atrazine has been brought forward69 which offers the opportunity to 

enable deeper mechanistic insights into its transformation processes. Therefore, our objective 

was to analyze carbon, nitrogen and chlorine isotope effects associated with the 

biodegradation of atrazine via hydrolysis with A. aurescens TC1 and via oxidative 

dealkylation with Rhodococcus sp. NI86/21. In addition, we computationally predicted the 

chlorine isotope effect associated with hydrolysis and oxidative dealkylation for comparison. 

Further, we evaluated whether the additional information from chlorine isotope fractionation 

is a particularly sensitive indicator for transformation processes and whether it can confirm 

previously proposed mechanisms of different pathways. With this study, we bring forward 

information about degradation-induced chlorine isotope fractionation of atrazine as a basis to 

apply triple element (3D) isotope analysis in environmental assessments. 

4.3 Material and Methods 

4.3.1 Bacterial Strains and Cultivation 

A. aurescens strain TC1 was grown in mineral salt medium supplemented with 

approx. 20 mg/L of atrazine according to the protocol of Meyer et al.39 Likewise, 

Rhodococcus sp. strain NI86/21 was cultivated in autoclaved nutrient broth (8 g/L, DifcoTM) 

with approx. 20 mg/L of atrazine according to the protocol of Meyer et al.41. In the late-

exponential growth phase the strains were harvested via centrifugation (4000 rpm, 15 min). 

For the start of the degradation experiments, cell pellets of each strain were transferred to 

400 mL fresh media and atrazine was added to achieve a starting concentration of 20 mg/L. 

All experiments were performed in triplicate at 21 °C on a shaker at 150 rpm. Control 
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experiments, which were performed without the bacterial strains, did not show any 

degradation of atrazine. 

4.3.2 Concentration Measurements via HPLC 

The process of atrazine degradation was monitored by concentration measurements. For 

analysis, 1 mL samples were taken and filtered through a 0.22 µm filter. Atrazine and its 

degradation products were directly analyzed using a Shimadzu UHPLC-20A system, which 

was equipped with an ODS column 30 (Ultracarb 5 μM, 150 × 4.6 mm, Phenomenex). After 

sample injection (10 µL) an adequate gradient program (see Appendix) was used for 

compound separation. The oven temperature was set to 45 °C and the compounds were 

detected by their UV absorbance at 222 nm. Quantitation was performed by the software 

“Lab Solutions” based on internal calibration curves. 

4.3.3 Preparation of Samples for Isotope Analysis 

According to the protocol of Meyer et al.39 between 10 and 260 mL of sample were taken for 

isotope analysis of atrazine at every sampling event. After centrifugation (15 min, 4000 rpm) 

the supernatant was collected in a new vial. Subsequently, samples were extracted by adding 

dichloromethane (5-130 mL) and shaking the vial for at least 20 min. The sample extracts 

were dried at room temperature under the fume hood. Afterwards, the dried extracts were 

dissolved in ethyl acetate to a final atrazine concentration of approx. 200 mg/L. 

4.3.4 Isotope Analysis of Carbon and Nitrogen 

The protocol for isotope analysis of carbon and nitrogen was adapted from the studies of 

Meyer et al.39, 41. A TRACE GC Ultra gas chromatograph hyphenated with a GC-III 

combustion interface and coupled to a Finnigan MAT 253 isotope ratio mass spectrometer 

(GC-C-IRMS, all Thermo Fisher Scientific) was used. Each sample was analyzed in 

triplicate. Sample injection (2-3 µL) was performed by a Combi-PAL autosampler (CTC 

Analysis). The injector had a constant temperature of 220 °C, was equipped with an “A” 

type packed liner for large volume injections (GL Sciences) and was operated for 1 min in 

splitless and then in split mode (split ratio 1:10) with a flow rate of 1.4 mL/min. For peak 

separation, the GC oven was equipped with a DB-5 MS column (30 m × 0.25 mm, 1 µm film 
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thickness, Agilent). The temperature program of the oven started at 65 °C (held for 1 min), 

ramped at 20 °C/min to 180 °C (held for 10 min) and ramped again at 15 °C/min to 230 °C 

(held for 8 min). In the combustion interface, a GC Isolink II reactor (Thermo Fisher 

Scientific) was installed, which was operated at a temperature of 1000 °C. After combustion 

of the analytes to CO2 and subsequent reduction of any nitrogen oxides, the compounds were 

analyzed as CO2 for carbon and N2 for nitrogen isotope measurements. Three pulses of CO2 

or N2, respectively, were introduced at the beginning and at the end of each run as 

monitoring gas. Beforehand, these monitoring gases were calibrated against RM8563 (CO2) 

and NSVEC (N2), which were supplied by the International Atomic Energy Agency (IAEA). 

The analytical uncertainty 2σ was ± 0.5 ‰ for carbon isotope values and ± 1.0 ‰ for 

nitrogen isotope values. 

4.3.5 Isotope Analysis of Chlorine 

For chlorine isotope analysis of atrazine, a 7890A gas chromatograph coupled to a 5975C 

quadrupole mass spectrometer (GC-qMS, both Agilent) was used. Sample injection (2 µL) 

was performed by a Pal Combi-xt autosampler (CTC Analysis). For the injector and the GC 

oven, the same parameters as for carbon and nitrogen isotope analysis were used with the 

exception that a different liner type, a “FocusLiner” (SGE), was used. The ion source had a 

constant temperature of 230 °C and the quadrupole of 150 °C. Prior to sample analysis, the 

method of Ponsin et al.69 was tested and optimized for our instrument (see details in the 

Appendix). Chlorine isotope ratios were evaluated by monitoring the mass-to-charge ratio 

m/z of 202/200. Standards and samples were measured ten times each and uncertainties were 

reported as standard deviation. Results were only evaluated if the peak areas of samples were 

inside a defined linearity range (peak area of 1.2 x 108 – 3.0 x 108 for m/z 200). Inside the 

linearity range, the determined precision of the method is associated with a maximal 

deviation of ± 1.1 ‰. For analysis, the samples were diluted with ethyl acetate to a final 

concentration of approx. 75 mg/L and measured with a dwell time of 100 ms. Correction of 

the chlorine isotope values relative to Standard Mean Ocean Chloride (SMOC) was 

performed by an external two-point calibration with characterized standards of atrazine 

(Atr #4 δ37Cl = -0.89 ‰ and Atr #11 δ37Cl = +3.59 ‰)122. To this end, the standards were 

measured at the beginning, in between and at the end of each sequence. 
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4.3.6 Evaluation of Stable Isotope Fractionation 

Determination of isotope enrichment factors ε was achieved by the Rayleigh equation, which 

describes the gradual enrichment of the residual substrate fraction ƒ with molecules 

containing heavy isotopes, as expressed by isotope values according to Equation 4-113, 43. For 

example, for chlorine: 

ln [ (δ37Cl + 1) / (δ37Cl0 + 1) ] = ɛCl ‧ ln ƒ      (4-3) 

Here δ37Cl0 refers to the chlorine isotope value at the starting point (t = 0) of an experiment. 

Regression slopes Λ of dual element isotope plots were obtained by plotting isotope ratios of 

two different elements against each other, e.g. carbon vs. nitrogen (see Equation 4-2). The 

uncertainties of the calculated ɛ-values and Λ-values are reported as 95 % confidence 

intervals (CI). Furthermore, (apparent) kinetic isotope values, (A)KIECl, that express the 

ratio of reaction rates 35k and 37k of heavy and light isotopologues, respectively, 

KIECl = 35k / 37k         (4-4) 

were calculated according to Elsner et al.13 by converting ɛCl-values into (A)KIECl and taking 

into account that atrazine contains only one chlorine atom (n = 1): 

(A)KIECl = 1 / (n ‧ ɛCl + 1)        (4-5) 

4.3.7 Prediction of Chlorine Kinetic Isotope Effect on Oxidative Dealkylation of 

Atrazine 

In the computational part of the study, we considered hydrogen atom transfer and hydride 

transfer taking place at the -position of the ethyl side chain of the atrazine molecule in the 

oxidative dealkylation reaction promoted by permanganate and the hydronium ion, 

respectively. Furthermore, we considered hydrolysis under acidic/enzymatic, neutral and 

alkaline conditions. All molecular structures and analytical vibrational frequencies for 

involved reactant complexes and transition states were taken from a previous study41. 

