Derivation of the Effective Dynamics for the Bose Polaron

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.advisor Pickl, Peter (Prof. Dr.)
dc.contributor.author Spruck, Siegfried
dc.date.accessioned 2025-07-15T14:41:58Z
dc.date.available 2025-07-15T14:41:58Z
dc.date.issued 2025-07-15
dc.identifier.uri http://hdl.handle.net/10900/168172
dc.identifier.uri http://nbn-resolving.org/urn:nbn:de:bsz:21-dspace-1681720 de_DE
dc.identifier.uri http://dx.doi.org/10.15496/publikation-109499
dc.description.abstract In this doctoral thesis, we consider the dynamics of a dense quantum gas consisting of $N$ bosons evolving in $\mathbb{R}^3$ in the presence of an impurity particle in the mean-field scaling with initially high density $\rho$ and large volume $\Lambda$ of the gas. In the initial state of the system almost all bosons are in the Bose-Einstein condensate, with a few excitations. For this system we derive from the microscopic dynamics in the limit of large densities and volumes the effective description by a quantum field theory modelled by the Bogoliubov-Fröhlich Hamiltonian which describes a quasi-particle, the Bose polaron. en
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.rights ubt-podno de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=en en
dc.subject.classification Polaron , Quantengas , Bose-Einstein-Kondensation , Quantenfeldtheorie , Vielteilchensystem , Mean-Field-Theorie de_DE
dc.subject.ddc 510 de_DE
dc.subject.other Bogoliubov transformations en
dc.subject.other Bogoliubov theory en
dc.subject.other Bose-Einstein condensation en
dc.subject.other Polaron en
dc.subject.other Impurity particles en
dc.subject.other Bosons en
dc.subject.other Quantum gas en
dc.subject.other Mean-Field theory en
dc.subject.other Effective theories en
dc.subject.other Many-Body physics en
dc.title Derivation of the Effective Dynamics for the Bose Polaron de_DE
dc.type PhDThesis de_DE
dcterms.dateAccepted 2025-07-01
utue.publikation.fachbereich Mathematik de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE
utue.publikation.noppn yes de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige