Stability of Trajectories of Classical, Weakly Interacting Particles

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.advisor Pickl, Peter (Prof. Dr.)
dc.contributor.author Söhnen, Kajetan
dc.date.accessioned 2025-03-26T12:53:14Z
dc.date.available 2025-03-26T12:53:14Z
dc.date.issued 2025-03-26
dc.identifier.uri http://hdl.handle.net/10900/163355
dc.identifier.uri http://nbn-resolving.org/urn:nbn:de:bsz:21-dspace-1633554 de_DE
dc.identifier.uri http://dx.doi.org/10.15496/publikation-104685
dc.description.abstract The Vlasov-Poisson equation describes the macroscopic time evolution of a system with a large number of particles interacting by a force, typically Coulomb or gravitational force. Although the equation has established itself as a helpful tool yielding strong results, it still lacks a rigorous mathematical justification. So far, the mathematical results all either worked with a cut-off on the force, used a slightly weaker interaction all together, or assumed monokineticity of the initial data. In these settings, however, one was able to prove that the mean-field trajectories arising from the Vlasov-Poisson equation are typically a very good approximation for the real trajectories. In this paper we consider a similar set-up where we can build on these previous results to help us answer a new but related question. We consider a system of N initially i.i.d. particles with Coulomb interaction. If we move the initial position of one particle by a small δ in ℝ^6 in phase-space, what is the expected impact on the whole system in the time frame [0,T]? Due to the pair interaction, the effect is highly non-trivial. We prove that, under suitable conditions on the starting density and with a cut-off at approximately N^(-1/3), the system as a whole typically stays stable. More precisely, for all the particles that we did not disturb, the distance between the original trajectory and the trajectory in the disturbed system stays smaller than N^(-α)|δ|, for suitable α>0. This α>0 depends on whether the particle has a collision with another particle and on its distance to the disturbed particle. Depending on these characteristics, α takes on values between N^(-1/18+2σ) and N^(-1/3+2σ). The best estimates are obtained for particles that are far away from the disturbed particle and do not have a collision. en
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.rights cc_by-nc-nd de_DE
dc.rights ubt-podok de_DE
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.de de_DE
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.en en
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en en
dc.subject.classification Mathematik , Physik , Teilchen de_DE
dc.subject.ddc 500 de_DE
dc.subject.ddc 510 de_DE
dc.subject.ddc 530 de_DE
dc.subject.other Vlasov de_DE
dc.subject.other Vlasov en
dc.title Stability of Trajectories of Classical, Weakly Interacting Particles en
dc.type PhDThesis de_DE
dcterms.dateAccepted 2025-03-13
utue.publikation.fachbereich Mathematik de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE
utue.publikation.noppn yes de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige

cc_by-nc-nd Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: cc_by-nc-nd