Rusty rice - unravelling rice plant and microbial interactions in the paddy soil iron cycle

DSpace Repositorium (Manakin basiert)


Dateien:

Zitierfähiger Link (URI): http://hdl.handle.net/10900/104383
http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1043831
http://dx.doi.org/10.15496/publikation-45761
Dokumentart: Dissertation
Erscheinungsdatum: 2020-08-04
Sprache: Englisch
Fakultät: 7 Mathematisch-Naturwissenschaftliche Fakultät
Fachbereich: Geographie, Geoökologie, Geowissenschaft
Gutachter: Kappler, Andreas (Prof. Dr.)
Tag der mündl. Prüfung: 2020-07-16
DDC-Klassifikation: 500 - Naturwissenschaften
Schlagworte: Reis , Eisen , Arsen , Bakterien , Biogeochemie
Freie Schlagwörter:
Rice
Iron
Bacteria
Iron Plaque
Arsenic
Iron Biogeochemistry
Lizenz: http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en
Gedruckte Kopie bestellen: Print-on-Demand
Zur Langanzeige

Inhaltszusammenfassung:

Reisfelder stellen eines der weltweit wichtigsten Agrargebiete dar und versorgen mehr als die Hälfte der Weltbevölkerung mit einem der wichtigsten Nahrungsmittel - Reis. Eisen (Fe) ist eines der am häufigsten vorkommenden redoxaktiven Metalle in Reisfeldböden. Meist liegt es als reduziertes Eisen (Fe(II)) oder oxidiertes Eisen (Fe(III)) vor. In wassergesättigten Reisfeldböden, die typischerweise frei von Sauerstoff (O2) sind, liegt Fe in seiner mobilen und gelösten Form als Fe(II) vor. Eisen stellt einerseits einen essentiellen Mikronährstoff für Reispflanzen dar. Eine zu hohe Eisenaufnahme über die Wurzeln kann jedoch zu einer Vergiftung führen und das Photosystem schädigen. Um die Aufnahme von Fe zu kontrollieren, können Reispflanzen O2 über die Wurzeln abgeben an den Boden abgeben. Dieser Prozess wird Radial Oxygen Loss (ROL) genannt. Durch ROL wird der Boden mit O2 angereichert, Fe(II) oxidiert und fällt auf der Wurzeloberfläche aus und wird als Eisen-Plaque-Minerale abgelagert. Die Bildung von Eisenplaque an den Wurzeln verringert nicht nur die Mobilität des Eisens, sondern dient auch als Adsorptionsmittel für Schadstoffe in Reisfeldern und kann deren Aufnahme in die Reiskörner verringern. Neben Reispflanzen können zahlreiche andere chemische und mikrobielle Redox-Prozesse die Speziation von Fe durch die Oxidation von Fe(II) und die Reduktion von Fe(III) beeinflussen. Dieser Eisen-Redox-Kreislauf in Reisböden ist an eine Vielzahl anderer Bodenelementkreisläufe gekoppelt, die die (Im)mobilisierung vieler Nähr- und Schadstoffe beeinflussen können. Insbesondere mikroaerophile Fe(II)-oxidierende Bakterien, die die Oxidation von Fe(II) enzymatisch an die Reduktion von O2 koppeln, spielen bei der Oxidation von Fe(II) eine wichtige Role. Ihr Einfluss auf den Eisenkreislauf in Reisfeldern ist bisher jeodch nur unzureichend verstanden. Darüber hinaus fehlt noch immer eine ganzheitliche Studie, die die räumlich-zeitliche Entwicklung von Eisenplaque an Reiswurzeln und die Wechselwirkungen mit Bodenbakterien in wassergesättigten Reisfeldern während des Pflanzenwachstums quantitativ untersucht. Insbesondere ist der Einfluss von mikrobieller Fe(III)-Reduktion auf die Mineralogie von Eisenplaque, welche als Senke oder Quelle für Schadstoffe fungieren kann, bisher kaum dokumentiert. In diesem Dissertationsprojekt haben wir neue Ansätze entwickelt, die eine dynamische, nicht-invasive Identifizierung von geochemischen Rhizosphärenparametern und eine Quantifizierung der Eisenminerale, die während des Wachstums von Reispflanzen gebildet werden, ermöglichen. Darüber hinaus leiteten wir Einflussgrößen mikrobieller Prozesse ab, die den Eisenkreislauf in Reisfeldböden und die (Im)mobilisierung von Schadstoffen, wie etwa Arsen, durch Fe(II)-Oxidation und Fe(III)-Reduktion während