Analyzing ordered categorical data derived from elliptically symmetric distributions

DSpace Repository


Dateien:

URI: http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-21350
http://hdl.handle.net/10900/47455
Dokumentart: WorkingPaper
Date: 1998
Source: Tübinger Diskussionsbeiträge der Wirtschaftswissenschaftlichen Fakultät ; 156
Language: English
Faculty: 6 Wirtschafts- und Sozialwissenschaftliche Fakultät
Department: Wirtschaftswissenschaften
DDC Classifikation: 330 - Economics
Keywords: Latente Variable
Other Keywords:
Microeconometrics , Ordered Data , Latent Variables , Polychoric Correlation , Polyserial Correlation , Brillinger's Estimator
License: http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=de http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=en
Show full item record

Abstract:

The polychoric correlation is an ML estimator for the correlation parameter between two latent variables. Each latent variable is only observed as an ordered categorical indicator. This estimator is based on an assumption on the joint distribution for the latent variables which in this case is the bivariate standard normal distribution. We perform a simulation study applying the polychoric correlation based on normality if the true distribution is in fact an elliptically symmetric distribution. The results show that the polychoric correlation is robust in the sense that the true correlation between the latent variables is estimated only with small bias if the true distribution is not too leptokurtic and also not too platykurtic. These results imply that in practical applications the polychoric correlation can be applied obtaining meaningful results even if tests suggest that the assumed normal distribution is not appropriate. Basically the same results are obtained if one latent variable is observed directly and the ML-estimator based on normality (polyserial correlation) is applied.

This item appears in the following Collection(s)