Chlorine kinetic isotope effects on dealkylation were calculated using the complete 

Bigeleisen equation123 implemented in the ISOEFF program124 at 300 K. Additional isotope 

effects predictions for hydrolysis under acidic as well as neutral conditions were performed 

following the previous computational protocol121. The tunneling contributions to the overall 

kinetic isotope effect were omitted. 
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4.4 Results and Discussion 

4.4.1 Observation of Normal Chlorine Isotope Effects in Biotic Hydrolysis and Oxidative 

Dealkylation 

Atrazine degradation by A. aurescens TC1 resulted in the metabolite 2-hydroxyatrazine, 

whereas the metabolites DEA and DIA were observed for Rhodococcus sp. NI86/21 (see 

Figure 6C-S4 and 6C-S5 in the Appendix). Detection of these expected degradation products 

(Figure 4-1) demonstrates that hydrolysis and oxidative dealkylation were the underlying 

biochemical reactions during atrazine degradation, respectively. In both biodegradation 

experiments – biotic hydrolysis with A. aurescens TC1 and oxidative dealkylation with 

Rhodococcus sp. NI86/21 – normal chlorine isotope fractionation was observed (see 

Figure 4-2A). In the three replicates of hydrolytic degradation by A. aurescens TC1 90 %, 

90 % and 60 % transformation of atrazine was reached after approx. 26 h, respectively (see 

Appendix, Figure 6C-S4). Evaluation of δ37Cl values during biotic hydrolysis according to 

Equation 4-3 resulted in a small normal isotope effect of ɛCl = -1.4 ± 0.6 ‰. In oxidative 

dealkylation with Rhodococcus sp. NI86/21 approx. 90 % degradation was reached after 

approx. 186 h in all three replicates (see Appendix, Figure 6C-S5). Evaluation of changes in 

chlorine isotope ratios resulted in a surprisingly large normal isotope effect of ɛCl = -4.3 

± 1.8 ‰ considering that the C-Cl bond is not broken during the reaction (see Figure 4-1). In 

a next step, carbon and nitrogen isotope effects were therefore analyzed to confirm whether 

the same reactions mechanisms are at work as observed in previous studies39, 41. 
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Figure 4-2. Isotope fractionation of (A) chlorine, (B) nitrogen and (C) carbon during microbial degradation of 

atrazine by A. aurescens TC1 (red) and Rhodococcus sp. NI86/21 (blue) and corresponding enrichment 

factors ε evaluated according to Equation 4-3. (The 95 % confidence intervals are given as values and as black 

lines). 
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4.4.2 Observed Carbon and Nitrogen Isotope Fractionation is Consistent with Previous 

Studies 

Carbon and nitrogen isotope fractionation for atrazine degradation by A. aurescens TC1 and 

Rhodococcus sp. NI86/21 was consistent with previous studies: Both experiments showed 

significant changes in isotope ratios (see Figure 4-2B and 4-2C). For hydrolysis with 

A. aurescens TC1, an inverse nitrogen isotope effect (ɛN = 2.3 ± 0.3 ‰) and a normal carbon 

isotope effect (ɛC = -3.7 ± 0.4 ‰) were observed, which were slightly smaller compared to 

the results of a former publication of Meyer et al. (ɛN = 3.3 ± 0.4 ‰, ɛC = -5.4 ± 0.6 ‰)39, 

but gave the same dual element isotope plot (ΛArthro
C/N = -0.6 ± 0.1) confirming that the same 

mechanism was at work (see Figure 4-3A). 

Oxidative dealkylation of atrazine with Rhodococcus sp. NI86/21 resulted in a normal 

nitrogen isotope effect of ɛN = -2.0 ± 0.3 ‰ and a normal carbon isotope effect of ɛC = -2.9 

± 0.7 ‰. These ɛ-values are similar to those published by Meyer & Elsner40 (ɛN = -1.5 

± 0.3 ‰, ɛC = -4.0 ± 0.2 ‰) and Meyer et al.41 (ɛN = -1.4 ± 0.3 ‰, ɛC = -3.8 ± 0.2 ‰). The 

slightly more pronounced nitrogen isotope fractionation in this study can probably be 

attributed to the fact that oxidation was primarily observed at the C-H bond adjacent to the 

nitrogen atom (α-position of the ethyl or isopropyl group, see closed mass balance in 

Figure 6C-S5 in the Appendix)41. In the study of Meyer et al.41 48 % of the oxidation was 

observed at the β-position of the ethyl or isopropyl group resulting in a smaller nitrogen 

isotope fractionation effect. The obtained regression slope of ΛRhodo
C/N = 0.7 ± 0.1 in this 

study is slightly larger than the previously reported regression slopes (ΛRhodo
C/N = 0.4 

± 0.1)40, 41 which may again be explained by the small difference in average nitrogen isotope 

effects. Also here, however, the similar dual element isotope trend confirms that in this study 

atrazine was transformed by the same mechanism as in Meyer et al.41 leading to the observed 

oxidative dealkylation products by Rhodococcus sp. NI86/21. 
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Figure 4-3. Isotope effects in microbial degradation of atrazine by A. aurescens TC1 (red) and 

Rhodococcus sp. NI86/21 (blue) resulting in dual element isotope plots. (The 95 % confidence intervals are 

given as values and as black lines next to the regression slopes). (A) Regression slopes of nitrogen and carbon 

isotope values (ΛC/N). (B) Regression slopes of chlorine and carbon isotope values (ΛCl/C). (C) Regression 

slopes of chlorine and nitrogen isotope values (ΛCl/N). 
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4.4.3 Multi-Element Isotope Approach 

Results of chlorine isotope analysis were combined with data for carbon and nitrogen isotope 

measurements in dual element isotope plots (see Figure 4-3B and 4-3C). For hydrolysis with 

A. aurescens TC1 regression slopes of ΛArthro
Cl/C = 1.7 ± 0.9 and ΛArthro

Cl/N = -1.2 ± 0.7 were 

obtained. Oxidative dealkylation by Rhodococcus sp. NI86/21 resulted in regression slopes 

of ΛRhodo
Cl/C = 0.6 ± 0.1 and ΛRhodo

Cl/N = 0.4 ± 0.2. Since the dual element isotope plots of 

chlorine and carbon and of chlorine and nitrogen provide significantly different regression 

slopes for the respective elements, they can provide an additional line of evidence to 

differentiate the two degradation mechanisms of atrazine from each other. 

4.4.4 Surprising Mechanistic Evidence from Chlorine Isotope Effects 

For degradation with A. aurescens TC1, rather small chlorine isotope fractionation was 

observed (ɛCl = -1.4 ± 0.6 ‰) despite the fact that the chlorine is cleaved off during 

hydrolysis (see Figure 4-1). For oxidative dealkylation with Rhodococcus sp. NI86/21, the 

chlorine is not cleaved off (see Figure 4-1), therefore, no or just a small chlorine isotope 

effect was expected. However, here more pronounced chlorine isotope fractionation was 

observed (ɛCl = -4.3 ± 1.8 ‰). 

The corresponding apparent kinetic isotope effects (AKIECl, see Table 4-1) were compared to 

the AKIECl values of other studies focusing on the same degradation mechanisms. In 

addition, the AKIECl values were compared to the theoretical maximum Streitwieser Limit 

associated with the cleavage of a C-Cl bond (KIECl = 1.02)125-127 and to the predictions of 

computational calculations (Table 4-2). 
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Table 4-1. AKIECl values associated with atrazine degradation. 

Mechanism AKIECl Study 

Experimental Data   

Abiotic alkaline hydrolysis (21 °C) 1.0069 ± 0.0005 Dybala-Defratyka et al.120 

Abiotic alkaline hydrolysis (50 °C), 1.0009 ± 0.0006 Grzybkowska et al.121 

Microbial hydrolysis (A. aurescens TC1) 1.0014 ± 0.0006* This study 

Microbial dealkylation (Rhodococcus sp. NI86/21)  1.0043 ± 0.0018* This study 

Computational Data   

Abiotic acidic/enzymatic hydrolysis (transition state 1) range of 1.0002 to 1.0011 Grzybkowska et al.121 

Abiotic acidic/enzymatic hydrolysis (transition state 2) 1.0099 This study 

Abiotic neutral hydrolysis 1.0045 This study 

Abiotic alkaline hydrolysis range of 1.0003 to 1.0014 Grzybkowska et al.121 

Enzymatic hydrolysis range of 0.9996 to 1.0003 Szatkowski et al.128 

Abiotic dealkylation (hydrogen atom transfer by MnO4
-) 0.9999 This study 

Abiotic dealkylation (hydride transfer by H3O+) 0.9997 This study 

* Calculated according to Equation 4-5   

 

For microbial hydrolysis of atrazine an experimental AKIEArthro
Cl value of 1.0014 ± 0.0006 

was calculated (see Table 4-1). Dybala-Defratyka et al.120 reported a more pronounced 

AKIEalk.hydrol.
Cl value of 1.0069 ± 0.0005 (see Table 4-1). However, that study120 was 

conducted in an abiotic alkaline solution at 21 °C so that another hydrolysis pathway was 

involved. Newer data reported a much smaller value of AKIEalk.hydrol.
Cl = 1.0009 ± 0.0006121 

for the same alkaline hydrolysis at 50 °C. Later on it was confirmed that abiotic alkaline 

hydrolysis performed earlier at 21 °C resembles rather neutral than alkaline conditions121. 

Table 4-2 illustrates the different computed mechanisms that lie at the heart of the 

computational predictions. It shows the different mechanistic routes between the alkaline 

(substitution of Cl without protonation of the atrazine ring) and the acidic/enzymatic 

pathway characterized in Meyer et al.39 (substitution of Cl with protonation of the atrazine 

ring) including different possible transition states. Chlorine KIEs are, among other factors129, 

determined by the percent extension of the C-Cl bond in the transition state. As this is 

directly related to the structure of the transition state, it can be linked to the C-Cl bond orders 

(Table 4-2), which decrease in the studied hydrolysis reactions when the C-Cl bond is more 

ruptured as compared to its length in the reactants, resulting in increased chlorine KIEs. 

Previously performed computations121 and computations of this study mimicking alkaline, 

acidic, and neutral conditions indicated that the largest AKIECl should be expected under 
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neutral conditions (except for transition state 2 of acidic/enzymatic hydrolysis). Under 

neutral conditions the C-Cl bond is elongated leading to a transition state geometry which 

differs substantially from hydrolysis reactions promoted either by alkaline or acidic 

conditions (see Table 4-2). However, hydrolysis at neutral pH is too slow to be of relevance. 