des vegetativen Wachstums von Reispflanzen beeinflussen. Obwohl mikroaerophile Fe(II)-oxidierende Bakterien in verschiedensten Ökogebieten, die durch entgegengesetzte Gradienten an O2 und Fe(II) geprägt sind, identifiziert wurden, ist wenig über ihren Einfluss auf den Eisenzyklus bekannt. Die schnelle Oxidation von Fe(II) mit O2 unter neutralen pH-Wert Bedingungen verdrängt diese Mikroorganismen in Nischen, in denen die O2 Konzentrationen niedrig genug sind, um mit der abiotischen Reaktion zu konkurrieren. Eine Quantifizierung der mikrobiellen Fe(II)-Oxidationsraten in klassischen Mikrokosmen stellt weiterhin eine Herausforderung dar, da abiotische und biotische Fe(II)-Oxidationsreaktionen bisher nicht separat quantifizierbar waren. Insbesondere die Akkumulation von Fe(III) (Bio)mineralen als Produkt der (a)biotischen Fe(II)-Oxidation steigert den Konkurrenzdruck auf die Bakterien durch die Beschleunigung abiotischer oberflächenkatalysierter heterogener Fe(II)-Oxidationsraten. In diesem Projekt wurde daher ein experimenteller Ansatz entwickelt, der eine Quantifizierung der mikrobiellen und abiotischen Fe(II)-Oxidationsraten ermöglicht. Bei O2 Konzentrationen von 20 μM O2 und der anfänglichen Abwesenheit von Fe(III)-Mineralien konnten mikroaerophile Bakterien (99,6% Ähnlichkeit mit Sideroxydans spp.), welche aus einem Reisfeld isoliert wurden, innerhalb von etwa 26 Stunden mit bis zu 40% zur gesamten Fe(II)-Oxidation beitragen. Eine Zelle oxidierte hierbei bis zu 3,6 × 10-15 mol Fe(II) pro Stunde. Bei O2 Konzentrationen von 5 bis 20 µM war der biologische Fe(II) Umsatz am höchsten, während niedrigere O2 Konzentrationen die biologische Fe(II)-Oxidation hemmten. Höhere O2-Konzentrationen beschleunigten wiederum die abiotische Fe(II)-Oxidation, die ab 30 µM O2 über die mikrobielle Fe(II)-Oxidation dominierte. Zusätzlich konnte gezeigt werden, dass Fe(III)-(Bio)minerale die oberflächenkatalytische heterogene abiotische Fe(II)-Oxidation induzieren und den mikrobiellen Einfluss auf Fe(II)-Oxidation von 40% auf nur 10% reduzieren. Dieser neu entwickelte Ansatz kann für die Kultivierung verschiedenster mikroaerophiler Kulturen Verwendung finden und dabei helfen mikrobielle Fe(II) Umsatzraten zu ermitteln. Die Ergebnisse können dann dazu beitragen, die Auswirkungen der mikroaerophilen Fe(II)-Oxidation auf den biogeochemischen Eisenzyklus in zahlreichen natürlichen und anthropogenen Ökosystemen besser einzuschätzen. Neben der mikrobiellen Fe(II)-Oxidation kann die Reispflanze selbst durch die Oxidation von Fe(II) mittels ROL zahlreiche Bodenparameter beeinflussen und mikrobielle Gemeinschaften verändern. Die O2 Abgabe über die Wurzeln führt nicht nur zur chemischen Oxidation von Fe(II), sondern kann auch von zum Beispiel mikroaerophilen Fe(II)-oxidierenden Bakterien als den Elektronenakzeptor benutzt werden. In der Rhizosphäre der Reispflanze können so sowohl mikrobielle als auch chemische Prozesse zur Bildung von Eisenmineralen auf und um die Wurzeloberfläche beitragen. Die Identifikation von potentiellen Nischen für mikroaerophile Fe(II)-oxidierende Bakterien in der Rhizosphäre von Reispflanzen blieb jedoch bisher aus. Im Rahmen dieser Dissertation wurden die räumliche Ausdehnung von ROL an Reiswurzeln währen des Wachstums von Reispflanzen zeitlich hochaufgelöst quantifiziert und dessen Einfluss auf andere Bodenparameter identifiziert. Durch die Anwendung nicht-invasiver Techniken in transparenten künstlichen Böden konnte so zum ersten Mal festgestellt werden, dass sich gegengesetzte Gradienten an O2 und Fe(II) rund um die Wurzeloberflöche ausbilden, welche sich von der Oberfläche der Reiswurzel bis zu 10-25 mm in die Rhizosphäre erstrecken. Diese mikrooxische Zone