Determinants of ascending aortic morphology: cross-sectional deep learning-based analysis on 25 073 non-contrast-enhanced NAKO MRI studies

DSpace Repositorium (Manakin basiert)

Determinants of ascending aortic morphology: cross-sectional deep learning-based analysis on 25 073 non-contrast-enhanced NAKO MRI studies

Autor(en): Fay, Louisa; Hepp, Tobias; Winkelmann, Moritz T.; Peters, Annette; Heier, Margit; Niendorf, Thoralf; Pischon, Tobias; Endemann, Beate; Schulz-Menger, Jeanette; Krist, Lilian; Schulze, Matthias B.; Mikolajczyk, Rafael; Wienke, Andreas; Obi, Nadia; Silenou, Bernard C.; Lange, Berit; Kauczor, Hans-Ulrich; Lieb, Wolfgang; Baurecht, Hansjoerg; Leitzmann, Michael; Trares, Kira; Brenner, Hermann; Michels, Karin B.; Jaskulski, Stefanie; Voelzke, Henry; Nikolaou, Konstantin; Schlett, Christopher L.; Bamberg, Fabian; Lescan, Mario; Yang, Bin; Kuestner, Thomas; Gatidis, Sergios
Tübinger Autor(en):
Fay, Louisa
Hepp, Tobias
Winkelmann, Moritz T.
Nikolaou, Konstantin
Gatidis, Sergios
Küstner, Thomas
Erschienen in: European Heart Journal - Cardiovascular Imaging (2025), Bd. 26, H. 5, S. 895-907
Verlagsangabe: Oxford : Oxford Univ Press
Sprache: Englisch
Referenz zum Volltext: http://dx.doi.org/10.1093/ehjci/jeaf081
ISSN: 2047-2404
DDC-Klassifikation: 610 - Medizin, Gesundheit
Dokumentart: Wissenschaftlicher Artikel
Zur Langanzeige

Das Dokument erscheint in: