| dc.contributor.author | Zell, Andreas | |
| dc.contributor.author | Tebbe, Jonas | |
| dc.contributor.author | Gao, Yapeng | |
| dc.date.accessioned | 2023-07-07T09:42:48Z | |
| dc.date.available | 2023-07-07T09:42:48Z | |
| dc.date.issued | 2022-09-30 | |
| dc.identifier.isbn | 978-1-7281-8671-9 | |
| dc.identifier.issn | 2161-4407 | |
| dc.identifier.uri | http://hdl.handle.net/10900/143223 | |
| dc.language.iso | en | de_DE |
| dc.publisher | IEEE | de_DE |
| dc.relation.uri | https://doi.org/10.1109/IJCNN55064.2022.9892776 | de_DE |
| dc.subject.ddc | 004 | de_DE |
| dc.title | A Model-free Approach to Stroke Learning for Robotic Table Tennis | de_DE |
| dc.type | Article | de_DE |
| dc.type | ConferenceObject | de_DE |
| utue.publikation.seiten | 1-8 | de_DE |
| utue.personen.roh | Zell, Andreas | |
| utue.personen.roh | Tebbe, Jonas | |
| utue.personen.roh | Gao, Yapeng | |
| dcterms.isPartOf.ZSTitelID | 2022 International Joint Conference on Neural Networks (IJCNN) | de_DE |
| Dateien | Größe | Format | Anzeige |
|---|---|---|---|
|
Zu diesem Dokument gibt es keine Dateien. |
|||