Computational calculations taking into account the transition state structures at a molecular 

level predicted AKIECl values ranging from 0.9996 to 1.0014 for alkaline, acidic and 

enzymatic hydrolysis (see Table 4-1 and 4-2)121, 128. Hence, on the mechanistic level, the 

computational studies predict that the formation of a Meisenheimer complex rather than the 

subsequent C-Cl bond cleavage is the rate-determining step during the nucleophilic aromatic 

substitution reaction catalyzed by TrzN121, 128. In both abiotic pathways the C-Cl bond at the 

transition state of the rate determining step is almost intact giving rise to very small AKIECl 

(the computed bond orders for both alkaline and acidic hydrolysis are the same and equal to 

1.03, see also Table 4-2). In this study, we therefore observed a similarly small AKIEArthro
Cl 

value for enzymatic hydrolysis in A. aurescens TC1 which resembles acid-catalyzed 

hydrolysis rather than alkaline hydrolysis39. Hence, the picture emerges that different 

hydrolytic pathways give rise to experimental AKIECl values much lower than the 

Streitwieser Limit of 1.02125-127 indicating that the chlorine isotope effect is masked in all 

cases and that the C-Cl bond cleavage is not the rate-determining step. Interestingly, this is 

in contrast to ametryn hydrolysis where strong sulphur isotope effects were observed in 

enzymatic hydrolysis by TrzN111. Further experimental work, including degradation 

experiments with other strains, hydrolysis and crude enzyme experiments, will be required to 

further substantiate the picture on chlorine isotope effects observed in this study. For the 

moment, since chlorine isotope effects were found to be masked, we must conclude, 

however, that information from chlorine isotope analysis alone would not be enough to 

differentiate the different reaction mechanisms. This illustrates the importance of analyzing 

more than one element for mechanistic differentiation. 
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Table 4-2. Mechanisms and transition states of acidic/enzymatic, neutral and alkaline hydrolysis and corresponding calculated and measured isotope effects. 

a Taken from Grzybkowska et al.121; b Calculated according to Equation 4-5 with n = 5 for N and n = 8 for C; c Taken from Meyer et al.39

Mechanism 
Calculated Transition 

Statea 

Calculated Isotope Effect 

(position-specific and compound average AKIE values) 

Measured Isotope 

Effect 

Acidic/Enzymatic Hydrolyis (Transition State 1) 

  
C-Cl Bond Order: 1.03  

Compound 

average: 

AKIECl = 1.0002a 

AKIEN = 0.9983a 

AKIEC = 1.0042a 

Compound 

average: 

AKIECl = 1.0014 ± 

0.0006b 

AKIEN = 0.9886 ± 

0.0015b 

AKIEC =1.0271 ± 

0.0034b 

Acidic/Enzymatic Hydrolyis (Transition State 2) 

  
C-Cl Bond Order: 0.55 

 

Compound 

average: 

AKIECl = 1.0099 

AKIEN = 1.0002 

AKIEC = 1.0017 

- 

Neutral Hydrolyis 

  
C-Cl Bond Order: 0.87 

 

Compound 

average: 

AKIECl = 1.0045 

AKIEN = 1.0024 

AKIEC = 1.0041 

- 

Alkaline Hydrolyis 

  
C-Cl Bond Order: 1.03 

 

Compound 

average: 

AKIECl = 1.0003a 

AKIEN = 1.0017a 

AKIEC =1.0043a 

Compound 

average: 

AKIECl = 1.0009 ± 

0.0006a 

AKIEN = 1.001 ± 

0.000c 

AKIEC =1.031 ± 

0.003c 
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For oxidative dealkylation, so far, no chlorine isotope effects were reported. Regarding the 

reaction mechanism, Meyer et al.41 concluded that oxidative dealkylation of atrazine with 

Rhodococcus sp. NI86/21 is initiated by hydrogen atom transfer based on the observed 

product distribution and the carbon and nitrogen isotope effects. Hydrogen atom transfer 

leads directly to a homolytic cleavage of the C-H bond adjacent to the nitrogen atom 

(α-position of the ethyl or isopropyl group) producing a relative unstable 1,1-aminoalcohol 

which is then further transformed to DEA or DIA41. In parallel, two additional products 

could be detected which were formed by oxidation of the C-H bond in the β-position of the 

ethyl or isopropyl group. For this mechanistic pathway, chlorine isotope effects would be 

expected to be rather small since the chlorine is not involved in the reaction steps. The 

closed mass balance of the concentration analysis (see Figure 6C-S5 in the Appendix) of this 

study and the results of product distribution of Meyer et al.41 also indicate that there is no 

C-Cl bond cleavage taking place since corresponding hydrolysis products were not detected. 

Furthermore, our computations for hydrogen atom transfer at a catalytic center mimicking 

cytochrome P450 predicted no chlorine isotope effect (AKIEhydro.atom trans.
Cl = 0.9999, see 

Table 4-1). Hydride transfer promoted by the hydronium ion also resulted in no chlorine 

isotope effect (AKIEhydride trans.
Cl = 0.9997, see Table 4-1). At previously located transition 

state structures for these two reactions41 the carbon-chlorine bond remains intact and no 

stretching of this bond is involved in the reaction coordinate (hydrogen transfer) mode. The 

observed more pronounced AKIERhodo
Cl value of 1.0043 ± 0.0018 in this study (see 

Table 4-1) could, therefore, be indicative of isotope effects caused by enzymatic interactions. 

Meyer et al.41 proposed that for oxidative dealkylation no selectivity itself is observed, 

however, the preferred oxidation of the α-position over the β-position could be explained by 

steric factors of the catalyzing enzyme which could have an influence on the transformation 

pathway. Thus, the sensitive chlorine isotope effect, which is observed even though the C-Cl 

bond is not cleaved during degradation, can be interpreted as an indicator that non-covalent 

interactions between the cytochrome P450 complex and the chlorine cause significant 

chlorine isotope fractionation130. 

4.5 Conclusion 

Since atrazine is frequently detected in groundwater systems, major efforts should be put 

into understanding its environmental fate. We provide an approach to 3D-isotope (C, N, Cl) 



CHLORINE ISOTOPE FRACTIONATION IN BIODEGRADATION OF ATRAZINE 
   

67 

 

analysis of atrazine and explored isotope fractionation in different transformation pathways. 

Together, this provides the basis to more confidently assess sources and degradation of 

atrazine in the environment. Specifically, we demonstrated that pronounced changes in 

chlorine isotope values are not an indicator of microbial hydrolysis (as one might have 

expected without knowledge of our experimental data), but – surprisingly – rather of 

oxidative dealkylation. Therefore, although trends are different than expected, they can 

nonetheless be used for a more confident identification of different sources and 

transformation pathways in field samples. Regarding the sensitivity of chlorine isotope 

effects, our study demonstrates the importance of performing controlled laboratory 

experiments before applying the approach in the field. Specifically, in other cases chlorine 

isotope fractionation can be much more pronounced than observed for atrazine in this study. 

Large chlorine isotope effects were observed in proof-of-principle experiments by Ponsin et 

al.69 studying hydrolytic dechlorination of S-metolachlor, an herbicide containing also only 

one chlorine atom. Here preliminary data suggest a large chlorine isotope effect of ɛCl = -9.7 

± 2.9 ‰ for abiotic alkaline hydrolysis. Therefore, in the case of other substances, chlorine 

isotope effects can be even more sensitive indicators of degradation provided that the C-Cl 

bond cleavage occurs in the rate-determining step of a reaction. Further, gaining deeper 

insights into these chemical processes is the basis for understanding the biotic catalysis of 

organic micropollutant degradation. This, in turn, is essential for identifying and developing 

optimized strategies for micropollutant removal in order to make successful bioremediation 

possible. 
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5  

General Conclusion 

 

In the last years compound-specific stable isotope analysis (CSIA) has evolved further and 

further. Especially in terms of chlorine isotope analysis, new methods were developed and 

instrumentational improvements made the analysis of new compounds possible31, 32, 64, 69. 

Today it is an important and widely used tool for the detection and evaluation of 

contaminant transformation in the environment. Since it even enables the differentiation and 

identification of underlying chemical mechanisms of contaminant degradation, this thesis 

aimed to improve and use this powerful approach to study the transformation mechanisms of 

selected prominent chlorohydrocarbons. 

Due to the urgent need of in-house referencing standards and substance-specific working 

standards for chlorine isotope analysis, Chapter 2 focused on identifying synthesis routes to 

generate such standards in a straightforward way. Chemical dehalogenation reactions, which 

are accompanied by chlorine isotope fractionation effects, were used to produce the in-house 

silver chloride referencing standard CT16 and substance-specific working standards of the 

herbicides acetochlor and S-metolachlor (Aceto2 / Metola2). CT16 resulted from a reductive 

elimination reaction of 2,2,2-trichloroethyl acetate which produced a chloride depleted 

in 37Cl. Aceto2 and Metola2 were produced by a second order nucleophilic chemical 

substitution reaction leading to remaining substrate fractions enriched in 37Cl. The purchased 

acetochlor (Aceto1) and S-metolachlor (Metola1) were used as starting material. The 

generated standards were subsequently characterized against the international reference 
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standards USGS38 (-87.90 ‰) and ISL-354 (+0.05 ‰) by gas chromatography – isotope 

ratio mass spectrometry (GC-IRMS) and gas chromatography – multicollector inductively 

coupled plasma mass spectrometry (GC-MC-ICPMS). For CT16 both methods resulted in a 

consensus value of δ37ClCT16 = -26.82 ± 0.18 ‰. Preliminary two-point calibration by 

GC-MC-ICPMS of the acetochlor and S-metolachlor standards gave values of 

δ37ClAceto1 = 0.29 ± 0.29 ‰, δ37ClAceto2 = 18.54 ± 0.20 ‰, δ37ClMetola1 = -4.28 ± 0.17 ‰ and 

δ37ClMetola2 = 5.12 ± 0.27 ‰. The successful synthesis and characterization of these chlorine 

standards will improve chlorine isotope analysis in the future. Until today chlorine working 

standards were typically characterized against only one anchor point. With the synthesis 

route of CT16 every laboratory can easily generate its own second anchor point so that 

two-point calibration will be used on a regular basis for tomorrow’s chlorine isotope 

standard characterization. The opportunity to synthesis a pronounced negative in-house 

referencing standard and to use two referencing standards which differ in their isotope value 

for characterization is an important step which will improve the accuracy of future 

calibration results of chlorine working standards. Consequently, the accuracy of daily 

chlorine isotope analysis will also improve due to calibration with these optimized working 

standards. Furthermore, the generated working standards for acetochlor and S-metolachlor 

together with the recently published GC-qMS (gas chromatography – quadrupole mass 

spectrometry) method for chlorine isotope analysis of these herbicides69 make it now 

possible to analyze not only carbon and nitrogen isotope fractionation but also chlorine 

isotope fractionation. This multi-element approach will certainly improve the outcome of 

lysimeter studies investigating the environmental fate of these herbicides. However, the 

pronounced positive δ37Cl-values of the standards Aceto2 and Metola2 are already outside of 

the range covered by the international chlorine reference standards. Therefore, a synthesis 

route for the generation of an in-house chlorine reference standard with a more positive 

chlorine value is also needed which would optimize the accuracy of characterization results 

for chlorine working standards even further. The successful generation of the acetochlor and 

S-metolachlor working standards also demonstrated that organic synthesis can be used as 

effective tool to produce essential substance-specific working standards of more complex 

organic chlorohydrocarbons. Future work has to target the generation of substance-specific 

working standards of other chlorinated micropollutants. Table 5-1 provides a list of 

examples for such compounds and corresponding possible strategies for dechlorination 

reactions which could result in a pronounced chlorine isotope shift. 
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Table 5-1. List of chlorinated micropollutants and corresponding possible strategies for the generation of 

substance-specific working standards. 

Substance Class Compound Structure Strategy Reference 

Chloroacetanilide 

herbicides 

Alachlor 

 

SN2 reaction Lihl et al.122 Propachlor 

 

Butachlor 

 

s-Triazine 

herbicides 

Atrazine 

 

Alkaline hydrolysis 

Dybala-

Defratyka et 

al.120 

Simazine 

 

Terbuthylazine 

 

Phenoxy acid 

herbicides 

2,4-D  

 
Photodegradation 

Burrows et 

al.131 

Mecoprop 

 

Pharmaceuticals Diclofenac 

 

Bio-Pd/Au catalyzed 

dechlorination / 

UV photolysis 

Corte et al.132 / 

Keen et al.133 

 

The herbicides alachlor, propachlor and butachlor belong to the same substance class as the 

herbicides S-metolachlor and acetochlor (chloroacetanilide herbicides). Due to their similar 

structure, the strategy of a SN2 reaction, as explained in Chapter 2, should be suited to 

generate also substance-specific working standards of these herbicides. However, for the 

listed s-triazine and phenoxy acid herbicides and the pharmaceutical product diclofenac 

substance-specific working standards cannot be generated via this strategy. The chlorine 

atoms of these compounds are directly connected to the respective aromatic rings (see 

structures in Table 5-1) making a SN2 reaction impossible134. Therefore, the generation of 

substance-specific working standards has to follow other strategies. A possible approach for 
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the listed s-triazine herbicides could be alkaline hydrolysis. Dybala-Defratyka et al.120 

observed a relatively pronounced chlorine isotope effect for alkaline hydrolysis of atrazine 

which could, therefore, serve as possible strategy to generate substance-specific working 

standards. This strategy could also work for the similar structured simazine and 

terbuthylazine. The phenoxy acid herbicides 2,4-D and mecoprop can be dechlorinated via 

photodegradation131 and the chlorinated pharmaceutical product diclofenac can be degraded 

via bio-Pd/Au catalyzed dechlorination132 or UV photolysis133. The chemical structures of 

2,4-D and diclofenac contain two chlorine atoms, respectively, which will lead to a dilution 

of the chlorine isotope effect by the non-reacting chlorine atom. Consequently, smaller 

chlorine isotope effects have to be expected for these compounds13. However, whether these 

strategies are suited for the generation of chlorine working standards of theses substances 

has to be tested in the future. The generation of such substance-specific working standards is 

an important step for stable chlorine isotope analysis. Together with future development of 

analytical methods, this will enable the accurate analysis of chlorinated contaminants in the 

environment. 

Chapter 3 addressed the question why microbial reductive dehalogenation of the chlorinated 

ethenes PCE and TCE, which is catalyzed by reductive dehalogenases (RDases), often stops 

at toxic cis-DCE or VC. Compound-specific isotope analysis of carbon and chlorine was 

used to investigate this question by comparing dual element regression slopes ΛC/Cl. 

The ΛC/Cl values were larger during microbial dechlorination of less chlorinated cis-DCE 

(ΛC/Cl = 10.0 to 17.8) compared to PCE and TCE (ΛC/Cl = 2.3 to 3.8). Even in TCE 

transformation ΛC/Cl was larger when mixed cultures had previously been adapted to VC or 

DCEs (ΛC/Cl = 9.0 to 18.2). These values were compared to a model study using vitamin B12 

as a model reactant for reductive dehalogenase activity which identified two chemical 

mechanisms responsible for reductive dehalogenation17. The trend for less chlorinated 

ethenes (smaller ΛC/Cl values) parallels that of cob(I)alamin addition followed by protonation 

and the opposite trend (larger ΛC/Cl values) matches cob(I)alamin addition followed by 

Cl- elimination. Additionally, the observed dual element isotope trends did not correlate with 

the predominant RDases of the studied microbial cultures. These results indicate that 

reductive dehalogenases show different mechanistic motifs which are tailored to certain 

substrates. This could potentially explain why some RDases are optimized in the 

dechlorination of PCE and TCE, but are not able to dechlorinate cis-DCE or VC. 

Furthermore, future field studies could benefit from an advanced classification system for 
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microbial dechlorination. Classifying dehalogenation not only based on detected RDase 

genes but also on observed dual element (C, Cl) isotope trends could facilitate the 

identification of underlying (bio)chemical reaction mechanisms at contaminated sites. The 

power of this approach could be even strengthened by additional information about other 

degradation pathways of chlorinated ethenes like cometabolic oxidation. Under aerobic 

conditions a variety of microorganisms containing different oxygenases is able to oxidize 

chlorinated ethenes to CO2
3. Gafni et al.135, 136 already studied carbon and chlorine isotope 

fractionation during cometabolic oxidation of TCE with different microbial cultures. For 

toluene and ammonia oxidizers they observed normal carbon but small inverse chlorine 

isotope effects resulting in very steep and negative regression slopes ΛC/Cl (ΛC/Cl = -10.9 

to -38.0) which can be differentiated from the dual element isotope trends of reductive 

dehalogenation. However, during cometabolic TCE oxidation by methane oxidizers 

substrate-binding seems to be the rate-limiting step resulting in very small normal carbon 

and normal chlorine isotope effects. The resultant small ΛC/Cl values (ΛC/Cl = 1.1 to 1.7) 

could be difficult to distinguish from dual element isotope trends of reductive 

dehalogenation136. These contrasting dual element isotope trends during cometabolic TCE 

oxidation emphasize the importance of investigating and understanding the cometabolic 

oxidation mechanisms also of other microbial groups, e.g. propane and aromatic compound 

oxidizers, and also of other substrates, like PCE and cis-DCE. With this information dual 

element (C, Cl) isotope analysis could help to differentiate aerobic and anaerobic 

degradation pathways of chlorinated ethenes at contaminated sites. Another possible 

pathway of chlorinated ethene degradation is abiotic transformation occurring on metal 

surfaces such as zero-valent iron. Zero-valent iron permeable reactive barriers are introduced 

into contaminated plumes for in situ remediation. While passing through such barriers 

chlorinated ethenes are reductively dechlorinated137, 138. However, the chemical mechanisms 

behind reductive dechlorination on metal surfaces and to what extent the properties of the 

metal have an effect on the chemical mechanism are hardly understood137. Chlorine isotope 

analysis could now offer a possibility to get deeper mechanistic insights. Audì-Mirò et al.139 

already used dual element isotope analysis of carbon and chlorine to distinguish the 

effectiveness of abiotic and biotic dechlorination. In addition, chlorine and carbon isotope 

fractionation obtained from laboratory studies investigating reductive dechlorination on 

metal surfaces could also lead to a better mechanistic understanding of the underlying 

processes. Having a detailed knowledge about the chemical mechanisms behind chlorinated 
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ethene degradation pathways, the involved enzymes or metals and the corresponding dual 

element (C, Cl) isotope slopes gained by experimental studies will help to identify and assess 

ongoing transformation processes at field sites and facilitate (bio)remediation in the future. 

In Chapter 4 carbon and nitrogen and, for the first time, chlorine isotope effects of the 

s-triazine herbicide atrazine were studied during microbial hydrolysis with Arthrobacter 

aurescens TC1 and oxidative dealkylation with Rhodococcus sp. NI86/21. Both experiments 

degraded atrazine via the so far proposed mechanisms39-41 which was confirmed by carbon 

and nitrogen isotope effects. Dual element regression slopes Λ of the analyzed elements 

(C/N, Cl/C, Cl/N) allowed a reliable differentiation of the two mechanisms. For hydrolysis 

the unexpected small chlorine isotope effect (ɛCl = -1.4 ± 0.6 ‰) verified that the formation 

of a Meisenheimer complex is the rate-determining step instead of the cleavage of the C-Cl 

bond. On the other hand, the small chlorine isotope effect implies that chlorine isotope 

fractionation cannot be used as a sensitive indicator for ongoing microbial hydrolysis. In 

contrast, for oxidative dealkylation an unexpected pronounced chlorine isotope effect 

(ɛCl = -4.3 ± 1.8 ‰) was observed. Here, a C-Cl bond cleavage can be excluded as possible 

explanation. However, this fractionation effect could be caused by enzymatic interactions. 

Thus, future studies have to further investigate the role of the cytochrome P450 enzyme 

complex to completely understand the processes behind this pathway. Despite our 

expectations the multi-element approach holds promise to enable a more confident source 

identification of atrazine contamination and to improve the differentiation of atrazine 

degradation pathways. Regarding the sensitivity of chlorine isotope fractionation this study 

demonstrated that laboratory research is urgently needed before using this approach in the 

field. Another study focused on the dechlorination of the herbicide S-metolachlor which also 

contains only one chlorine atom69. They observed very pronounced ɛ-values for chlorine 

isotope fractionation showing that chlorine isotope fractionation can serve as a sensitive 

indicator if the C-Cl bond cleavage is involved in the rate-determining step. Therefore, 

future laboratory work has to investigate and identify the transformation mechanisms of 

other chlorinated pesticides or pharmaceuticals which are frequently detected in the 

environment. Possible target compounds containing only one chlorine atom could be further 

s-triazine herbicides, like simazine or terbuthylazine, or the chloroacetanilide herbicides 

acetochlor, propachlor and alachlor. Recent studies32, 69 and especially the results presented 

in Chapter 2 and 4 showed that chlorine isotope values of s-triazines and chloroacetanilides 

can be measured via gas chromatography and mass spectrometry methods. Furthermore, 
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Chapter 2 and Table 5-1 illustrated that substance-specific chlorine working standards of 

these compounds can be generated via certain strategies or are already available. Since 

biodegradation pathways of these herbicides can involve a cleavage of the C-Cl bond140-143, 

chlorine isotope fractionation could serve as sensitive indicator for detecting and identifying 

natural transformation processes at contaminated field sites. Another possible target 

compound could be the chlorine-containing pharmaceutical product diclofenac. A previous 

study144 already analyzed carbon and nitrogen isotope effects of diclofenac to distinguish 

reductive and oxidative transformation pathways and to track the commercial sources of 

different products. Due to a relatively narrow range of carbon and nitrogen isotope values, a 

clear distinction of some products was not possible which limits the use of CSIA for source 

identification. By developing an analytical method for chlorine isotope analysis of diclofenac 

and by generating substance-specific working standards as depicted in Table 5-1, additional 

information from chlorine isotope analysis could improve source identification and pathway 

differentiation of this pharmaceutical product. 

This thesis highlighted the possibilities of compound-specific isotope analysis in 

illuminating underlying transformation processes of chlorohydrocarbons. The constant 

optimization and advancement of methods and instruments together with the ongoing 

development of new calibration standards in chlorine isotope analysis will increase the 

power of this approach even further in the future (Chapter 2). Especially dual element 

isotope analysis has the potential to bridge the gap between in vitro and in vivo by 

identifying reaction mechanisms in model systems and recognizing and differentiating them 

in bacteria and at contaminated sites (Chapter 3). Furthermore, for less chlorinated 

micropollutants chlorine isotope fractionation can sensitively indicate degradation if a 

chlorine is involved in the rate-determining step of the reaction (Chapter 4). Therefore, CSIA 

is a promising tool for analyzing transformation processes of chlorohydrocarbons and 

understanding the chemical mechanisms behind chlorohydrocarbon degradation which is 

very important since this knowledge is crucial for the development of successful 

bioremediation strategies. 
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Appendix 
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6.1 Supporting Information of Chapter 2 

 

 

Scheme 6A-S1. Illustrating the workflow of the isotopic characterization of CT16, TCE-2 and MeCl via 

GC-MC-ICPMS. 
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Scheme 6A-S2. Illustrating the workflow of the isotopic characterization of atrazine, acetochlor and 

S-metolachlor working standards via GC-MC-ICPMS. 

 

 

Scheme 6A-S3. Illustrating the workflow of the isotopic characterization of CT16 via GC-IRMS. 
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Table 6A-S1. List of purchased semi-volatile substances, which were calibrated against the in-house 

referencing standards TCE-2 and MeCl to be used as working standards in the future. 

Working 

Standard 
Substance Supplier δ37Cl ± SD* [‰] 

ATR #4 Atrazine Oskar Tropitzsch -0.89 ± 0.24 

ATR #11 Atrazine Riedel-de Haën  3.59 ± 0.37 

ATR_A Atrazine Oskar Tropitzsch -0.89 ± 0.05 

ACETO_A Acetochlor Chemos -0.12 ± 0.16 

METO_A S-Metolachlor Oskar Tropitzsch -0.01 ± 0.12 

METO_B S-Metolachlor Chemos -2.75 ± 0.09 

*SD = standard deviation 
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6.2 Supporting Information of Chapter 3 

6.2.1 Material and Methods 

Concentration measurements of cis-DCE and TCE. The concentrations of the substrates 

cis-DCE and TCE and the dechlorination products cis-DCE and VC were measured by gas 

chromatography coupled to a flame ionization detector (GC-FID, Varian CP-3800, Hewlett 

Packard 5980 Series II, Varian CP-3400). Samples were injected by a CombiPal autosampler 

(CTC Analytics). To achieve optimal separation, appropriate columns (e.g.: GS-Q fused 

silica capillary column (30 m × 0.53 mm)) were used together with suitable GC temperature 

programs (e.g., start at 100 °C (1 min), increase to 225 °C at 50 °C/min and hold for 

2.5 min). Injector and detector temperatures were between 200 °C and 250 °C. For TCE 

reductive dechlorination experiments changes in TCE, cis-DCE and partly VC 

concentrations over time are depicted in Figure 6B-S1. 
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Figure 6B-S1. Concentration measurements during TCE reductive dechlorination experiments. 

 

Stable carbon isotope analysis of cis-DCE and TCE. cis-DCE samples were transferred 

into a 40 mL purge & trap vial with a PTFE coated septum. For preconcentration the 

samples were taken up by a purge & trap system (Teledyne Tekmar, Velocity XTP Purge & 

Trap). TCE samples were thawed at room temperature and transferred into 10 mL headspace 
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vials. Carbon isotope analysis was performed on a gas chromatograph (Thermo Scientific, 

Trace GC Ultra) coupled to an isotope ratio mass spectrometer (Thermo Scientific, Finnegan 

MAT 253 IRMS) via a GC/C III combustion interface at 940 °C. To achieve optimal 

separation a Vocol column (Supelco, 30 m × 0.25 mm, 1.5 µm film thickness) was used. For 

cis-DCE the injection into the GC was performed automatically by the purge & trap system 

at a split ratio of 1:10. TCE samples from the headspace (1 mL) were injected by a Concept 

autosampler (PAS Technology) at a split ratio of 6:1. Suitable GC temperature programs 

were used (e.g.: start at 60 °C (4 min), increase to 80 °C at 25 °C/min and hold for 1 min, 

increased to 200 °C at 30 °C/min and hold for 1 min). The analytical uncertainty 2σ of 

carbon isotope analysis was ± 0.5 ‰. 

Stable chlorine isotope analysis of cis-DCE and TCE. Samples were thawed and 

transferred into a 10 mL headspace vial which were closed and crimped with PTFE coated 

septa. The method for chlorine isotope analysis was adapted from Shouakar-Stash et al.22. 

Measurements were performed on the same GC-IRMS system as described above with the 

exception that the GC/C combustion interface was bypassed with a transfer line so that 

cis-DCE and TCE were directly transferred from the GC to the IRMS in a He carrier stream. 

There, the compounds were ionized and fragmented for isotope ratio analysis at the masses 

m/z 96/98 (cis-DCE) and m/z 95/97 (TCE), respectively. To achieve optimal separation a 

Vocol column (Supelco, 30 m × 0.25 mm, 1.5 µm film thickness) was used. Samples from 

the headspace (1 mL) were injected into the GC at a split ratio of 1:10. A typical GC oven 

temperature program was run (e.g.: start at 65 °C (2 min), increase to 92 °C at 10 °C/min and 

increase to 175 °C at 60 °C/min). cis-DCE and TCE reference gas pulses were injected via a 

dual inlet system at the beginning and end of each measurement as described in Bernstein et 

al.23. External two-point calibrations were performed with characterized standards of 

cis-DCE (“cisF” (δ37Cl = -1.52 ‰) and “IS63” (δ37Cl = +0.07 ‰)) and TCE (“Eil-1” 

(δ37Cl = -2.7 ‰) and “Eil-2” (δ37Cl = +3.05 ‰) (Department of Earth Sciences, University 

of Waterloo)) and used to convert measurements to δ37Cl values relative to standard mean 

ocean chloride (SMOC)98. Multiple measurements of these standards were performed before, 

during and at the end of each sequence, in order to calibrate the obtained values of the 

samples. The analytical uncertainty 2σ of chlorine isotope analysis was ± 0.2 ‰. 
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qPCR analysis of KB-1/1,2-DCA, KB-1/VC, KB-1/cDCE and WBC-2/tDCE. The 

following Tables 6B-S1 - S3 contain detailed information regarding the qPCR analysis. 

 

Table 6B-S1. Primer sets, sequences and annealing temperatures for qPCR analyses. 

Target Primer 5’ → 3’ Sequence 

Annealing 

Temp. 

[°C] 

Reference 

vcrA 
VcrA 670F GCCCTCCAGATGCTCCCTTTAC 

60 Molenda et al. 201676 
VcrA 440R TGCCCTTCCTCACCACTACCAG 

tceA 
TceA_500F TAATATATGCCGCCACGAATGG 

64 Fung et al. 200792 
TceA_795R ATCGTATACCAAGGCCCGAGG 

bvcA 
Rdh6_318F ATTTAGCGTGGGCAAAACAG 

60 Waller et al. 2005145 
Rdh6_555R CCTTCCCACCTTGGGTATTT 

tdrA 
TdrA1404F GCCTCTCGCCCCCACTAAACC 

62.5 Molenda et al. 201676 
TdrA1516R GCCATCCTTCATAACCACTCACGCA 

Dehalococcoides 
Dhc 1F GATGAACGCTAGCGGCG 

60 
Grostern & Edwards 

2009146 Dhc 264R CCTCTCAGACCAGCTACCGATCGAA 

Dehalogenimonas 
Dhg273F TAGCTCCCGGTCGCCCG 

59 
Manchester et al. 

2012147 Dhg537R CCTCACCAGGGTTTGACATGTTAGAAG 

Total Archaea 
Arch 787F ATTAGATACCCGBGTAGTCC 

60 Yu et al. 2005148 
Arch 1059R GCCATGCACCWCCTCT 

Total Bacteria 
Bac 1055F ATGGCTGTCGTCAGCT 

55 Dionisi et al. 2003149 
Bac 1392R ACGGGCGGTGTGTAC 

 

Table 6B-S2. Quality details for qPCR analyses of rdhA genes, Dehalococcoides 16S rRNA and 

Dehalogenimonas 16S rRNA gene copies. 

Reaction 
Highest Std. 

(copies/μL) 

Lowest Std. 

(copies/μL) 

Highest Blank 

(copies/μL) 

Efficiency 

(%) 
R2 

Detection 

Limit 

(copies/mL) 

vcrA 4.00E+07 4.00E+02 4.00E+03 93.4 0.981 2.50E+05 

bvcA 1.07E+06 1.07E+00 1.07E+00 92.5 0.997 6.69E+01 

tceA 3.86E+07 3.86E+04 3.86E+02 95.9 0.998 2.41E+06 

tdrA 4.66E+07 4.66E+01 4.66E+02 87 0.996 2.91E+04 

Dehalococcoides 6.90E+07 6.90E+02 6.90E+02 81.7 0.996 4.31E+04 

Dehalogenimonas 4.59E+07 4.59E+02 4.59E+03 96.1 0.997 2.87E+05 

General Archaea 1.08E+07 1.08E+03 1.08E+03 81.6 0.997 6.75E+04 

General Bacteria 4.59E+07 4.59E+02 4.59E+02 88.9 0.996 2.87E+04 
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Table 6B-S3. qPCR analyses of rdhA genes, Dehalococcoides 16S rRNA and Dehalogenimonas 16S rRNA 

gene copies in Dehalococcoides-containing mixed cultures KB-1/1,2-DCA, KB-1/VC, KB-1/cDCE, and WBC-

2/tDCE following TCE dehalogenation experiments. 

 
KB-1/1,2-

DCA 
KB-1/VC KB-1/cDCE WBC-2/tDCE 

 

vcrA 

(copies/mL) 

1.20E+08 5.60E+07 8.30E+07 1.30E+08 

5.30E+07 5.00E+07 9.60E+07 5.40E+07 

bvcA 

(copies/mL) 

6.00E+03 - 6.00E+03 2.20E+04 

5.50E+03 - 5.50E+03 1.20E+03 

tceA 

(copies/mL) 

1.10E+08 - 2.90E+07 8.70E+06 

5.70E+07 - 1.50E+07 5.80E+06 

tdrA 

(copies/mL) 

1.10E+05 1.90E+05 1.90E+05 6.90E+07 

1.60E+05 2.60E+05 2.60E+05 5.10E+07 

Dehalococcoides 

(copies/mL) 

7.40E+07 3.70E+07 4.30E+07 5.60E+07 

 2.60E+07 3.70E+07 3.90E+07 

Dehalogenimonas 

(copies/mL) 

- - - 1.40E+07 

- - - 1.30E+07 

General Bacteria 

(copies/mL) 

1.40E+08 8.60E+07 1.50E+08 9.90E+07 

7.70E+07 7.50E+07 9.50E+07 3.60E+07 

General Archea 

(copies/mL) 

2.70E+06 1.40E+06 7.90E+06 2.30E+06 

2.50E+06 2.70E+06 2.90E+06 2.30E+06 

* Samples shaded in grey were below the detection limit. 
 

 

6.2.2 Results 

 

Figure 6B-S2. Carbon and chlorine isotope effects in TCE dechlorination by (A) G. lovleyi KB-1 (blue), 

KB-1 RF (brown) and Donna II (cyan) and (B) KB-1/VC (green), KB-1/cDCE (purple) and WBC-2/tDCE 

(light blue) with special regards to predominant RDases. (95 % confidence intervals are given as values and as 

black lines next to the regression slopes). 
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Table 6B-S4. Data of previous studies used for Figure 3-5. 

 System ɛC [‰] 95% CI Λ 95% CI Study 

TCE 

Desulfitobacterium hafniense Y51 -9.1 0.6 3.4 0.2 
Cretnik et al. 201398 

Geobacter lovleyi strain SZ -12.2 0.5 3.4 0.2 

Enrichment culture (Desulfitobacterium aromaticivorans) -8.8 0.2 2.5  Wiegert et al. 201359 

Desulfitobacterium hafniense Y51 -8.8 0.2 3.4 0.2 

Buchner et al. 2015102 
Desulfitobacterium hafniense Y51 -9.0 0.2 2.8 0.3 

Desulfitobacterium hafniense Y51 -9.0 0.2 3.5 0.2 

Desulfitobacterium hafniense Y51 -8.6 0.0 3.2 0.2 

Dehalococcoides culture (two species) -16.4 0.4 4.5  Kuder et al. 2013103 

Aquifer microcosms -12.2 1.0 3.4 0.1 Dogan-Subasi et al. 2017104 

RDase from Sulfurospirillum multivorans (norpseudo-B12) -20.0 0.5 5.3 0.3 

Renpenning et al. 201461 

RDase from Sulfurospirillum multivorans (nor-B12) -20.2 1.1 5.0 0.8 

norpseudo-B12 (purified cofactor) -18.5 2.8 4.5 0.8 

nor-B12 (purified cofactor) -15.1 2.7 3.7 0.3 

dicyanocobinamid (purified cofactor) -16.5 0.7 4.2 0.6 

cyano-vitamin B12 (purified cofactor) -15.0 2.0 4.4 0.7 

Cyanocobalamin (purified cofactor) -16.1 0.9 3.9 0.2 
Cretnik et al. 201398 

Cobaloxime (model system) -21.3 0.5 6.1 0.5 

Vitamin B12 pH 5.0 (model system) -16.3 0.9 12.8 1.4 

Heckel et al. 201817 
Vitamin B12 pH 5.5 (model system) -15.8 0.9 9.1 0.5 

Vitamin B12 pH 6.5 (model system) -16.3 1.1 5.2 0.2 

Vitamin B12 pH 11 (model system) -17.5 1.0 3.3 0.1 

Geobacter lovleyi strain KB-1 -10.3 0.8 3.1 0.1 

this study 

KB-1 RF -9.6 0.5 2.7 0.2 

Donna II -13.5 0.6 2.3 0.1 

KB-1/cDCE -8.3 3.4 11.8 2.4 

KB-1/VC -10.6 9.3 18.2 4.3 

WBC-2/tDCE -7.0 1.9 9.0 1.1 

KB-1/1,2-DCA -5.4 1.5 4.5 0.8 

cDCE 

KB-1 (containing Dehalococcoides) -18.5 1.8 11.6 0.9 Abe et al. 200962 

Aquifer microcosms -18.0 4.0 4.5 3.4 Dogan-Subasi et al. 2017104 

Vitamin B12 pH 6.5 (model system) -28.4 1.1 18.2 2.2 Heckel et al. 201817 

D. mccartyi 195 -23.2 4.1 10.0 0.4 
this study 

D. mccartyi BTF08 -31.1 6.3 17.8 1.0 

PCE 

Desulfitobacterium sp. strain Viet1 -19.0 0.9 3.8 0.2 Cretnik et al. 201458 

Vitamin B12 pH 6.5 (model system) -16.7 1.0 3.9 0.3 

Heckel et al. 201817 Vitamin B12 pH 9.0 (model system) -17.0 1.2 4.2 0.3 

Vitamin B12 pH 11 (model system) -16.6 2.7 3.9 0.4 

Enrichment culture (Desulfitobacterium aromaticivorans) -5.6 0.7 2.8 0.8 Wiegert et al. 201359 

Sulfurospirillum (PceA-TCE) -3.6 0.2 2.7 0.3 
Badin et al. 201460 

Sulfurospirillum (PceA-DCE) -0.7 0.1 0.7 0.2 

RDase from Sulfurospirillum multivorans (norpseudo-B12) -1.4 0.1 2.2 0.7 

Renpenning et al. 201461 

RDase from Sulfurospirillum multivorans (nor-B12) -1.3 0.1 2.8 0.5 

norpseudo-B12 (purified cofactor) -25.3 0.8 6.9 0.7 

nor-B12 (purified cofactor) -23.7 1.2 5.0 0.8 

cyano-B12 (purified cofactor) -22.4 0.8 4.6 0.2 

dicyanocobinamid (purified cofactor) -25.2 0.5 7.0 0.8 
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6.3 Supporting Information of Chapter 4 

6.3.1 Gradient Programs for HPLC Analysis 

A. aurescens TC1: Separation of atrazine and 2-hydroxyatrazine. The compounds were 

separated by using a gradient elution at a flow rate of 1.0 mL/min. The initial conditions 

(20 % acetonitrile, 80 % buffer of 2 mM K3PO4, pH 7.0) were immediately followed by a 

linear gradient to 65 % acetonitrile within 9 min. These conditions were maintained isocratic 

for 2 min. A subsequent gradient led back to the initial conditions of 20 % acetonitrile within 

1 min, which was maintained for 5 min. 

Rhodococcus sp. NI86/21: Separation of atrazine, desethylatrazine and 

desisopropylatrazine. The compounds were separated by using a gradient elution at a flow 

rate of 0.8 mL/min. The initial conditions (5 % acetonitrile, 95 % buffer of 2 mM K3PO4, 

pH 7.0) were maintained isocratic for 2 min. Afterwards, a linear gradient led to 

55 % acetonitrile within 12 min followed by another linear gradient which led to 

75 % acetonitrile within 2 min. These conditions were maintained isocratic for 2 min. A 

subsequent gradient led back to the initial conditions of 5 % acetonitrile within 2 min, which 

was maintained for 5 min. 

6.3.2 Chlorine Isotope Analysis via GC-qMS according to Ponsin et al. – Method 

Optimization 

For method optimization standards in the range of 1 - 200 mg/L were measured ten times 

each at three different dwell times (30/60/100 ms) for defining the linearity range and the 

uncertainty of the method. Furthermore, a long-term stability test over 50 days was 

conducted. 
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Figure 6C-S1. Analysis of different dwell times (30 ms grey, 60 ms blue, 100 ms red) and concentrations 

(corresponding to different peak areas) in order to define the optimal dwell time and the linearity range of 

analysis. 

 

Table 6C-S1. Ten-fold standard injection at dwell time 100 ms at different concentrations and resulting 

standard deviations. Grey shaded lines are located inside the linearity range. 

Concentration Standard Deviation 

1 mg/L 7.2 ‰ 

5 mg/L 4.4 ‰ 

7 mg/L 5.8 ‰ 

10 mg/L 6.8 ‰ 

20 mg/L 2.0 ‰ 

30 mg/L 2.0 ‰ 

40 mg/L 1.4 ‰ 

50 mg/L 1.1 ‰ 

75 mg/L 0.7 ‰ 

100 mg/L 1.0 ‰ 

200 mg/L 16.7 ‰ 
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Figure 6C-S2. Analysis of the atrazine standard Atr #4 over a period of 50 days. Red dots represent the mean 

of a ten-fold measurement while error bars illustrate the standard deviations. The mean over all measurements 

is given as value and as red line, while the standard deviation is given as value and as black line. 

 

As illustrated in Figure 6C-S1, a dwell time of 100 ms was chosen as method parameter for 

analysis and the linearity range for analysis was defined as the peak area (m/z 200) of 

1.2 - 3.0 x 108. Inside the linearity range the precision of the method is associated with a 

maximal uncertainty of ± 1.1 ‰ (see Table 6C-S1). The final concentration of standards and 

samples for analysis should be approx. 75 mg/L which corresponds to a peak area (m/z 200) 

of approx. 1.7 x 108. The long-term stability test (see Figure 6C-S2) resulted in chlorine 

values of standard injections (Atr #4, 75 mg/L, dwell time 100 ms) which showed no 

significant differences over the tested period of 50 days. 

6.3.3 Comparison of the GC-qMS Methods for Chlorine Analysis of This Study and 

Ponsin et al. 

Both, the GC-qMS method optimized here and that shown by Ponsin et al.69, can be used to 

measure chlorine isotope values of atrazine. The main difference between the two methods is 

the amount of atrazine injected on the analytical column (and the corresponding optimum 

concentration): this study: 150 ng on column (75 mg/L), Ponsin et al.69: 10 ng on column 

(5 mg/L). For 5 mg/L (corresponding to 10 ng on column in our method), we observed a 

strong dependency between peak area (concentration) and chlorine isotope values. 

Additionally, very large variations leading to large standard deviations (> 4 ‰) were 

observed (see Table 6C-S1). However, 5 mg/L was outside of our defined linearity range. 
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The linearity range was defined at higher concentrations, between 50 and 100 mg/L 

(see Table 6C-S1), and thus samples were only measured within this range. Ponsin et al.69 

measured their samples at lower concentrations, but due to their requirement that standards 

and samples had to have the same concentration (20 % tolerance), chlorine isotope values 

could be corrected, leading to accurate results. An advantage of the method of Ponsin et al.69 

is that lower concentrations can be measured. However, regarding the precision our method 

seems to be more optimized. We observed a maximal standard deviation of ± 1.1 ‰ (for an 

atrazine concentration of 50 mg/L) while Ponsin et al.69 reported a standard error of ± 1 ‰ 

(n = 10) corresponding to a standard deviation of approx. ± 3.2 ‰, for the atrazine 

concentration range between 10 and 30 mg/L. 

 

Table 6C-S2. Comparison of the method parameters of this study and the study of Ponsin et al.69. 

 Ponsin et al.69 This study 

Injectionvolume/-temperature 1 µL / 250 °C 2 µL / 220 °C 

Analytical Column DB-17 MS DB-5 MS 

GC Temperature Program 60 °C (1 min), 30 °C/min to 

190 °C (3 min), 3 °C/min to 

210 °C (3 min) 

65 °C (1 min), 20 °C/min to 

180 °C (10 min), 15 °C/min to 

230 °C (8 min) 

Column Flow 1.2 mL/min 1.4 mL/min 

Split Flow splitless 1 min splitless, then split mode 

(split ratio 1:10) 

Temperature MS Quad/MS Source 150 °C / 230 °C 150 °C / 230 °C 

Dwell Time 30 ms 100 ms 

Concentration Optimum 

→ Amount on Analytical Column 

10 ppm → 10 ng 75 ppm → 150 ng 

Amount Dependency Measurement of standards with 

similar concentration as 

samples, 20 % tolerance 

between sample and standard 

concentration 

Defining linearity range, where 

no amount dependency is 

observed (peak area between 

1.2 x 108 and 3.0 x 108) 
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6.3.4 Consideration of Interfering Fragments 

The constructive-critical comments of a reviewer pointed out that H-transfer reactions can 

occur from one fragment to the other in the ions source during GC-qMS analysis. It was 

questioned whether this could bias chlorine isotope measurements. Specifically, (I) ions that 

do not contain 37Cl may contribute to m/z 202; (II) ions may turn up as m/z 200 even though 

they do contain 37Cl. 

Case (I). In combination with the substitutions of 13C and 15N, H-transfer can lead to the 

formation of fragments with m/z 202 ([1H12
12C6

13C14N5
35Cl]+, [1H12

12C7
14N4

15N35Cl]+) which 

may add up to the “correct” peak of ([1H11
12C7

14N5
37Cl]+ and, therefore, interfere with 

chlorine CSIA. The probability of occurrence of these fragments was calculated by using the 

ratio of the peaks of m/z 200 ([1H11
12C7

14N5
35Cl]+) and m/z 201 ([1H11

12C6
13C14N5

35Cl]+, 

[1H11
12C7

14N4
15N35Cl]+, [1H12

12C7
14N5

35Cl]+) in the atrazine mass spectrum  

(see Figure 6C-S3). 

 

Figure 6C-S3. Mass spectrum of atrazine (taken from NIST 2020150). 

 

By using the relative intensities shown in Figure 6C-S3, it can be observed that the 

probability for a fragment with m/z 201 (that is, the mass of a fragment that has received a 

hydrogen atom) is approx. 11.8 %. However, ions at this mass may also represent “true” 13C 

and 15N isotopologues of mass m/z 201. Taking into account the natural abundance of 13C 

and 15N, as well as the number of C and N atoms in the molecule, it becomes clear that, 

indeed, most of this abundance is attributable to “true” 13C and 15N isotopologues 
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[1H11
12C6

13C14N5
35Cl]+ = 7.7 %, [1H11

12C7
14N4

15N35Cl]+ = 1.8 %, and only a minor 

fraction is attributable to artefacts from hydrogen transfer: [1H12
12C7

14N5
35Cl]+ = 2.3 % 

(see Table 6C-S3). 

 

Table 6C-S3. Probability of occurrence of fragments with m/z 201. 

