dc.contributor.author |
Rusak, Evgenia |
|
dc.contributor.author |
Brendel, Wieland |
|
dc.contributor.author |
Bethge, Matthias |
|
dc.date.accessioned |
2023-09-13T09:44:59Z |
|
dc.date.available |
2023-09-13T09:44:59Z |
|
dc.date.issued |
2023 |
|
dc.identifier.issn |
1553-734X |
|
dc.identifier.uri |
http://hdl.handle.net/10900/145432 |
|
dc.language.iso |
en |
de_DE |
dc.publisher |
Public Library Science |
de_DE |
dc.relation.uri |
http://dx.doi.org/10.1371/journal.pcbi.1010932 |
de_DE |
dc.subject.ddc |
570 |
de_DE |
dc.subject.ddc |
600 |
de_DE |
dc.title |
Robust deep learning object recognition models rely on low frequency information in natural images |
de_DE |
dc.type |
Article |
de_DE |
utue.quellen.id |
20230619000000_00950 |
|
utue.personen.roh |
Li, Zhe |
|
utue.personen.roh |
Caro, Josue Ortega |
|
utue.personen.roh |
Rusak, Evgenia |
|
utue.personen.roh |
Brendel, Wieland |
|
utue.personen.roh |
Bethge, Matthias |
|
utue.personen.roh |
Anselmi, Fabio |
|
utue.personen.roh |
Patel, Ankit |
|
utue.personen.roh |
Tolias, Andreas |
|
utue.personen.roh |
Pitkow, Xaq |
|
dcterms.isPartOf.ZSTitelID |
Plos Computational Biology |
de_DE |
dcterms.isPartOf.ZS-Issue |
3 |
de_DE |
dcterms.isPartOf.ZS-Volume |
19 |
de_DE |
utue.fakultaet |
07 Mathematisch-Naturwissenschaftliche Fakultät |
de_DE |
utue.fakultaet |
08 Zentrale, interfakultäre und fakultätsübergreifende Einrichtungen |
de_DE |