dehnte sich in der gesamten Rhizosphäre exponentiell aus und schuf optimale Nischen für mikroaerophile Fe(II)-oxidierende Bakterien. Durch die nicht-invasive Quantifizierung von Eisenmineralen, der Identifikation von Boden-pH-Wert Veränderungen und dem Bestimmen der Fe(II)-Oxidationskinetik in der gesamten Rhizosphäre, konnten abschließend festgestellt werden, dass ROL maßgeblich die Bildung von Eisenplaque und lokale pH-Wert Veränderungen steuert. Die gesammelten Ergebnisse unterstreichen die dynamischen geochemischen Wechselwirkungen an Reiswurzeln, während die neu entwickelten Methoden dazu beitragen können, den räumlich und zeitlich hoch dynamischen Eisenkreislauf in der Rhizosphäre zu verfolgen. Ergänzend wurde festgestellt, dass Wurzelspitzen die mitunter höchste Variation an lokalen O2 Konzentrationen aufweisen. Radial oxygen loss führte hier zu tageszeitlichen Schwankungen der O2 Konzentrationen zwischen 5-50 µM O2. Die gesamte Wurzelmasse wurde hierbei zu etwa 30% mit Eisenplaque bedeckt, was 60-180 mg Fe(III) pro Gramm getrockneter Wurzel entspricht. Darüber hinaus wurde festgestellt, dass sich die Mineralogie der Eisenplaqueminerale während des Pflanzenwachstums veränderte. Innerhalb von 40 Tagen wurden frisch gebildete niedrigkristalline Eisenminerale (z.B. Ferrihydrit) an den Wurzelspitzen in höherkristalline Eisenminerale (z.B. Goethit) umgewandelt. Eisen(III)-reduzierende Bakterien (Geobacter spp.), waren hierbei in der Lage, bis zu 30% Fe(II) durch reduktive Auflösung von Eisenplaque zu remobilisieren. Mehr als 50% der Eisenplaqueminerale haben sich in Fe(II)-Minerale (z.B. Siderit, Vivianit und Fe-S-Phasen) umgewandelt während etwa 15% als Fe(III)-Mineralien zurückblieben. Auf der Grundlage gesammelter Daten konnte abschließend quantitativ festgestellt werden, dass die ROL-induzierte Bildung von Eisenplaque an der Wurzel und die mikrobielle reduktive Auflösung mehr als 5% des gesamten Eisenhaushalts der Rhizosphäre beeinflussen, was Auswirkungen auf die (Im-)mobilisierung von beispielsweise Bodennährstoffen und Schadstoffen haben kann. In diesem Zusammenhang ist es allgemein anerkannt, dass die Eisenminerale auf Reiswurzeln Schadstoffe, wie beispielsweise Arsen (As) durch Sorption oder Komplexierung immobilisieren können. Das verringert nicht nur die Nettoaufnahme in die Pflanze, sondern vermindert auch deren Mobilität in kontaminierten Böden. Wenig ist jedoch über die Auswirkungen von Fe(III)-reduzierenden Bakterien auf die Schadstoff-Immobilisierungskapazität von Eisenplaque-Mineralen an Reiswurzeln bekannt. Im Rahmen dieser Dissertation wurde die Bildung von sekundär gebildeten Eisenmineralen (70% Siderit, 30% Ferrihydrit, Fh & Goethit, Gt ) als Produkt der mikrobiellen Eisenplaque-Reduktion identifiziert. Diese mikrobiell reduzierten Eisenplaqueminerale immobilisierten bis zu 2,5-mal mehr As, als vollständig oxidierte Eisenplaqueminerale (Fh & Gt). Bei Untersuchungen mit 3 verschieden hohen As-Konzentrationen in Eisenplaque, wurde festgestellt, dass >1 mg As pro 10 mg Eisenplaque die mikrobielle Reduktionsrate um 50% negativ beeinflusst. Während der reduktiven Auflösung von Eisenplaque wurde As zunächst remobilisiert, aber nach etwa 7 Tagen wieder an sekundär gebildete Eisenplaqueminerale adsorbiert. Etwa 20% des ursprünglichen Arsen(V) wurden an der redoxaktiven Oberfläche der sekundären Eisenplaqueminerale zu As(III) reduziert. Die Immobilisierung auf sekundären Eisenplaquemineralen war selektiv für As(V) und erhöhte den relativen Massenanteil von As(III) in Lösung. Diese Beobachtungen helfen dabei, den Einfluss mikrobieller Fe(III)-Reduktion und deren Auswirkungen auf die Schadstoff-(Im)mobilisierung in belasteten Reisfeldböden