Causality for Natural Language Processing

DSpace Repositorium (Manakin basiert)


Dateien:

Zitierfähiger Link (URI): http://hdl.handle.net/10900/159746
http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1597469
Dokumentart: Dissertation
Erscheinungsdatum: 2024-12-18
Sprache: Englisch
Fakultät: 7 Mathematisch-Naturwissenschaftliche Fakultät
Fachbereich: Informatik
Gutachter: Schölkopf, Bernhard (Prof. Dr.)
Tag der mündl. Prüfung: 2024-12-13
DDC-Klassifikation: 004 - Informatik
Schlagworte: Computerlinguistik , Sprachdaten , Maschinelles Lernen , Künstliche Intelligenz
Freie Schlagwörter: natürlichen Sprachverarbeitung
Kausales Denken
Maschinelles Lernen
Künstliche Intelligenz
großen Sprachmodellen
large language models
artificial intelligence
machine learning
causal reasoning
Natural language processing
Lizenz: http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=de http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=en
Zur Langanzeige

Abstract:

Causal reasoning is a cornerstone of human intelligence and a critical capability for artificial systems aiming to achieve advanced understanding and decision-making. This thesis delves into various dimensions of causal reasoning and understanding in large language models (LLMs). It encompasses a series of studies that explore the causal inference skills of LLMs, the mechanisms behind their performance, and the implications of causal and anticausal learning for natural language processing (NLP) tasks. Additionally, it investigates the application of causal reasoning in text-based computational social science, specifically focusing on political decision-making and the evaluation of scientific impact through citations. Through novel datasets, benchmark tasks, and methodological frameworks, this work identifies key challenges and opportunities to improve the causal capabilities of LLMs, providing a comprehensive foundation for future research in this evolving field.

Das Dokument erscheint in: