Algebraic Methods in Reconstruction of Varieties and Game Theory

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.advisor Agostini, Daniele (Jun. Prof. Dr.)
dc.contributor.author Sendra Arranz, Javier
dc.date.accessioned 2025-01-13T15:51:49Z
dc.date.available 2025-01-13T15:51:49Z
dc.date.issued 2025-01-13
dc.identifier.uri http://hdl.handle.net/10900/160061
dc.identifier.uri http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1600616 de_DE
dc.description.abstract In this thesis we study the synergies among theoretical, computational and applied algebraic geometry in three different settings, that correspond to each of the chapters: plane Hurwitz numbers, Hessian correspondence and algebraic game theory. First, we study plane Hurwitz numbers from a theoretical and computational point of view. We explore how to reconstruct $\mathfrak{h}_d$ plane curves from the branch locus of the projection from a fix point, where $\mathfrak{h}_d$ is the plane Hurwitz number of degree $d$. We approach this recovery problem for the case of plane cubics and plane quartics. From a theoretical point of view, we compute the real plane Hurwitz numbers $\hr_3$ and $\hr_4$. Moreover, we introduce and study the notion of (real) Segre-Hurwitz numbers $\mathfrak{sh}_{d_1,d_2}$ and $\mathfrak{sh}_{d_1,d_2}^\mathrm{real}$. Secondly, we investigate the Hessian correspondence of hypersurfaces $H_{d,n}$. This is the map that associate to a degree $d$ hypersurface in $\P^n$ its Hessian variety or second polar variety. We analyse the fibers of $H_{d,n}$ and its birationality for hypersurfaces of Waring rank at most $n+1$ and for hypersurfaces of degree $3$ and $4$. From a computational perspective, we explore how to recover a hypersurface from its Hessian variety. We also investigate the geometry of the catalecticant enveloping variety. Thirdly, we explore the application of algebro-geometric tools to the study of the conditional independence (CI) equilibria of a collection of CI statements $\mathcal{C}$. We focus on the case where $\mathcal{C}$ is the global Markov property of an undirected graph. We investigate this notion of equilibrium through the algebro-geometric examination of the Spohn CI variety. We restrict our study to binary games and we analyse the dimension of these varieties. In the case where the graph is a disjoint union of complete graphs, we explore further algebro-geometric features of Spohn CI varieties. en
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.rights cc_by de_DE
dc.rights ubt-podok de_DE
dc.rights.uri https://creativecommons.org/licenses/by/4.0/legalcode.de de_DE
dc.rights.uri https://creativecommons.org/licenses/by/4.0/legalcode.en en
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en en
dc.subject.ddc 510 de_DE
dc.subject.other Algebraic Geometry en
dc.subject.other Plane Hurwitz numbers en
dc.subject.other Hessian varieties en
dc.subject.other Hypersurfaces en
dc.subject.other Algebraic Game Theory en
dc.title Algebraic Methods in Reconstruction of Varieties and Game Theory en
dc.type PhDThesis de_DE
dcterms.dateAccepted 2024-07-18
utue.publikation.fachbereich Mathematik de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE
utue.publikation.noppn yes de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige

cc_by Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: cc_by