abzuschätzen. Ermöglicht wurden die im Rahmen dieser Doktorarbeit zusammengestellten Beobachtungen durch neu entwickelte Ansätze und Methodenkombinationen. Die Möglichkeit, bisher unsichtbare Eisen-Redox-Prozesse in der gesamten Rhizosphäre der Reispflanze zu quantifizieren und den Einfluss mikroaerophiler Fe(II)-oxidierender und Fe(III)-reduzierender Mikroorganismen zu entschlüsseln, ermöglicht eine neue Sicht auf den biogeochemischen Eisen-Redox-Zyklus in wassergesättigten Reisfeldböden. Das Wechselspiel zwischen Pflanzen, Bodenorganismen und Parametern beeinflusst nicht zuletzt die physikalisch-chemischen Eigenschaften von Eisenplaquemineralen, welche wiederum die Verfügbarkeit von Bodennährstoffen und die (Im)mobilität von Schadstoffen steuern kann.

Abstract:

Paddy fields represent one of the most important agricultural areas and serve more than half of World’s population with a major food stock – rice. Iron (Fe) is one of the most abundant redox active metals in paddy soils, mostly present as reduced ferrous iron, Fe(II) or oxidized ferric iron, Fe(III). Water-logged paddy soils, typically depleted in oxygen (O2), allow Fe to be abundant as mobile and dissolved Fe(II). Rice plants demand Fe as essential micronutrient. However, high uptake of Fe through roots can lead to a toxification and damage the photosystem. In order to control the uptake of Fe, rice plants diffusively release O2 from their roots by radial oxygen loss (ROL) which locally oxygenates the anoxic paddy soil, oxidizes Fe(II) and forms ferric non-mobile iron plaque minerals on the root surface. The formation of iron plaque on roots not only diminishes the mobility of iron but also serves as an adsorbent for contaminants in paddy fields and can reduce the uptake into rice grains. Besides rice plants, numerous other chemical and microbial redox processes can impact the speciation and appearance of Fe by the oxidation of Fe(II) and the reduction of Fe(III). This iron redox cycle in paddy soils is coupled to a large variety of other soil element cycles which can influence the fate and the (im)mobilization of many nutrients and contaminants. Representing the bottle neck for a translocation of soil contaminants into the food chain, it is crucial to better understand processes involved in the biogeochemical iron cycle in paddy fields. In particular microaerophilic Fe(II)-oxidizing bacteria that enzymatically couple the oxidation of Fe(II) to the reduction of O2 under micro-oxic conditions and their role in the paddy field iron cycle remains so far poorly understood. Moreover, a holistic study that quantitatively investigated the spatiotemporal development of root iron plaque and interactions with Fe-cycling bacteria in water-logged paddy soils during plant growth is still lacking. Specifically, the consequences of microbial Fe(III) reduction for root iron plaque minerals to serve as a sink or source for contaminants are so far scarcely documented. In this PhD thesis project, we developed new approaches that allowed a dynamic non-invasive identification of geochemical rhizosphere parameters and a quantification of root iron plaque minerals forming during the growth of rice plants. Further, we derived an enumerative understanding for microbial processes impacting the paddy field iron cycle and contaminant (im)mobility (i.e. arsenic) by Fe(II) oxidation and Fe(III) reduction over the vegetative growth of rice plants. Although microaerophilic Fe(II)-oxidizing bacteria are found in numerous environments with opposing gradients of O2 and Fe(II), little is known about their contribution to the oxidative side of the iron cycle. The rapid autocatalytic oxidation of Fe(II) with O2 at neutral pH displaces these