Fragment with m/z 201 Probability of occurrence* 

[1H11
12C6

13C14N5
35Cl]+ ⁓ 7.7 % 

[1H11
12C7

14N4
15N35Cl]+ ⁓ 1.8 % 

[1H12
12C7

14N5
35Cl]+ 11.8 % - 7.7 % - 1.8 % ≈ 2.3 % 

* Based on natural abundance for each stable isotope considered (13C: 0.011056, 15N: 0.00366)33 

 

Also for the mass m/z 202 one can, hence, assume that the probability of a hydrogen transfer 

from mass 201 is 2.3 %. Hence, this probability still needs to be multiplied with the 

probability that a 13C and 15N is present in the molecule. This gives the probability of 

occurrence of the interfering fragments with m/z 202: [1H12
12C6

13C14N5
35Cl]+ = 

(7.7 % × 2.3 %) = 1.8 ‰, and [1H12
12C7

14N4
15N35Cl]+ = (1.8 % × 2.3 %) = 0.4 ‰. Hence, 

1.8 ‰ of all ions of m/z 202 are [1H12
12C6

13C14N5
35Cl]+ instead of true 37Cl isotopologues, 

and 0.4 ‰ of all ions of m/z 202 are [1H12
12C7

14N4
15N35Cl]+ instead of true 37Cl 

isotopologues.  

These numbers already show that the effect is very small. However, much of this effect can 

actually be corrected by the identical treatment of standard and sample. The exception is if 

the standard has a different δ13C compared to the sample. To estimate the artifact introduced 

by this difference, one can assume that δ13C of atrazine would vary by about 20 ‰ when 

biodegradation occurs. Hence, the artifact of protonated 13C isotopologues that cannot be 

corrected by the identical treatment of standard and sample would be 

Δ[1H12
12C6

13C14N5
35Cl]+ = 20 ‰ × 1.8 ‰ = 0.036 ‰. In a next step we therefore need to 

calculate how much such a variability in Δ[m/z 202] would influence the δ37Cl measurement.  

The natural abundance ratio of 37Cl/35Cl and, therefore, of the peaks m/z 202 and m/z 200, is 

about 0.33 (see Figure 6C-S3). Hence, a shift of Δδ37Cl = 1 ‰ would correspond to a change 

in the relative peak abundance of m/z 202 to 200 of about 0.33 × 1 ‰ = 0.33 ‰. In 

comparison, the contribution of the variability introduced by the “artefact” peak 
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Δ[1H12
12C6

13C14N5
35Cl]+ to the variability in Δ[m/z 202] (0.036 ‰) is a factor of ten smaller. 

This artefact, therefore, is expected to affect the measured δ37Cl values by 0.1 ‰ at most. 

Therefore, within the precision of our methods, the influence of H-abstraction during 

chlorine CSIA is negligible. 

Case (2). In a similar way, H-atoms can also be cleaved off during GC-qMS analysis. 

Therefore, a molecular isotopologue of atrazine with m/z 202 ([1H11
12C7

14N5
37Cl]+) could 

transform to m/z 200 ([1H9
12C7

14N5
37Cl]+) which could interfere with chlorine CSIA. Since 

the transformation rate of m/z 202 to m/z 200 corresponds to the transformation rate of 

m/z 200 to m/z 198, this can be easily investigated by analyzing the peak of m/z 198 in the 

mass spectrum of atrazine (see Figure 6C-S3). Since the relative abundance of the peak of 

mass m/z 198 is very low (< 2%), it can be concluded that the loss of H-atoms is negligible 

and thus it does not interfere with chlorine CSIA. 

 

 



APPENDIX 
   

94 

 

6.3.5 Concentration Analysis of Atrazine and its Metabolites 

 

Figure 6C-S3. Degradation of atrazine to 2-hydroxyatrazine (HAT) with A. aurescens TC1. The mass balance 

is not closed due to further degradation of HAT39. 
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Figure 6C-S4. Degradation of atrazine to desethylatrazine (DEA) and desisopropylatrazine (DIA) with 

Rhodococcus sp. NI86/21. 
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6.4 Published Manuscripts 
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Abbreviations 

 

%   per centum (Latin) – percent; parts per hundred 

‰   pro mille (Latin) – per mille; parts per thousand 

°C   degree Celsius, 0 °C = 273.15 K 

μg   microgram; 1μg = 1 × 10-6 g 

μL   micoliter; 1 μL = 1 × 10-6 L 

µm   micrometer, 1 mm = 1 × 10-6 m 

μmol   micromole; 1 μmol = 1 × 10-6 mol 

Aceto1   chlorine in-house standard, acetochlor, δ37ClAceto1 = 0.29 ± 0.29 ‰ 

Aceto2   chlorine in-house standard, acetochlor, δ37ClAceto2 = 18.54 ± 0.20 ‰ 

AKIE   Apparent Kinetic Isotope Effect 

approx.   approximately 

Atr #4   chlorine in-house standard, atrazine, δ37ClAtr #4 = -0.89 ± 0.24 ‰ 

Atr #11   chlorine in-house standard, atrazine, δ37ClAtr #11 = 3.59 ± 0.37 ‰ 

CI   confidence interval 

cis-DCE  cis-1,2- dichloroethene 

cisF   chlorine in-house standard, cis-DCE, δ37Cl = -1.52 ‰ 

cm   centimeter; 1 × 10-2 m 

CSIA   Compound-specific Stable Isotope Analysis 

CT16   chlorine in-house standard, AgCl, δ37ClCT16 = −26.82 ± 0.18 ‰ 

DEA   desethylatrazine 

DIA   desisopropylatrazine 

DI   Dual Inlet 

Dr. rer. nat.  doctor rerum naturalium (Latin) – Doctor of Natural Science 

Dr.   Doktor (German) – Doctor, equivalent to PhD  

e.g.   exempli gratia (Latin) – for example 
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Eil-1   chlorine in-house standard, TCE, δ37Cl = -2.7 ‰ 

Eil-2   chlorine in-house standard, TCE, δ37Cl = +3.05 ‰ 

et al.   et alii (Latin) – and others 

FID   Flame Ionization Detection 

g   gram; 1 g = 1 × 10-3 kg 

GC   Gas Chromatography 

h   hour; 1 h = 60 min 

HAT   2-hydroxyatrazine 

HPLC   High Performance Liquid Chromatography 

IAEA   International Atomic Energy Agency 

i.e   id est (Latin) – that is; in other words 

IRMS   Isotope Ratio Mass Spectrometry 

IS63   chlorine in-house standard, cis-DCE, δ37Cl = +0.07 ‰ 

ISL-354  international reference material, NaCl, δ37ClISL-354 = +0.05 ± 0.03 ‰ 

K   Kelvin 

kg   kilogram 

KIE   Kinetic Isotope Effect 

L   Liter 

M   molar; 1 M = 1 mol·L-1 

MC-ICPMS  Multicollector – Inductively Coupled Plasma Mass Spectrometry 

MeCl   chlorine in-house standards, methyl chloride, δ37ClMeCl = 4.49 ± 0.10 ‰ 

Metola1  chlorine in-house standard, S-metolachlor, δ37ClMetola1 = −4.28 ± 0.17 ‰ 

Metola2  chlorine in-house standard, S-metolachlor, δ37ClMetola2 = 5.12 ± 0.27 ‰ 

mg   milligram; 1 mg = 1 × 10-6 kg 

Milli-Q   ultrapure water 

min   minute; 1 min = 60 s 

mL   milliliter; 1 mL = 1 × 10-3 L 

mm   millimeter, 1 mm = 1 × 10-3 m 
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mM   millimolar; 1 mM = 1 × 10-3 M 

mmol   millimol; 1 mmol = 1 × 10-3 mol 

mol   mole 

ms   millisecond; 1 ms = 1 × 10-3 s 

MS   Mass Spectrometry 

m/z   ratio of molecular (or atomic) mass to the charge number of the ion 

NIST SRM 975a international reference material, NaCl, δ37ClNIST = 0.01 ‰ 

nm   nanometer, 1nm = 1 × 10-9 m 

nmol   nanomole, 1 nmol = 1 × 10-9 M 

PCE   tetrachloroethene 

pH   potential Hydrogenii (Latin) – decimal logarithm of the reciprocal of the 

   hydrogen activity in water 

ppm   parts per million; 1 ppm = 1 × 10-6 

qMS   Quadrupole Mass Spectrometry 

qPCR   Quantitative Polymerase Chain Reaction 

RDase   reductive dehalogenase 

Rf   retardation factor 

rpm   rounds per minute 

rRNA   Ribosomal Ribonucleic Acid 

s   second 

SLAP   Standard Light Antarctic Precipitation 

SMOC   Standard Mean Ocean Chloride 

TCE   trichloroethene 

TCE-2   chlorine in-house standard, trichloroethene δ37ClTCE-2 = -2.54 ± 0.13 ‰ 

trans-DCE  trans-1,2-dichloroethene 

USGS37  international reference material, KClO4, δ37ClUSGS37 = 0.90 ± 0.04 ‰ 

USGS38  international reference material, KClO4, δ37ClUSGS38 = -87.9 ± 0.24 ‰ 

USGS39  international reference material, KClO4, δ37ClUSGS39 = 0.05 ‰ 
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UV   ultra violet 

VC   vinyl chloride 

vs.   versus (Latin) – compared to; against 

VSMOW  Vienna Standard Mean Ocean Water 

v/v   volume/volume 

z.B.   zum Beispiel (German) – for example 
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