Abstract:
In network softwarization, traditional network appliances with fixed features and limited configurability are replaced by programmable software- or hardware-based platforms. Two popular concepts of this new trend are SDN and data plane programming. SDN allows programmers to bypass the control plane of networking devices and introduce own software-based control plane algorithms. Data plane programming extends this programmability to the data plane. These new networking concepts are the basis for next-generation networks as utilized in cloud computing or 5G. OF and P4 are the most widespread standards for SDN and data plane programming, respectively.
However, introducing SDN and data plane programming in existing networks requires transition strategies for the integration of existing network functions, protocols, and applications. The research of this thesis focuses on the integration of network security functions. It investigates whether existing and widespread network security mechanisms are implementable, how potential concepts and architectures of integrations may be engineered, and if mechanisms can benefit from SDN and data plane programming in terms of more efficient operation with automation, increased security, or new features. Subsequently, this research is complemented with a literature study analyzing how data plane programming with P4 is applied in fields other than network security.
The results of my research are covered in five accepted and peer-reviewed papers and two papers that are currently in peer-review. Research results on OF-based SDN include an integration of 802.1X and a novel mechanism for network access and execution control for containerized applications. Research results on P4 data planes with SDN control include integrations of MACsec, IPsec, and 802.1X. The results of the literature study are covered in an extensive survey paper. Five more accepted and peer-reviewed papers are additional content of this thesis. These publications include research results on SDN transition strategies not related to network security and research results in the field of modelling and simulation.
The majority of my research work was part of the bwNET100G+ research project. Additional research work was funded by the Deutsche Forschungsgemeinschaft (DFG) under grant ME2727/1-2 and by Siemens AG.