microorganisms into niches where O2 concentrations are low enough to compete with the abiotic reaction. Concomitantly, a quantification of microbial Fe(II) oxidation rates in classical microcosms remained challenging, because abiotic and biotic Fe(II) oxidation reactions remained indecipherable so far. In particular the accumulation of ferric (bio)minerals, as a product of (a)biotic Fe(II) oxidation increases the competition by stimulating abiotic surface-catalyzed heterogeneous Fe(II) oxidation rates. In this project, we therefore developed an experimental approach that allows a quantification of microbial and abiotic Fe(II) oxidation rates in the presence or initial absence of ferric (bio)minerals. At dissolved O2 concentrations of 20 μM O2 and the initial absence of Fe(III) minerals, an Fe(II)-oxidizing culture (99.6% similarity to Sideroxydans spp.), isolated from a paddy field, contributed 40% to the total Fe(II) oxidation within approximately 26 hours and oxidized up to 3.6 × 10–15 mol Fe(II) cell–1 h–1. We found that this culture could enzymatically compete with the abiotic Fe(II) oxidation within an optimum range from 5 to 20 μM dissolved O2. Lower O2 levels limited the biotic Fe(II) oxidation, while higher O2 concentrations accelerated the abiotic Fe(II) oxidation which dominated over the microbial impact. Additionally, we could demonstrate that the initial presence of ferric (bio)minerals induced the surface-catalytic heterogeneous abiotic Fe(II) oxidation and reduced the microbial contribution to Fe(II) oxidation from 40% to only 10% at levels with 10 μM O2. We hypothesize that this newly-developed approach can be used for a large variety of microaerophilic Fe(II)-oxidizing cultures, while the obtained results can help to better assess the impact of microaerophilic Fe(II) oxidation on the biogeochemical iron cycle in numerous environmental natural and anthropogenic settings. Besides a microbial Fe(II) oxidation, also direct plant-mediated oxidation of Fe(II) by ROL can significantly influence numerous paddy field soil parameters and alter microbial communities. Especially the biogeochemistry of water-logged rice paddies, which are typically characterized by anoxic and reducing conditions, can dramatically be impacted by the temporal oxygenation of the rhizosphere with O2 from ROL. The local availability of ROL-borne O2 not only triggers the autocatalytic abiotic oxidation of Fe(II) but also provides the electron acceptor for microaerophilic Fe(II)-oxidizing bacteria. In the rice plant rhizosphere, both processes can contribute to the formation of ferric iron plaque minerals on and around the root surface. However, the identification of potential niches in the rice plant rhizosphere remained speculative so far. In this project, we temporally resolved spatial changes in ROL in the entire rice plant rhizosphere and identified the impact on the redoximorphic paddy soil biogeochemistry. By applying a series of non-invasive techniques in a transparent artificial soil, we could visualize for the first time opposing gradients of O2 and Fe(II) that extend from the rice root surface between 10−25 mm into the rhizosphere. This microoxic zone expanded exponentially in size throughout the entire rhizosphere creating optimum niches for microaerophilic Fe(II)-oxidizing bacteria during rice plant growth over 45 days. By non-invasively following and quantifying iron mineral formation, identifying changes in soil pH, and determining Fe(II) oxidation kinetics in the entire rhizosphere, we could demonstrate that root-related ROL induced iron redox transformations on and around the root surface which correlates to an acidification of the rhizosphere. These findings highlight the dynamic nature of roots in the rice plant rhizosphere while this newly-developed combination of methods spatiotemporally resolved their impact on iron redox chemistry and the formation of dynamic niches for microaerophilic Fe(II)-oxidizing bacteria in the rice plant rhizosphere. Complementing the above-reported studies, we found, that while radial oxygen loss (ROL) is the main driver for rhizosphere iron oxidation, roots tips showed the highest spatio-temporal variation in ROL (<5-50µM) following diurnal patterns. Root iron plaque covered >30% of the total root surface corresponding to 60-180 mg Fe(III) per gram dried root. Moreover, we found that root iron plaque minerals gradually transformed from freshly formed low-crystalline minerals (e.g. ferrihydrite) on root tips, to >20% higher-crystalline minerals (e.g. goethite) within 40 days. A culture of Fe(III)-reducing bacteria (Geobacter spp.), isolated from a rice paddy, was capable of remobilizing up to 30% Fe(II) from root iron plaque by reductive dissolution, while >50% iron plaque minerals transformed to Fe(II) minerals (e.g. siderite, vivianite and Fe–S phases) or persisted by >15% as Fe(III) minerals. Based on the obtained data, we estimated that ROL-induced root iron plaque formation and microbial reductive dissolution impact more than 5% of the total rhizosphere iron budget which can severely impact the (im)mobilization of soil contaminants and nutrients. In this context, it is generally accepted that root iron plaque on rice roots can immobilize As by sorption or coprecipitation which decreases the net uptake into the plant and diminishes its mobility in contaminated soils. However, little is known about the role of bacteria in the reduction of As-bearing Fe(III) plaque minerals or the efficiency of reduced iron plaque in As immobilization. In this project, we demonstrate the formation of secondary root iron plaque minerals (70% siderite, 30% ferrihydrite, Fh & goethite, Gt ) during microbial iron plaque reduction, that can immobilize 2.5 times more As than fully oxidized iron plaque (Fh & Gt). By comparing 3 different As-loads in iron plaque minerals, we found that >1mg As per 10 mg iron plaque can negatively affect microbial reduction rates by 50%. During reductive dissolution, As was first remobilized but re-adsorbed onto secondary iron plaque minerals after 7 days. Abiotic reduction of dissolved As(V) occurred on redox-active surfaces of secondary iron plaque minerals and produced >20% As(III) out of the initial As(V) pool. The later immobilization onto secondary iron plaque minerals was selective for As(V) and increased the relative abundance of As(III) in solution. These findings suggest that the obtained results can help to assess the role of microbial iron plaque reduction and to enumerate the consequences for the fate of As in contaminated paddy fields. In general, the reported findings in this PhD project identified a series of yet spatio-dynamically unresolved biological mechanisms that influence the iron cycle in rice paddies using newly-developed approaches and combinations of methods. The capability to quantify so far invisible iron redox processes in the entire rice plant rhizosphere and to decipher the role of microaerophilic Fe(II)-oxidizing and Fe(III)-reducing microorganisms provides a novel vision on the paddy soil biogeochemical iron redox cycle in which highly spatio-dynamic physico-chemical features can control the (im)mobility of iron, nutrients and contaminants. Overall, this PhD project provides a tangible example that yet invisible processes can be visualized by developing and combining classical and state-of-the art techniques.

Das Dokument erscheint in: