Recognition of Similar NetFlow Data in Decentralised Monitoring Environments

DSpace Repositorium (Manakin basiert)


Dateien:

Zitierfähiger Link (URI): http://hdl.handle.net/10900/126090
http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1260905
http://dx.doi.org/10.15496/publikation-67453
http://nbn-resolving.org/urn:nbn:de:bsz:21-dspace-1260900
http://nbn-resolving.org/urn:nbn:de:bsz:21-dspace-1260904
Dokumentart: Konferenzpaper
Erscheinungsdatum: 2022-04-07
Sprache: Englisch
Fakultät: 7 Mathematisch-Naturwissenschaftliche Fakultät
Fachbereich: Informatik
DDC-Klassifikation: 004 - Informatik
Zur Langanzeige

Abstract:

One of the main challenges in the analysis of NetFlow data in decentralised monitoring environments comes from merging datasets from different independent sites. One problem is to identify similar data points which can impact derived metrics from such data directly. This article provides a proof of concept how similarity measurements based on distance metrics can be used to identify similar or related flows from different datasets. For this, several domains are outlined which can benefit from this approach to support validation of research scenarios and data analysis.

Das Dokument erscheint in: