Dynamic Traffic Steering for Networked Robotics Using 3GPP-Compliant Application Functions

DSpace Repositorium (Manakin basiert)


Dateien:

Zitierfähiger Link (URI): http://hdl.handle.net/10900/163770
http://nbn-resolving.org/urn:nbn:de:bsz:21-dspace-1637709
http://dx.doi.org/10.15496/publikation-105100
Dokumentart: Wissenschaftlicher Artikel
Erscheinungsdatum: 2025-04-03
Sprache: Englisch
Fakultät: 7 Mathematisch-Naturwissenschaftliche Fakultät
Fachbereich: Informatik
DDC-Klassifikation: 004 - Informatik
Zur Langanzeige

Abstract:

Low-latency communication in 5G networks enables advanced applications in networked robotics, such as collaborative visual Simultaneous Localization And Mapping (vSLAM), where robots share real-time sensor data to build accurate maps and localize themselves. To reduce onboard energy consumption, robots can offload compute-intensive tasks—such as feature extraction and map fusion—to nearby Multi-access Edge Computing (MEC) servers. However, existing 5G traffic steering mechanisms often ignore the dynamic compute load at MEC sites, leading to service congestion and degraded Quality of Service (QoS). This paper proposes a novel traffic steering scheme that jointly considers real-time network conditions and MEC compute availability to optimize service instance selection. Leveraging the 3GPP-defined Application Function (AF), our system dynamically associates mobile clients with the most suitable service endpoint, minimizing end-to-end latency and improving load distribution. We outline an experimental evaluation plan including key performance metrics, a 5G-enabled testbed, and representative robotic workloads. The proposed scheme is based on Release 18 and adaptable to future beyond-5G architectures.

Das Dokument erscheint in: