Probabilistic Machine Learning for Real-Time Gravitational-Wave Inference

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.advisor Schölkopf, Bernhard (Prof. Dr.)
dc.contributor.author Dax, Maximilian
dc.date.accessioned 2025-08-11T11:08:35Z
dc.date.available 2025-08-11T11:08:35Z
dc.date.issued 2025-08-11
dc.identifier.uri http://hdl.handle.net/10900/168991
dc.identifier.uri http://nbn-resolving.org/urn:nbn:de:bsz:21-dspace-1689917 de_DE
dc.identifier.uri http://dx.doi.org/10.15496/publikation-110318
dc.description.abstract Gravitational-wave (GW) astronomy has led to groundbreaking discoveries in the past decade, and with the development of next-generation detectors, its potential for future breakthroughs continues to grow. This field hinges on the ability to accurately characterize GW sources based on measured data. However, computational demands of existing inference methods impede their application to large-scale or real-time data analysis. We here present DINGO, a probabilistic machine learning framework for Bayesian GW inference that addresses these limitations with an unprecedented combination of speed and accuracy. Building on neural posterior estimation (NPE), DINGO trains deep neural networks on GW simulations to learn the mapping between measured data and GW source parameters. We first introduce DINGO for binary black hole mergers, the most common GW source. We develop techniques to integrate symmetries (called GNPE) and to rapidly adapt to varying detector noise properties. We then augment NPE with importance sampling (NPE-IS) to correct for potential network inaccuracies. This enables asymptotically exact inference, independent verification and unbiased estimates of the Bayesian evidence, addressing important limitations of deep learning-based inference. Finally, we extend DINGO to binary neutron star mergers. We develop techniques to effectively compress long signals based on event-adaptive priors (prior conditioning) and to enable inference even before the merger. With inference times of less than a second, this provides crucial real-time information for directing searches for electromagnetic counterparts. Our experimental evaluations encompass more than 50 real events and thousands of simulations, three different waveform models, two types of sources and two experimental setups (LIGO-Virgo-KAGRA and next-generation detectors). DINGO consistently achieves comparable accuracy to established inference methods while being orders of magnitude faster. This prepares GW data analysis for increasing detection rates, facilitates large-scale studies and can improve searches for electromagnetic counterparts. Beyond GW astronomy, DINGO contributes several broadly applicable techniques to the field of simulation-based inference, including GNPE, NPE-IS and prior-conditioning. en
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.rights ubt-podno de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=en en
dc.subject.ddc 004 de_DE
dc.subject.ddc 500 de_DE
dc.subject.ddc 520 de_DE
dc.subject.ddc 530 de_DE
dc.subject.other Machine Learning en
dc.subject.other Artificial Intelligence en
dc.subject.other AI for Science en
dc.subject.other Gravitational Waves en
dc.subject.other Astronomy en
dc.subject.other Simulation-Based Inference en
dc.subject.other Inverse Problems en
dc.subject.other Generative AI en
dc.title Probabilistic Machine Learning for Real-Time Gravitational-Wave Inference en
dc.type PhDThesis de_DE
dcterms.dateAccepted 2025-07-17
utue.publikation.fachbereich Informatik de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE
utue.publikation.noppn yes de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige