dc.contributor.author |
Borchert, Bernd |
de_DE |
dc.contributor.author |
Reinhardt, Klaus |
de_DE |
dc.date.accessioned |
2006-10-30 |
de_DE |
dc.date.accessioned |
2014-03-18T10:16:07Z |
|
dc.date.available |
2006-10-30 |
de_DE |
dc.date.available |
2014-03-18T10:16:07Z |
|
dc.date.issued |
2006 |
de_DE |
dc.identifier.other |
286959968 |
de_DE |
dc.identifier.uri |
http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-25189 |
de_DE |
dc.identifier.uri |
http://hdl.handle.net/10900/48969 |
|
dc.description.abstract |
We present an idea to describe a polynomial with 2^n distinct integer zeros by an n-tuple of integers via a scheme of n recurring equations.
We call such an n-tuple an exponential multiplication scheme of size n. Exponential multiplication schemes of size 1,2,3, and 4 are presented.
Under the assumption that fast exponential multiplication scheme generators exist we suggest a fast randomized heuristic for the factorization problem. |
de_DE |
dc.language.iso |
de |
de_DE |
dc.publisher |
Universität Tübingen |
de_DE |
dc.rights |
ubt-podok |
de_DE |
dc.rights.uri |
http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de |
de_DE |
dc.rights.uri |
http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en |
en |
dc.subject.classification |
Faktorisierung |
de_DE |
dc.subject.ddc |
004 |
de_DE |
dc.title |
Exponential Multiplication Schemes |
en |
dc.type |
Report |
de_DE |
dc.date.updated |
2012-10-11 |
de_DE |
utue.publikation.fachbereich |
Informatik |
de_DE |
utue.publikation.fakultaet |
7 Mathematisch-Naturwissenschaftliche Fakultät |
de_DE |
dcterms.DCMIType |
Text |
de_DE |
utue.publikation.typ |
report |
de_DE |
utue.opus.id |
2518 |
de_DE |
utue.opus.portal |
wsi |
de_DE |
utue.opus.portalzaehlung |
2006.10000 |
de_DE |
utue.publikation.source |
WSI ; 2006 ; 10 |
de_DE |
utue.publikation.reihenname |
WSI-Reports - Schriftenreihe des Wilhelm-Schickard-Instituts für Informatik |
de_DE |
utue.publikation.zsausgabe |
2006, 10 |
|
utue.publikation.erstkatid |
2919855-0 |
|